Quantifying the flexibility of hydrogen production systems to support large-scale renewable energy integration

Date Published
01/2018
Publication Type
Journal Article
Authors
DOI
10.1016/j.jpowsour.2018.07.101
Abstract

Hydrogen is a flexible energy carrier that can be produced in various ways and support a variety of applications including industrial processes, energy storage and electricity production, and can serve as an alternative transportation fuel. Hydrogen can be integrated in multiple energy sectors and has the potential to increase overall energy system flexibility, improve energy security, and reduce environmental impact. In this paper, the interactions between fuel cell electric vehicles (FCEVs), hydrogen production facilities, and the electric power grid are explored. The flexibility of hydrogen production systems can create synergistic opportunities to better integrate renewable sources into the electricity system. To quantify this potential, we project the hourly system-wide balancing challenges in California out to 2025 as more renewables are deployed and electricity demand continues to grow. Passenger FCEV adoption and refueling behavior are modeled in detail to spatially and temporally resolve the hydrogen demand. We then quantify the system-wide balancing benefits of controlling hydrogen production from water electrolysis to mitigate renewable intermittency, without compromising the mobility needs of FCEV drivers. Finally, a control algorithm that can achieve different objectives, including peak shaving, valley filling, and ramping mitigation is proposed. Our results show that oversizing electrolyzers can provide considerable benefits to mitigate renewable intermittency, while also supporting the deployment of hydrogen vehicles to help decarbonize the transportation sector. 

Journal
Journal of Power Sources
Volume
399
Year of Publication
2018
Pagination
383 - 391
ISSN Number
03787753
URL
Short Title
Journal of Power Sources
Keywords
Organizations
Research Areas
Download citation