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Abstract:  

Fusing various sensing data sources is able to improve the accuracy and reliability of 
building occupancy detection. Efficiently fusing environmental sensors and wireless 
network signals is seldom studied for its computational and technical challenges. This 
study aims to propose an integrated model that is able to extract critical data features 
for environmental and Wi-Fi probe dual sensing sources to promote computational 
efficiency. The adaptive lasso model was introduced for the feature extraction and 
reduction process. To validate the proposed model, an onsite experiment was conducted 
and two occupancy resolutions, real-time and four-level occupancy resolutions, were 
compared. The results suggested that eight features among all twelve features are most 
relevant. The mean absolute error of the selected data features is about 2.18 for real-
time occupancy and F1_accuracy is about 84.36% for four-level occupancy. 
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1. Introduction 

With HVAC (heating, ventilation, air-conditioning) systems consuming over 40% 

of building energy use, improving efficient HVAC control is a key issue in building 

energy saving studies [1,2] Under building operation phase, not only can occupants 

interact with building to maintain indoor thermal comfort and environment quality, also 

occupants can passively participate in building load transfer, therefore, the influence of 

occupancy on buildings’ performance increases [3,4]. Occupancy detection and 

prediction are inspiring researches for efficient HVAC controls and developing building 

energy efficiency models [5,6]. Previously, occupancy was usually estimated with a 

single parameter with single sensor, e.g. CO2 [7], lighting [8], PIR [9], Bluetooth 

[10,11], Wi-Fi [12,13], and so on. However, with development of sensor and 

information technologies, to improve the accuracy and robustness of occupancy 

detection and prediction, occupancy estimation with multiply sensors/parameters 

fusion is a significant trend instead of by a single parameter [14–16]. Among data fusion 

studies, fusing different types of environment sensing, e.g. temperature, relative 

humidity, and CO2 concentration parameters, and so on, as well as other types of 

sensing, e.g. Wi-Fi, motion, lighting, and so on, has attracted increasing attentions.  

Such studies proved that the data fusion method can achieve good accuracy of 

detecting and predicting occupancy, however, a parameter selection within fusing 

environmental data and Wi-Fi data, in general, should be necessiarly explored to 

determine the best set of different datasets as well as improve accuracy of occupancy 

prediction. Masood et al. proposed a filter-wrapper component for a feature selection 

process with fusing indoor CO2, relative humidity, temperature, and pressure levels in 

the office space, finding that CO2 feature achieved excellent accuracies of up to 81.67% 

[17]. However, how to determine the best feature set fusing environmental sensing with 



Wi-Fi and other building operation datasets, has been not usually explored. Therefore, 

this paper conducts a data fusion method and paramter selection process while 

combining building operation and Wi-Fi datasets in occupancy prediction in office 

buildings. Additionally, an insight into data fusion is provided by occupancy feature 

selection and extraction with physics-based models during building operation. Finally, 

this study also deepens the exploration of data-driven occupancy prediction using 

machine learning algorithm to figure out the best data fusion. 

2. Background 

2.1 Occupancy studies with single data type  

Currently, using single environmental parameter or sensor technology to detect and 

predict occupancy has been studies in many works. The most popular parameter is 

indoor CO2 concentration. Wang et al. applied CO2 sensor to monitor concentration 

and dynamic CO2 concentration physical balance function to predict occupancy count 

information [18,19]. Díaz and Jiménez proposed an experimental study to assess 

building occupancy pattern through CO2 concentration and compared it with computer 

power consumption [20]. Jiang et al. estimated indoor occupancy information through 

a feature-scale learning machine with measured CO2 concentration dataset [7]. Yang et 

al. compared the four different occupancy counting methodologies, overhead video, 

pan-tilt-zoom (PTZ) camera face detection, CO2-based physical model, and CO2-based 

statistical model, and results showed that the PTZ-camera based face recognition has 

the most stable and highest accuracy with an R2 of 0.972, followed by the CO2 based 

statistical model with an R2 of 0.938. Ouf et al. used experimental datasets and 

Pearson’s correlations to investigate both Wi-Fi connections and CO2 concentration-

based approaches for occupancy assessment, suggestting that Wi-Fi counting is more 

accurate and reliable [21]. 



As proved, Wi-Fi connections and disconnections can also be utilized as indicators 

of building energy load variation [22] and occupancy pattern [23]. Balaji proposed a 

study proving an 83% accuracy of detecting occupancy profiles via Wi-Fi connections 

[24]. Wi-Fi technology has been applied in occupancy patterns and energy efficiency 

studies [25,26]. Wang et al. used Wi-Fi discontinuous wireless communication to detect 

occupancy via event-triggered updating method and achieved the accuracy of at least 

77.3% [27]. Wang and Shao conducted one 24-h monitoring over 30 days in library and 

applied a rule mining approach, finding 26.1% of total energy cost can be saved [28]. 

Since Wi-Fi signals distribute indoor space like air surrounding it and will be reflected 

by human body, MIT researchers conducted an experiment to identify occupant and the 

gesture with Wi-Fi technology through walls during indoor space [29]. Wang et al. also 

explored the Wi-Fi probe based occupancy study to sense the Wi-Fi signal request and 

response and achieved over 80% accuracy of occupancy detection [30]. Using Wi-Fi 

technology to control building lighting as well as occupancy detection, Zou et al. 

demonstrated the 93.09% and 80.27% of energy saving instead of static scheduling and 

PIR based lighting control scheme [31].  

