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Abstract 

Adopting energy-efficient and clean technologies is key to climate change mitigation and meeting 

long-term sustainability goals because they significantly reduce energy consumption and related carbon 

emissions. Understanding existing barriers and drivers for the adoption of these energy-efficient and clean 

technologies will be crucial to meeting ambitious national energy and emissions targets, and the 

customers’ willingness to pay (WTP) is a key factor in understanding the potential for scaling-up 

adoption. However, in practice, commonly-used WTP estimation methods such as survey or purchase 

experiments are not always practical or feasible due to budget, time, labor or data constraints. This study 

proposes a new constrained optimization-based indirect estimation of WTP for energy technology 

adoption using customers’ implicit life-cycle cost-benefit analysis and market data. The empirical 

probability distribution of WTP is estimated using the Monte Carlo methods. This new indirect estimation 

method provides a deeper understanding of the barriers and customers’ willingness to adopt high 

efficiency and clean energy technologies, and informs the development of supporting policies and 

programs needed to accelerate market adoption. 
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1. Introduction 

 

Global primary energy consumption reached nearly 600 exajoules in 2018 and is projected to rise by 

25 to 50 percent by 2050 under reference or business-as-usual scenarios of growth [1, 2]. Global carbon 

emissions from energy use are estimated to be more than 33 Gt of carbon dioxide (CO2) in 2018 [2, 3]. 

Scaling up the adoption of energy-efficient and clean technologies1 is critical to reduce energy 

consumption and CO2 emissions and contribute to global efforts to meet long-term climate change 

mitigation and environmental sustainability goals [4]. 

Besides climate change mitigation, the adoption of energy-efficient and clean technologies can also 

potentially accrue both private and social positive returns in the form of economic, environmental, and 

other social benefits [5]. Furthermore, the world has seen an increasing number of pledges by 

governments and companies to reach net-zero carbon or greenhouse gas emissions in the coming decades, 

and the adoption of energy-efficient and clean technologies are inevitably a critical factor to achieve these 

ambitious net-zero emission targets [4, 6-9].  Techno-economic analysis of adopting energy-efficient and 

clean technologies has thus attracted growing attention due to its importance in both consumer and 

business decision-making theory and practices [10-14].  

Despite the policies and programs adopted by governments and companies worldwide to increase the 

adoption of energy-efficient and clean technologies, there is a broadly held view that there are various 

barriers to the adoption of energy-efficient and clean technologies [5, 6, 15-17]. As pointed out by 

Gerarden et al. [5], on the one hand, energy efficiency technologies offer great potential in reducing 

energy-related costs, mitigating adverse environmental impacts, and increasing both private and social 

welfare; on the other hand, these promising technologies have not been widely adopted by customers and 

companies to the degree that would be expected based on estimated benefits from technology adoption 

modeling [5]. Potential explanations of this so-called “energy-efficiency gap” fall into three broad 

categories: market barriers, behavioral explanations, and modeling issues [5]. Some researchers [18] 

suggest that the actual magnitude of the energy-efficiency gap is relatively small compared to the 

assessments from some engineering analyses and there is also substantial heterogeneity in investment 

inefficiencies across the individuals and companies. 

To accelerate the market uptake of energy-efficient and clean technologies, it is necessary to assess the 

barriers and drivers for the energy technology adoption [5, 6, 15, 16, 19-21]. By reviewing the barriers 

and drivers for energy technology adoption discussed in the literature, we think that, from the perspective 

of private individuals and companies, the following five factors are the major factors affecting energy 

technology adoption: availability, knowledge, affordability, net gain, and willingness. More specifically, 

(a) energy-efficient and clean technologies are not evenly available across spatial and temporal 

dimensions in the real-world; (b) the lack of knowledge and/or ability to recognize the technology 

adoption benefits together with individual or company’s economic perspective may result in missed 

opportunities to adopt a technology that is theoretically justified for the individual or company; (c) 

                                                            
1 We note that, throughout this paper, we use technology as a general terminology to refer to any energy technology 
or energy-related product, equipment, process, services or commodities [4], unless stated otherwise. 



