Quantifying the promise of lithium–air batteries for electric vehicles
Date Published |
03/2014
|
---|---|
Publication Type | Journal Article
|
Authors | |
---|---|
DOI |
10.1039/C3EE43870H
|
Abstract |
Researchers worldwide view the high theoretical specific energy of the lithium–air or lithium–oxygen battery as a promising path to a transformational energy-storage system for electric vehicles. Here, we present a self-consistent material-to-system analysis of the best-case mass, volume, and cost values for the nonaqueous lithium–oxygen battery and compare them with current and advanced lithium-based batteries using metal-oxide positive electrodes. Surprisingly, despite their high theoretical specific energy, lithium–oxygen systems were projected to achieve parity with other candidate chemistries as a result of the requirement to deliver and purify or to enclose the gaseous oxygen reactant. The theoretical specific energy, which leads to predictions of an order of magnitude improvement over a traditional lithium-ion battery, is shown to be an inadequate predictor of systems-level cost, volume, and mass. This analysis reveals the importance of system-level considerations and identifies the reversible lithium-metal negative electrode as a common, critical high-risk technology needed for batteries to reach long-term automotive objectives. Additionally, advanced lithium-ion technology was found to be a moderate risk pathway to achieve the majority of volume and cost reductions. |
Journal |
Energy & Environmental Science
|
Volume |
7
|
Year of Publication |
2014
|
Issue |
5
|
Pagination |
1555-1563
|
Organizations | |
Download citation |