 Also, in some studies, indoor lighting is a kind of parameter to monitor occupancy 

information by e.g. visible light communication technology [32]. Yang et al. inferred 

occupancy counting via multiply LED sensing with indoor lighting infrastructure with 

experiments in a 30 m2 office area [8]. Park et al. applied LightLearn method that learns 

the individual occupant behaviors with reinforcement learning algorithm to build 

occupant centered control based lighting system for energy saving [33]. On the other 

hand, Manzoor proposed a study for efficient building lighting control by monitoring 

occupancy with passive RFID technology, which proved 13% of electrical energy 

savings [34]. Li et al. reported the average accuracy of RFID systems was 88% for 



stationary occupants and 62% for mobile occupants [35].  

2.1 Occupancy studies with data fusion 

Besides single parameter or sensing technology, a recent development has been the 

use of environment sensors for occupancy estimation with environmental parameter 

array. The relationship between occupancy,multi-environmental parameters, and other 

sensors has been established and proven to be very useful in occupancy models [36–

38]. Pedersen et al. applied an occupancy detection method using air temperature, 

humidity, CO2, and VOC, PIR noise sensors. The experiment was conducted in a 

simple test room and a three-room dorm to detect two occupancy statuses of room, 

occupied or vacant, resulting in a maximum accuracy of 98% and 78%, respectively in 

two rooms [39]. Roselyn et al. used thermal sensors and camera to detect occupancy 

and applied image processing algorithm and sensor signal processing algorithms for 

energy-efficient control [40]. Jeon proposed Internet-Of-Thing (IoT)-based occupancy 

detection with fusion of dust (PM2.5 and PM10) concentration, humidity, and 

temperature sensors [41]. Related to Soh’s studies [42], occupancy estimation has been 

studied by considering temperature, RH, CO2, air pressure. Several algorithms with 

environmental sensing data has been discussed individually, namely Location 

Receptive Fields, ANN, k-NN, SVM, CART, extreme learning machine, liner 

discriminant functions (LDA). Szczurek et al. studied the performances of three 

environment parameters, temperature, RH, and CO2 individually and the three sensors 

array in occupancy determination. The authors also compared k-NN algorithm and 

LDA when occupancy classification was required, where k-NN was more efficient [16]. 

To find occupancy in large-scale area, Dong et al. [37] applied one information 

technology enabled sustainability test-bed (ITEST) for occupancy detection with a 

wireless ambient-sensing system, a wired carbon dioxide sensing system, and a wired 



indoor air quality sensing system. The experiment was conducted in a large-scale open 

office area and it resulted in an average of 73% accuracy in such areas. Based on 

machine learning techniques, Ryu and Moon developed one occupancy prediction 

model using CO2, 1st order shifted of difference of CO2, indoor CO2 moving average 

and rate of change, and indoor and outdoor CO2 ratio as indoor environmental data 

feature [43]. Two data-driven decision tree and hidden Markov model (HMM) 

algorithms were proved well suited to detect occupancy. With a fusion of light sensor, 

Candanedo and Feldheim, also evaluated a method of temperature, humidity and CO2 

sensors to predict occupancy with different statistical classification models, LDA, 

Classification and Regression Trees (CART), and Random Forest (RF). They found 

about 97% accuracy when using only two of environmental parameter with LDA model 

in one-day measurement. For example, Zhu et al. estimated office occupancy with 

environmental sensing via non-iterative local receptive fields in time and frequency 

domains with a data conclusion of CO2, humidity, temperature, and air pressure. 

Becerik-Gerber et al. studied a fusion of light, sound, motion, CO2, temperature, 

relative humidity, PIR, door switch sensors and applied ARMA, Nerual Network, 

Markov Chain, and Logit Regression to model occupancy profiles [44]. Wang et al. 

proposed a study of predicting occupancy information through data fusion of 

environmental sensing and Wi-Fi dataset and applied machine learning techniques to 

figure out the most accurate set [45]. Chen et al. proposed a novel fusion with Wi-Fi 

and Bluetooth Lower Energy (BLE) network to collecting building occupancy 

distribution using different signal distance measurement metrics [46].  

The approaches reviewed above employed single/multiply sensing technologies and 

for occupancy prediction as well as various data-driven algorithms embedded with 

sensing technologies. To reduce cost, efficiency, and accuracy of occupancy prediction, 



this study would like to conduct the data feature extraction and parameter selection 

processing that fuses different sets of multiply parameters within building physic- and 

machine learning-based models.  

3. Methodology 

3.1 Dataset feature extraction  

Usually, no matter data from Wi-Fi signal and environmental sensing, these are the 

time series data, which might consist of dataset default and abnormal data point. While 

pre-processing raw data, the Exponential Moving Average (EMA) filter is applied due 

to its computational efficiency and causality which are also important in time-series 

applications. It can be formulated: 

𝑥̅𝑥𝑘𝑘 =
𝑛𝑛

𝑛𝑛 + 1
𝑥̅𝑥𝑘𝑘−1 + (1 −

𝑛𝑛
𝑛𝑛 + 1

)𝑥𝑥𝑘𝑘 (1) 

Where 𝒙𝒙�𝒌𝒌 and 𝒙𝒙�𝒌𝒌−𝟏𝟏 are the EMA filtered value at time step k and k-1, respectively. 