 
 

energy-efficient and clean technologies usually require higher initial investments and a lack of funding or 

availability of financing is a critical barrier to overcoming the capital costs of energy-efficient and clean 

technologies [6, 17, 19, 22, 23]; (d) the net gain (or net benefit) from adopting technology for a private 

individual or company is often a critical factor for consideration; and (e) the willingness of a private 

individual or company to adopt an affordable technology, which is highly related to all the above four 

factors, can be largely gauged by the willingness to pay (WTP) for adopting the technology.  

In a standard economic view, WTP is defined as the maximum price at or below which a customer 

will definitely buy one unit of the product [24, 25]. In practice, WTP may be measured using different 

forms such as a ratio of two parameters; for example, it is a widely-used practice in applied economics to 

measure WTP for an attribute in a discrete choice model by using the ratio of a utility function attribute 

parameter to a cost parameter [26, 27]. Note that WTP is often viewed as a point measure [24] but 

sometimes conceptualized as a range [28, 29]. 

In general, accurately estimating customers’ WTP is critical for the research and development of new 

technologies, implementing various pricing tactics and formulating competitive strategies [24], and 

supporting policymaking and program design. Several approaches have been developed for estimating 

WTP [24, 26, 30-33]. The major distinctions among the approaches are whether they estimate WTP 

directly or indirectly and whether they determine customers’ hypothetical WTP or actual WTP [24]. In 

practice, some researchers may prefer the direct estimation method, such as asking customers directly to 

state their WTP for a specific technology, while others may favor an indirect approach such as choice-

based conjoint analysis [24, 34-37]. It should be noted that both direct and indirect estimation methods 

can generate inaccurate results for various reasons, and more fundamentally, both methods estimate 

customers’ hypothetical—rather than actual—WTP, and thus can induce hypothetical bias [24, 38].  

Because customer WTP is individual- and context-sensitive [39, 40], the suitability of a particular 

WTP estimation method may depend on how well the method approximates the actual context for 

selecting and adopting the underlying technology [24]. Many studies suggest direct methods seem to be 

more suitable for relatively lower-priced non-durable product categories without direct and explicit 

competition, while indirect methods may be more suitable for relatively higher-priced durable product 

categories with significant competition [24, 36]. In the context of energy technology adoption, energy-

efficient and clean technologies usually belong to the category of relatively higher-priced, infrequently 

purchased, and durable products, and thus in practice, customers’ WTP for adopting energy-efficient and 

clean technology is often estimated using indirect methods; however, this does not mean that direct 

method is not suitable for estimating WTPs of energy technologies. Furthermore, in practice, the 

applicability of a particular WTP estimation method is also subject to many constraints, such as budget, 

time, and labor. A theoretically better method may not be practical or feasible due to various constraints, 

especially when commonly-used methods such as large-scale survey or purchase experiments are not 

feasible due to budget, time, labor, or data constraints.  

This study proposes a new indirect estimation method of WTP for energy technology adoption using 

customers’ implicit life-cycle cost-benefit analysis (iLCCBA) and market data. The empirical probability 

distribution of WTP is estimated using Monte Carlo methods and the policy implications of WTP for 

energy technology adoption are also discussed. This indirect estimation method provides a deeper 

understanding of market barriers affecting customers’ willingness to adopt the energy-efficient and clean 



 
 

technologies, and supports and informs related policymaking and program design needed to overcome 

these barriers. The remainder of the paper is organized as follows. Section 2 describes this new 

methodology of indirect estimation of WTP and its empirical distribution using implicit life-cycle 

analysis and market data, and relative gain expectation for energy technology adoption. Section 3 presents 

results and discussions of two illustrative examples. Section 4 discusses potential limitations of this new 

methodology. Finally, Section 5 concludes with an overview of key findings and policy implications. 

