Cross-source sensing data fusion for building occupancy prediction with adaptive lasso feature filtering

Date Published
01/2019
Publication Type
Journal Article
Authors
DOI
10.1016/j.buildenv.2019.106280
Abstract

Fusing various sensing data sources can significantly improve the accuracy and reliability of building occupancy detection. Fusing environmental sensors and wireless network signals are seldom studied for its computational and technical complexity. This study aims to propose an integrated adaptive lasso model that is able to extract critical data features for environmental and Wi-Fi probe dual sensing sources. Through rapid feature extraction and process simplification, the proposed method aims to improve the computational efficiency of occupancy detecting models. To validate the proposed model, an onsite experiment was conducted to examine two occupancy data resolutions, (real-time and four-level occupancy resolutions). The results suggested that, among all twelve features, eight features are most relevant. The mean absolute error of the real-time occupancy can be reduced to 2.18 and F1_accuracy is about 84.36% for the four-level occupancy.

Journal
Building and Environment
Volume
162
Year of Publication
2019
Pagination
106280
ISSN Number
03601323
Short Title
Building and Environment
Keywords
Organizations
Research Areas
File(s)
Download citation