Once the measured indoor environment data has been filtered, the following approach 

is applied to detect occupancy.  

3.1.1 Features from physical equations 

For the feature-based occupancy prediction, feature is a variable which contains the 

information relevant for object recognition, while in occupancy study, it refers to 

relevant information for occupancy determination. The basis for choosing appropriate 

variables for occupancy determination was a well-known fact that properties of indoor 

air, for example, CO2 concentration, RH, or temperature, have been proven as triggers 

to stimulate occupancy behaviors to restore or improve comfort conditions [47]. The 

value and its change of environment parameters should refer to the corresponding 

occupancy profile since building will response to occupancy behavior and adjust to 

meet occupant thermal comfort if building is occupied. To figure out the parameters 



determining occupancy, the common and simplified mass and energy balances 

functions are analyzed.  

For indoor air quality control (it supposes in this study that only CO2 concentration 

is considered), assuming the CO2 only comes from occupant respiration and outdoor 

air, and CO2  generation (S) from the occupant is kept constant and the CO2 

concentration (𝐶𝐶𝑜𝑜) of outdoor air doesn’t vary by a wide margin. The air supplied to 

space is assumed to be well-mixed. The time variation of CO2 concentration levels in 

one zone can be given based on mass balance equation: 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠 + 𝑃𝑃𝑧𝑧,𝑖𝑖 ∗ 𝑆𝑆 − 𝑉𝑉𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑜𝑜𝑜𝑜𝐶𝐶𝑟𝑟𝑟𝑟 + 𝐶𝐶_𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 (2) 

While in the AHU, mass balance of CO2 yields: 

𝑉𝑉𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜 + 𝑉𝑉𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟𝑟𝑟 = 𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠 (3) 

The 𝐶𝐶𝑖𝑖𝑖𝑖 is the indoor CO2 concentration and 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 is the CO2 concentration at 

return duct level. Assuming CO2 concentration at return air ducts keeps the same as the 

CO2 concentration of indoor air at breathing level, we could simply Eq.3 as: 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝑜𝑜𝑜𝑜,𝑧𝑧,𝑖𝑖𝐶𝐶0 + 𝑃𝑃𝑧𝑧,𝑖𝑖 ∗ 𝑆𝑆 − 𝑉𝑉𝑜𝑜𝑜𝑜,𝑧𝑧,𝑖𝑖 ∗ 𝐶𝐶𝑧𝑧,𝑖𝑖 + 𝐶𝐶_𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 (4) 

Assume the density of outdoor air are the constant, therefore, the occupant count 

can be recognized as a function of outdoor air flow rate (𝑚𝑚𝑜𝑜𝑜𝑜) and indoor air CO2 

concentration, which can be roughly expressed as: 

𝑃𝑃𝑧𝑧 ← 𝑓𝑓(𝑚𝑚𝑜𝑜𝑜𝑜,𝑚𝑚𝑜𝑜𝑜𝑜 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖) (5) 

The similar case of relative humidity can be inferred as CO2 concentration when 

mass balance is applied. For brevity, this study doesn’t present the derivation of 

equation. However, the relative humidity of outdoor air usually changes with time 

rather than keeps constant as CO2 concentration. Therefore, the function between 



occupant count and outdoor air flow rate and relative humidity can be roughly 

expressed as: 

𝑃𝑃𝑧𝑧 ← 𝑓𝑓(𝑚𝑚𝑜𝑜𝑎𝑎 ∗ 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑜𝑜𝑜𝑜 ∗ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) (6) 

Where 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 are the RH of outdoor air and indoor air. 

For indoor thermal comfort control, energy balance can be applied that the 

supplied energy should be equal to the consumed energy, which can be followed by Eq. 

7,8, and 9. 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑟𝑟 + ∑ 𝐺𝐺𝐺𝐺𝑃𝑃𝑧𝑧 + ∑ 𝐺𝐺𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒 + ∑𝐺𝐺𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒  (7) 

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑠𝑠 ∗ 𝐶𝐶𝑝𝑝 ∗ (𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑠𝑠) (8) 

𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑟𝑟 = 𝑚𝑚𝑜𝑜𝑜𝑜 ∗ (ℎ𝑜𝑜𝑜𝑜 − ℎ𝑖𝑖𝑖𝑖) (9) 

Where 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is energy supplied, 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑟𝑟 is the energy produced by ventilation, 

𝐺𝐺𝐺𝐺  is the energy produced by each occupant. 𝑝𝑝𝑒𝑒𝑒𝑒 and 𝐺𝐺𝑒𝑒𝑒𝑒  donate the number of 

equipment and the energy produced by equipment, such as computers, water heaters, 

lights etc. 𝐺𝐺𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 includes the energy produced by other sources, such as infiltration 

air, adjacent walls, surface and etc. 𝑚𝑚𝑠𝑠 is the supply air flow rate. 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑇𝑇𝑠𝑠 are the 

temperature of indoor air and supply air. ℎ𝑜𝑜𝑜𝑜 and ℎ𝑖𝑖𝑖𝑖 are the entropy of outdoor air 

and indoor air, which are the function of temperature and RH of air.  