 

 

2. Methodology   

 

2.1 Cost-benefit analysis as information for technology adoption 

Cost-benefit analysis is necessary and important in technology selection [41, 42] and the selection of 

alternative technologies usually impacts both pending and future costs and benefits. Therefore, life-cycle 

cost analysis (LCCA) or more general life-cycle cost-benefit analysis (LCCBA) is often required and 

utilized to determine whether adopting specific technology is economically justified [43-46]. From the 

customer’s perspective, the life-cycle cost is the total customer expense (e.g., purchase cost and operating 

cost) of specific technology over the life of the technology [5], while the life-cycle benefit is the total 

customer benefit associated with direct benefits (e.g., profit or efficiency) or other benefits from reducing 

negative impacts, losses or damages over the life of the technology. It should be noted that in LCCA or 

LCCBA, costs and benefits are usually expressed in monetary terms allowing the comparison of different 

types of costs and benefits in the same units. Estimating all costs and benefits in monetary terms also 

allows the calculation of net benefits, which is defined as the sum of all monetized benefits minus the sum 

of all monetized costs, and thus comparing different technology options in the same units [42]. 

Because costs and benefits usually occur in different time periods over the life of the technology, one 

commonly used method of rendering the cost and benefit estimates comparable is to discount the 

customer costs and benefits that occur in different time periods by expressing their values in present terms 

[42]. Specifically, the net present value (NPV) of a projected stream of current and future benefits and 

costs is estimated by multiplying the costs and benefits in each year by a time-dependent weight—known 

as a discount factor—and adding all of the weighted values as shown in the following equation [42]: 

      0 1 1 2 2 0

n

n n t tt
NPV NB d NB d NB d NB d NB


      ,           (1) 

where: t is time period index, 0,1,2, ,t n  ; n is the final time period of the analysis period; 

t t tNB Benefit Cost   is the net difference between benefit ( tBenefit ) and cost ( tCost ) that accrue at the 

time period t; and dt is the discounting weights, with 0 1d   and 1 (1 ) t
td r  , where r is the real 

discount rate. 

The choice of discount rate is very important and has a significant impact on cost-benefit analysis. We 

note that social discounting (i.e., discounting from the broad society-as-a-whole point of view) is usually 

used in cost-benefit analysis for policy analysis [42], while private discounting (i.e., discounting from the 

specific, limited perspective of private individuals or companies) may be appropriate for selection of 

technologies by private individuals or companies. For example, when a consumer chooses a durable 

product for a specific end-use, it is generally appropriate to use private discounting for the cost-benefit 



 
 

analysis. Research [5, 11, 47, 48] suggests relatively high average implicit discount rates for private 

customers when considering the adoption of energy-efficient technology, and thus private customers may 

significantly discount the future benefits from the new technology. Also, the discount rate may not be 

constant over the life of specific technology for a consumer. For example, a consumer may discount the 

near-future costs and benefits heavier than far-future costs and benefits, which suggests a larger implicit 

discount rate for discounting near-future costs and benefits and a relatively smaller implicit discount rate 

for discounting far-future costs and benefits. 

NPV gives a comparable net benefit value for adopting a specific technology. Assume that there are N 

technologies for selection, the NPV of adopting each technology could be used to inform the selection. 

More specifically, let iNPV , 0,1, , 1i N  , denote the NPV of adopting technology Ti, it will 

maximize the total net benefit for adopting technology which has the maximum NPV, i.e., choosing the 

technology 
*

,0
argmax

n

i t i tt
i

T NPV d NB


   ,            (2) 

subject to some constraints such as budget or preferences. 