Similarly, the function between occupant count and operation parameters can be 

roughly expressed as: 

𝑃𝑃𝑧𝑧 ← 𝑓𝑓(𝑚𝑚𝑜𝑜𝑜𝑜 ∗ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑜𝑜𝑜𝑜 ∗ 𝑇𝑇𝑖𝑖𝑖𝑖,𝑚𝑚𝑠𝑠 ∗ 𝑇𝑇𝑠𝑠,𝑚𝑚𝑠𝑠 ∗ 𝑇𝑇𝑖𝑖𝑖𝑖 ) (10) 

3.1.2 Features from Wi-Fi connections 

In Wi-Fi data sensing, time tag is used to calibrate environmental parameters and 

Wi-Fi data and the total number and frequencies of Mac addresses in the time window 



can be the features. The number can be found by counting the valid Mac addresses in 

one time-spot. The frequency can be represented by the probability that one Mac 

address will be detected, which can be in details found in [30]. The probabilities are 

calculated by: 

𝑓𝑓𝑚𝑚𝑖𝑖−𝑖𝑖 =
∑𝑁𝑁𝑖𝑖−𝑖𝑖

∑𝑁𝑁𝑖𝑖−𝑖𝑖 + ∑𝑁𝑁𝑖𝑖−𝑖𝑖
       𝑓𝑓𝑚𝑚𝑜𝑜−𝑖𝑖 =

∑𝑁𝑁𝑜𝑜−𝑖𝑖
∑𝑁𝑁𝑜𝑜−𝑜𝑜 + ∑𝑁𝑁𝑜𝑜−𝑖𝑖

 (11) 

Where 𝑁𝑁𝑖𝑖−𝑖𝑖 is the frequency that occupancy status transited from “in” to “in” and 

𝑁𝑁𝑖𝑖−𝑜𝑜 is the frequencies that occupancy status transited from “in” to “out” respectively. 

Similarly, 𝑁𝑁𝑜𝑜−𝑜𝑜 and 𝑁𝑁𝑜𝑜−𝑖𝑖 mean the frequencies that occupancy status transited from 

“out” to “out” and from “out” to “in” respectively.  

One vector can be defined as feature of Wi-Fi data: 

{𝑁𝑁𝑡𝑡,𝑓𝑓1𝑖𝑖−𝑖𝑖, 𝑓𝑓1𝑜𝑜−𝑖𝑖,𝑓𝑓2𝑖𝑖−𝑖𝑖,𝑓𝑓2𝑜𝑜−𝑖𝑖, … ,𝑓𝑓𝑚𝑚𝑖𝑖−𝑖𝑖,𝑓𝑓𝑚𝑚𝑜𝑜−𝑖𝑖, … ,𝑓𝑓𝑁𝑁𝑖𝑖−𝑖𝑖,𝑓𝑓𝑁𝑁𝑜𝑜−𝑖𝑖} , this feature contains the 

number (𝑁𝑁𝑡𝑡) of Mac addresses in the time-spot (t), and thereinto each Mac address 

transits from “in” to “in” and “out” to “in”. Similarly, the function between occupant 

count and operation parameters can be roughly expressed as: 

𝑃𝑃𝑧𝑧 ← 𝑓𝑓(𝑁𝑁,𝑓𝑓𝑖𝑖−𝑖𝑖,𝑓𝑓𝑜𝑜−𝑖𝑖) (12) 

Therefore, a parameter pool can be created with union of Eq. 5, 6, 10, and 12 from 

physical equations based on mass and energy balances in buildings. As reviewed, since 

some researchers have investigated and concluded the opportunities of using single 

environmental parameter of indoor air—temperature, relative humidity, CO2—to sense 

occupancy information, this study, therefore, takes into consideration of those 

parameters. The dataset feature pool can be roughly expressed as: 

𝑃𝑃𝑧𝑧 ← 𝑓𝑓(𝑇𝑇𝑖𝑖𝑖𝑖,𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖,𝐶𝐶𝑖𝑖𝑖𝑖,𝑚𝑚𝑜𝑜𝑜𝑜,𝑚𝑚𝑜𝑜𝑜𝑜 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖,𝑚𝑚𝑜𝑜𝑜𝑜 ∗ 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑜𝑜𝑜𝑜 ∗ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖,𝑚𝑚𝑜𝑜𝑜𝑜 ∗

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑚𝑚𝑜𝑜𝑜𝑜 ∗ 𝑇𝑇𝑖𝑖𝑖𝑖,𝑚𝑚𝑠𝑠 ∗ 𝑇𝑇𝑠𝑠,𝑚𝑚𝑠𝑠 ∗ 𝑇𝑇𝑖𝑖𝑖𝑖, Wi-Fi) 
(13) 



3.2 Dataset feature selection  

For feature-based prediction model, environmental and Wi-Fi data related features 

are extracted in this study. However, when the parameters are extracted, the feature 

selection is an important issue in feature driven occupancy estimation. Theoretically, 

the combination of features we can use is 𝐶𝐶12𝑛𝑛  (n=1, 2, 3, …, 12). Generally speaking, 

accuracy of occupancy estimation can be improved when more multiple features are 

selected while the computational burden is quite high. On the other side of the coin, 

extra data collection always means higher cost. In such fusion, it would have substantial 

benefits and practical implications if an adequately high prediction accuracy could be 

achieved with as few inputs as possible [48]. In this study, two steps are conducted. The 

first step is to select features that mostly correlate to occupancy profiles. Secondly, 

multi selected features will be compared and evaluated in occupancy model for the final 

feature set. 

3.2.1 Feature selection from correlation analysis  

In the first step, the best features for each parameter is chosen to reduce feature 

space to a more manageable number. The historical data match between features and 

occupancy profile will be used to reveal the relationships from features to occupancy. 

Such problems usually be solved with least squares method, which is usually applied 

in regression, or stepwise regression, which is usually used in feature selection for 

prediction. This study takes the Adaptive-Lasso model to reveal the correlation between 

different data features and occupancy profile and select best data features. Adaptive-

Lassois one of the methods widely used in parameter estimation and variable selection 

[]. The definition is: 

𝛽̂𝛽∗(𝑛𝑛) =  argmin
𝛽𝛽

 �𝑦𝑦 − ∑ 𝑥𝑥𝑗𝑗𝛽𝛽𝑗𝑗
𝑝𝑝
𝑗𝑗=1 �

2
+ 𝛼𝛼𝑛𝑛 ∑ 𝜔𝜔�|𝛽𝛽𝑗𝑗|𝑝𝑝

𝑗𝑗=1   (14) 



Where,  

With the feature spaces reduce, the best features from the first step are combined as 

multi feature set to finally evaluate their performance. All possible combinations of the 

elements of this set were examined with the ANN model   

3.2.2 Feature selection from occupancy prediction  

To avoid inaccurate predictions due to the magnitude of the data, all input variables 

are normalized to [-1,1] according to the Eq.15. 

y =   
𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
 (15) 

A Backpropagation artificial neural network (BP-ANN) algorithm is a 

computational method used to calculate the weights and minimize system error, which 

can be used for regression analysis, including time series prediction and modeling, and 

classification analysis, including pattern recognition and sequential decision making.  

It employs the gradient descent optimization to adjust the weight of neurons until the 

gradients of the loss functions are minimized.   

The main equations of BP-ANN are summarized as Eq. 16 and 17. The 𝑥𝑥𝑛𝑛 

represents any selected occupancy feature and 𝑛𝑛 is the dimension of features. The 𝑚𝑚 

and 𝑙𝑙 are the number of the hidden layer and output layer neurons. The 𝑣𝑣𝑗𝑗  donates 

the weight vector of the 𝑗𝑗th neuron of the hidden layer, and 𝑤𝑤𝑘𝑘 donates the weight 

vector of the 𝑘𝑘th neuron of the output layer. The length of the input layer is determined 

by the available data sources, while the size of the hidden layer (m) is manually selected. 

The size of the output layer (l) usually equals the number of expected output elements.  

ℎ𝑗𝑗 = 𝑓𝑓�∑ 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=0 �,    𝑗𝑗 = 1,2, … ,𝑚𝑚  (16) 

𝑦𝑦𝑘𝑘 = 𝑓𝑓�∑ 𝑤𝑤𝑗𝑗𝑗𝑗ℎ𝑗𝑗𝑚𝑚
𝑗𝑗=0 � ,   𝑘𝑘 = 1,2,3, … , 𝑙𝑙  (17) 



The sigmoid function is usually selected as the transfer/activation function, as shown 

in Eq. 18. 

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (18) 

4. Experiment and Validation 

4.1 Experiment Setup 

The experiment test bed is a graduate student office located inside an institutional 

building. The office has an area of about 200 m2 and 25 long-term residents during the 

experiment period. Figure 1 shows the space layout and equipment setup of the test bed. 

The office has two entrances but no window. Wi-Fi probes recorded the connection 

requests and responses of all wireless devices within the space. TA465-X 

(environmental sensors produced by TSI Company) were utilized to monitor and record 

the air temperature, relative humidity, and CO2 concentration. Air flow meters were 

installed near outdoor air inlets to monitor the air supply rate of the ventilation system. 

Ground truth is acquired by two overhead cameras installed to record the entrance and 

exit events of occupants. Since sample time of sensors is different, we need to firstly 

obtain the entrance and exit of doors from videos at any time and easily calculate the 

number of occupants at same sample time as Wi-Fi probe and CO2 concentration. The 

measurement duration is from 09 Sep 2017 to 23 Sep 2017. Table 1 shows the 

specifications of the installed sensors.  



 

Figure 1. Space layout and equipment setup 

Table 1. Sensors used in the experiment. 

Sensor Camera Wi-Fi Probe 

Environment Sensors 

CO2 

Sensors 

Temperature 

Sensors 

Humidity 

Sensors 

Other 

Sensors 

Cost 

(USD) 
45 30 400 

Recorded 

Variables 

Time, 

Actual 

occupancy 

Time, MAC 

address, 

RSSIs 

Time, Temperature, Relative humidity, CO2, Air 

flow rate, Air pressure, CO 

Data Storage Online  Online  Local 

Measurement 

timestep 
 30s 1min 1min 1min  

Range   0 – 5k 

ppm 

14 - 140 °F  

-10 – 60 ℃ 
0 to 95%  

Accuracy   ±3% or 

±50 ppm 

±0.5°F 

(±0.3℃) 
< 3%  

Resolution   1 ppm 0.1°F (0.1℃) 0.10%  

4.2 Ground truth acquisition 

Overhead cameras were installed close to the doors to capture the actual number of 



occupants in each office room. In addition, two cameras in room A were synchronized 

with internet time. Because the sampling data of the Wi-Fi probe device was one minute, 

the video analysis obtained the number of entrances and exits through each door at the 

same sampling frequency. The number of occupants were manually counted based on 

the recorded video for each minute.   