We note that, although LCCA or LCCBA is usually required for policymaking and program design 

and evaluation, a private individual or company may not, or may not be able to, perform an LCCA or 

LCCBA for the technology adoption due to various reasons such as lack of information or time 

constraints. Sometimes, private individuals or companies may just perform a simple LCCA or LCCBA 

based on their specific preference or context. However, from the perspective of aggregate market 

activities, the market data such as sales over a certain time period reflect the private customers’ collective 

preferences and choices based on their underlying estimates of the life-cycle net benefits from adopting 

the technology. We thus referred to this market aggregate implicit life-cycle cost-benefit analysis as 

customers’ implicit LCCBA, or iLCCBA for short. 

 

2.2 Indirect estimation of the WTP for technology adoption 

Consider the following general framework of probability models for an individual choice among a set 

of alternatives [49]: 

Prob( | ) (relevant effects,parameters, )Y i F x x  for 0,1, , 1i N  .                       (3) 

In a random utility view of the individual choice, for an individual faced with N choices, suppose that 

the utility of choice i is Ui for 0,1, , 1i N  . If the individual makes a choice i in particular, then we 

assume that Ui is the maximum among the N utilities, and the statistical model is driven by the probability 

that choice i is made, which is Prob(Ui > Uk) for all other k i  [49]. 

We consider individual choices that are observed and revealed by data such as sales and purchase 

prices, mainly following Greene [49] and Train [14]. Specifically, we consider the following technology 

adoption model for specific end use: 
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where: 0,1, , 1i N   denotes the ith technology; 0,1, , 1t M   denotes the tth time period; ,i tv  is 

volume of sales of technology i for the specific end use in time period t; Vt is volume of total sales of all N 

technologies for the specific end use in time period t, i.e., 
1

,0

N

t i ti
V v




 ; ,i ts  is share of sales of 

technology i for the specific end use in time period t; ,i ta  is availability of technology i for the specific 

end use in time period t; ,i tu  is utility of technology i for the specific end use in time period t. 

We further consider a special form of the utility function: 

    , , , ,( , , )i t i t i t i tu U w p c  for 0,1, , 1i N   and 0,1, , 1t M  ,          (5) 

where: wi,t is WTP for technology i for the specific end use in time period t; pi,t  is the purchase price of 

technology i for the specific end use in time period t; and ci,t  is a vector of input parameters or control 

variables. 

For simplicity, we assume that index 0i   denotes the baseline technology, which usually has the 

least efficiency level among the set of technology choices, and 1,2, , 1i N  denotes each alternative 

technology that usually has higher efficiency level. 

We note that the WTP for technology may change over time with the changes in costs, customer’s 

awareness and knowledge of the technology, market transitions and policies. Therefore, it is valuable to 

investigate the dynamics of the WTP for a technology if relevant data are available.  

The WTP for technology 0,1, , 1i N   in time period t can be estimated by the following nonlinear 

optimization problem: 
* ˆ ˆargmin ( , )

t

t t t t td  
w

w s s s s                          (6) 

where: 0, 1, 1,( , , , )T
t t t N ts s s s   is a vector with component i representing the share of sales of technology i 

in time period t; 0, 1, 1,ˆ ˆ ˆ ˆ( , , , )T
t t t N ts s s s   is a vector with component i representing the estimated share of 

sales of technology i in time period t, and ˆ ˆ( , )t t t td  s s s s  is a distance function. Note that, in practice, 

the above optimization problem is usually a constrained optimization problem.  

The selection of distance function is usually dependent on the complexity and nonlinearity of utility 

function and measurement error. In most cases, the following non-linear least-squares optimization can be 

used for simplicity purposes: 
* ˆarg min ( , )

t

t t td
w

w s s  

 
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 

 
    

 
 s s .                   (7) 

We note that the basic idea behind the above method is to convert the estimation of WTP for 

technology adoption into a constrained optimization problem. 

In practice, some parameters in the utility function may be unknown and need to be estimated. 