4.3 Model configuration and assessment  

After obtaining the data from the sensors above, the pre-processing is conducted to 

the raw data. The interval for the TA 465-X sensors is 30 seconds while the recording 

interval is 1 minute, where the data recorded every minute is averaged by the data every 

30 seconds. Originally, the length of samples in one day is 1440. As data comes from 

three sensors inside room, the final results from measurement should be averaged by 

three sensors. The Wi-Fi data is the Mac address of user’s device, recorded by Wi-Fi 

probe sensors every 30 second from the Wi-Fi signal request and response between 

device and access point, while the final Wi-Fi probe data should be merged by three 

Wi-Fi probes. 

While setting the occupancy prediction, as energy optimization and control methods 

normally do not require the exact number and environment parameters usually respond 

slowly to control methods [14,49], therefore, this study would like to search the set of 

data to predict occupancy profile and the occupancy profile contains four levels, 

including zero, low, medium, and high. It can be expected that with four levels of 

occupancy, four significantly different range of thermal loads can be identified. Higher 

levels response to a higher load, for which greater energy is required to maintain the 

temperature set point. Therefore, this type of occupancy can make HVAC control more 

simplified and efficient based on four-level demands.  

Table 2. The threshold setting for categorical occupancy levels. 



Occupancy level Number of people 

Zero (0) 0 
Low (25%) 1-6 

Medium (50%) 7-14 
High (75%) 15-20 

Therefore, this study would like to compare the predictions of two occupancy 

types—real-time occupancy and four-level occupancy—to check the performance of 

different occupancy feature sets on different resolution of occupancy. 

5. Results and assessments 

5.1 Results of feature selection 

 Fig. 2 and 3 present the feature selections of dataset for real-time and four-level 

occupancy prediction. As resulted from AdaptiveLasso model, this study firstly filters 

out the features highly correlated to actual occupancy datasets. It is interesting to find 

that the features for two types of occupancy are totally the same, which make it 

consistent for different occupancy prediction using the same datasets. While inferred 

from results, the outdoor air flow rate (𝑀𝑀𝑜𝑜𝑜𝑜), and three related features are filters since 

they made little contributions to occupancy according to AdaptiveLasso model. 

Additionally, the indoor air relative humidity (𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖) and a set of 𝑀𝑀𝑜𝑜𝑜𝑜 and outdoor air 

temperature (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)  show the negative correlation. Comparing Fig. 2 and 3, it is 

interesting to find that feature selection results are consistent for both real-time and 

four-level occupancy prediction, however, the correlation results are a little different. 

For example, the set of 𝑀𝑀𝑜𝑜𝑜𝑜 and CO2 concentration (𝐶𝐶𝑖𝑖𝑖𝑖) correlates more highly with 

real-time occupancy than only 𝐶𝐶𝑖𝑖𝑖𝑖 does while on the contrary for four-level occupancy. 

Still, it can conclude that Wi-Fi and 𝐶𝐶𝑖𝑖𝑖𝑖  share the highest correlation with both 

occupancy levels. 



 

Fig. 2. Feature selection for real-time occupancy prediction using AdaptiveLasso 

model. 

 

Fig. 3. Feature selection result for four-level occupancy prediction using 

AdaptiveLasso model. 

5.2 Results of occupancy prediction 

 Inferred from Fig. 2 and 3, eight types of features can be extracted for occupancy 

prediction, however, among eight features, it can result in 255 sets of feature 

combination, which can be calculated by ∑𝐶𝐶8𝑛𝑛, where (n=1,2,3,…,8). To figure out the 



best set of feature, this subsection presents the results of using machine learning to 

investigate prediction accuracy using ANN algorithm for both real-time and four-level 

occupancy.  

5.2.1 Results of real-time occupancy prediction 

Fig. 4 presents the results of MAE assessment with different feature sets from only 

one feature set to seven feature sets. The MAE result is about 89.21% when using all 

features (𝐶𝐶88). The results show that the accuracies can be improved as the number of 

features increases. The best accuracy using only one feature is around 86% using CO2 

concentration or Wi-Fi dataset and it is around 88.3% using two features (𝐶𝐶82) . 

Additionally, it sees that when one more feature (𝐶𝐶83) is involved, the best accuracy 

can be 89.2% as well as the sets of 𝐶𝐶85  and 𝐶𝐶86 . On one hand, according to the 

cumulative curve, the results show that usually over 80% of sets can achieve 87.4%. 

The error distribution tends to higher accuracies along with the increasing of features, 

which means the possibility of achieving high accuracies can increase with more 

parameters. The best accuracy for the set of seven features (𝐶𝐶87) is 89.31%. On the 

other hand, it is also interesting to find that the best accuracy of occupancy prediction 

can’t benefit from the increasing of the number of features since the best accuracy can’t 

be higher than 89.31% in this case study. However, increasing the number of features 

usually leads to the increasing of sensor cost. Therefore, the number of feature is a 

trade-off between accuracy and cost. Fig. 5 presents the results of MAE distribution 

with different parameters for real-time occupancy. The results show that all parameters 

can contribute to the best accuracy (89.21%), however they also show that the CO2 

concentration (𝐶𝐶𝑖𝑖𝑖𝑖) and Wi-Fi have the best contributions to the prediction accuracy 

since in the results, the low accuracy of those feature sets assigned with those two 

parameters will be higher than other parameters and over 95% of feature set can achieve 

the accuracies of around 86.5% . The results also are consistent to it in Fig. 2. 



 

Fig. 4. The results of MAE assessment with different feature sets for real-time 

occupancy. 



 

Fig. 5. The results of error distribution with different parameters for real-time 

occupancy. 

5.2.2 Results of four-level occupancy prediction 

Fig. 6 presents the results of F1_score assessment with different feature sets from 

only one feature set to seven feature sets. The F1_score result is about 83.23% when 

using all features (𝐶𝐶88). Fig. 7 presents the results of F1_score distribution with different 

parameters for real-time occupancy. On one hand, the results of four-level occupancy 

prediction are quite similar to real-time occupancy prediction that the increasing the 

number of feature can improve the prediction accuracies, however, the best accuracy of 

occupancy prediction can’t benefit from the increasing of the number of features the 

best, either. On the other hand, it is also interesting that the accuracies using the same 



eight features are lower in predicting four-level occupancy than real-time occupancy, 

which might infer that to divide the occupancy information to some levels can enlarge 

the uncertainty and stochastic behavior of occupancy, especially around boundary of 

occupancy level.  

As seen in Fig. 6, The best accuracy using only one feature is around 81% using 

CO2 concentration, which indicated that CO2 concentration is a good indicator when 

applying only one parameter with machine learning techniques in occupancy prediction. 

The best accuracy is around 84% using two features (𝐶𝐶82). Additionally, it sees that 

when one more feature (𝐶𝐶83) is involved, the best accuracy can be 86% as well as the 

sets of 𝐶𝐶85, 𝐶𝐶85 and 𝐶𝐶86. With involving more features, the proportion of best accuracy 

(86%) increases. However, it is only 83.74% for seven features (𝐶𝐶87) close to seven 

features (𝐶𝐶88) . According to Fig. 7, Wi-Fi feature shares the biggest proportion of 

achieving the best accuracy of 86% while CO2 concentration feature achieved the 

prediction accuracy of at least about 80%, which is the good indictor in this study. 



 
Fig. 6. The results of F1_score assessment with different feature sets for four-level 

occupancy. 



 

Fig. 7. The results of F1_score distribution with different parameters for four-level 

occupancy. 

5.2.3 Results of parameter selections 

 After parameter selection through AdaptiveLasso and ANN models, this 

subsection gives the final results of the best set of feature selection according to the 

accuracy results. As inferred in Fig. 4 and 5, the most suitable number of feature 

selection for real-time occupancy prediction is three as well as for four-level occupancy 

prediction. The next step is to figure out three features achieving around the best 

accuracy of 89% and 84%, respectively for real-time and four-level, however, it is 

easily found that there are several choices, 30 for real-time occupancy and 9 for four-

level occupancy. For brevity, this study concluded the final results in the Table 3 that 



include around 84% of F1_accuracy for real-time and 11% of MAE, respectively. It 

finds that three parameters, indoor air temperature, CO2 concentration, and Wi-Fi 

dataset, can achieve good prediction results for both real-time and four-level occupancy 

types, and it involves only three parameters in terms of sensor cost. 

Table 3. The final result for parameter selection for real-time and four-level occupancy 

prediction. 

Parameter set selection 
Real-time occupancy 

(MAE) 
Four-level occupancy 

(F1_score) 

𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑜𝑜𝑜𝑜 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖 + Wi-Fi 11.51% 84.71% 
𝑇𝑇𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑖𝑖 + Wi-Fi 11.46% 84.36% 
𝐶𝐶𝑖𝑖𝑖𝑖 +  𝑀𝑀𝑜𝑜𝑜𝑜 ∗ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + Wi-Fi 10.97% 84.36% 
𝐶𝐶𝑖𝑖𝑖𝑖 +  𝑀𝑀𝑠𝑠 ∗ 𝑇𝑇𝑠𝑠 + Wi-Fi 10.89% 84.22% 
𝐶𝐶𝑖𝑖𝑖𝑖 +  𝑀𝑀𝑠𝑠 ∗ 𝑇𝑇𝑖𝑖𝑖𝑖 + Wi-Fi 10.64% 84.13% 
𝐶𝐶𝑖𝑖𝑖𝑖 +  𝑀𝑀𝑜𝑜𝑜𝑜 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖 + Wi-Fi 11.31% 84.10% 
𝑀𝑀𝑜𝑜𝑜𝑜 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖 +  𝑀𝑀𝑠𝑠 ∗ 𝑇𝑇𝑖𝑖𝑖𝑖 + Wi-Fi 10.68% 83.87% 
𝑀𝑀𝑜𝑜𝑜𝑜 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖 +  𝑀𝑀𝑠𝑠 ∗ 𝑇𝑇𝑠𝑠 + Wi-Fi 10.88% 83.86% 
𝑀𝑀𝑜𝑜𝑜𝑜 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖 +  𝑀𝑀𝑜𝑜𝑜𝑜 ∗ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 + Wi-Fi 10.96% 83.72% 

 

在这里，我本来还打算把 𝑇𝑇𝑖𝑖𝑖𝑖 +  𝐶𝐶𝑖𝑖𝑖𝑖 + Wi-Fi 在 real-time 和 four-level 的

prediction 的结果都画出来，或者把这三个参数（𝐶𝐶31，𝐶𝐶33，𝐶𝐶33）模型预测曲

线都画出来的，但有点犹豫，因为 1. 目前的结果已经可以说明问题，2. 但

又感觉结果有点单薄；还请老师帮忙给点意见 

 

6. Discussion 

This study investigated the data fusion research for building occupancy prediction 

to figure out the better dataset combination and more suitable parameters through 

building operation and Wi-Fi datasets. Two kinds of occupancy information were 

selected in this study, real-time and four-level occupancy. The parameter selection 



process was extracted from the building operation process and the indoor mass or 

energy balance theory as the physics-based models. Usually such model can also infer 

or predict much accurate occupancy once all parameters can be measured, which is also 

famously applied as inverse modeling approach [50]. For example, as in Eq. 4, once the 

CO2 concentration from other sources (e.g. air infiltration) can be accurately measured, 

we can apply the CO2 mass balance from the sensor data to infer occupancy, which, 

however, can be a difficult work. The parameter selection framework in this study 

consists of physical-based models and machine learning techniques to make up for such 

defects and the framework also provides an insightful reference for data fusion works 

in occupancy studies. The best accuracies for real-time and four-level occupancy levels 

are about 90% and 86%, respectively. Inferred in the results, occupancy prediction 

accuracies can be improved as parameter inputs increase no matter real-time and four-

level occupancy levels. However, results reveal that more than four parameters can’t 

improve accuracies a lot and sensor cost is also important issue, even this study didn’t 

make a tradeoff between accuracy and sensor cost, it can usually be considered that 

increasing the number of parameters will definitely increase the cost. Therefore, on one 

hand, it recommends using less or cheap sensors for inferring occupancy, on the other 

hand, it can reduce the sensor cost by sacrificing accuracies since the results in this 

study show that the best accuracies using one parameter and two parameters for real-

time occupancy predictions can reach 86% and 88%, respectively, and 81% and 84% 

for four-level occupancy predictions, respectively.  

On one hand, in this study, results indicate that the combination of temperature, 

CO2 concentration, and Wi-Fi datasets can have the best accuracies both for real-time 

and four-level occupancy predictions. As it can see, those three parameters are very 

common ones in building operation. More significantly, indoor air temperature 



responses to building cooling/heating systems and CO2 concentration responses to 

building outdoor air control systems, accordingly, two parameters are usually 

monitored in building systems. As Wi-Fi signal is almost now available in all buildings, 

those three parameters are very easily accessed, which benefits a lot for monitoring and 

predicting occupancy. On the other hand, in terms of control efficiency and robustness, 

some researchers would like to simplify building control systems using different-level 

occupancy instead of real-time occupancy as reviewed, since which, therefore, this 

study investigated the occupancy divided in four different levels. Different occupancy 

levels refer to different occupant’ demand, thereby, this study can benefit those which 

would like to apply different kinds of occupancy through temperature, CO2 

concentration, and Wi-Fi datasets for their building control accuracies.  

However, this study yields some limitations. Firstly, as stated in some studies, the 

occupant impact on indoor air is contained in values of these parameters, but may also 

retrieved from their changes [51], therefore, it is also an interesting and inspiring work 

to consider the values of selected parameter changes, which is ignored in this study. 

Secondly, such study relied a lot on the experiment implementation, e.g. the accuracy, 

scale, parameter types of experiment monitoring. Future work can bring in more kinds 

of sensor types and experiment spaces for a larger scale (e.g. floor and building levels) 

and type group (e.g. lighting and PIR) of occupancy sensing. Furthermore, this study 

used adaptive-lasso and ANN method as first and second steps to find the best set of 

data in predicting occupancy. For brevity, this study did not investigate impact of 

different kinds of algorithms for different sets of data on prediction accuracies, which 

are interesting future works. 

7. Conclusions 

Data fusion technology with multiply sensors has attracted more and more 



attentions in occupancy studies. This study proposed a data fusion study to integrate 

building physic-based, AdaptiveLasso, machine learning-based models for occupancy 

feature selection. This study defined two occupancy levels, real-time and four-level 

occupancy, and conducted one experiment to validate test occupancy feature selection 

process. In the results, total 12 features were selected from physic-based models and 

Wi-Fi datasets. Then, AdpativeLasso model figured out eight correlated features and 

machine learning finally proved three features. The indoor air temperature, CO2 

concentration, and Wi-Fi dataset can be fused as the best occupancy feature set with the 

mean absolute error of about 11.46% for real-time occupancy and F1_accuracy of about 

84.36% for four-level occupancy.  

This study can contribute to data fusion studies by integrating physical- and 

machine learning-based models in feature selection for occupancy prediction. Fusing 

different sensor technologies and data sources for building occupancy prediction can 

be more efficient and low-cost. In the future, it could be significant using indoor air 

temperature, CO2 concentration, and Wi-Fi to sense occupancy, in turn to improve 

building HVAC systems. Also, how to apply such data fusion studies to improve 

building energy efficiency could be an inspiring work as occupancy prediction accuracy 

is improved. 
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