Suppose that, for example, we take the following special case of utility function by referring to the 

conceptual model described by Allcott and Greenstone [18]: 

, , ,( )i t t i t i tu w p   for 0,1, , 1i N   and 0,1, , 1t M  ,                 (8) 



 
 

where: purchase price pi,t is assumed to be known and coefficient ϕt and WTP wi,t need to be estimated. If 

we further assume that: a) the coefficient ϕt > 0 is invariant during the time period t and only relevant to 

the individual expected surplus which is calculated as (wi,t − pi,t); and b) the individual expected surplus is 

the NPV from the individual iLCCBA  described in the previous section, we thus could estimate 

coefficient ϕt by solving an optimization problem similar to Equation (7), specifically,  
* ˆarg min ( , )

t

t t td


  s s  
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 
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 s s .          (9) 

In practice, as coefficient ϕt > 0 is assumed to be invariant during the time period t and only relevant to 

the individual’s expected surplus, if we further assume that the WTP for each technology is zero and the 

purchase price of each technology is relative price to the baseline technology (i.e., the technology indexed 

as 0), the above parameter estimation could be further simplified. 

It should be noted that the above estimation process implicitly assumes that ,i tv  (i.e., sales of 

technology i in time period t) for 0,1, , 1i N   can be observed or measured. In practices, the sales of 

some technologies may not be directly available. In this case, the sales of the technologies also need to be 

estimated for estimating the customer WTP for technology i. The survival analysis can be utilized to 

estimate the sales of the technologies given some necessary observations or measurements of other 

variables (e.g., technology stock or saturation rate) and survival function of the technology by making 

some assumptions. 

 

2.3 Estimating empirical probability distribution of WTP based on Monte Carlo methods 

The estimated customer WTP using the indirect method described in the previous section is a point 

estimate in nature. While a point estimate of customer WTP provides some information, it fails to 

adequately account for either the variability in customer WTP or the uncertainty in the input data, 

parameters and underlying economic assumptions. Generally speaking, a point estimate without 

accompanying statistics of the estimate or measure of precision is much less valuable.  

As a best practice in informing decision-making, a risk and uncertainty analysis is one way to 

ascertain whether cost-benefit estimates are realistic, appropriate, and adequate as it can determine the 

probability associated with achieving the cost-benefit estimate [50]. Risk and uncertainty analysis 

provides a way to assess the variability in the estimate by quantifying costs, benefits, risks and 

uncertainties. A cost-benefit analysis can model such effects by changing input parameters based on their 

distributions and thus creating a range of potential cost-benefit estimate. A range of cost-benefit estimate 

is more useful to support the decision-making process than a point estimate as a range helps decision-

maker better understand the varying outcomes of a cost-benefit analysis [50, 51].  

In both theory and practice, the probability distribution of an estimate (e.g., customer WTP) is much 

preferable [50, 51]. One statistical technique for estimating the empirical probability distribution of an 

estimate is Monte Carlo method. 

The Monte Carlo method is widely used to solve various stochastic problems in applied science and 

engineering. One major technique of the Monte Carlo method is Monte Carlo simulation [52]. Solving a 



 
 

stochastic problem by the Monte Carlo simulation usually involves three steps: 1) generating independent 

samples of the random parameters and functions in the definition of the stochastic problem; 2) solving the 

resulting deterministic problems corresponding to the samples generated in the prior step, and 3) 

analyzing statistically the collection of deterministic solutions to estimate properties of the solution of the 

stochastic problem [53]. 

Consider a sample of m observations 1b , 2b ,, mb , satisfying 

     ( , | )i i ib g x  φ ρ ,           (10) 

where 1,2, ,i m  ; ix  is independent variable;   1 2, , , n  φ   is a vector of parameters of interest 

that is to be estimated from the data; 1 2[ , , , ]q  ρ   is a vector of input parameters (affecting 

factors) of which joint distribution is assumed to be known, and the estimate of φ is thus conditional upon 

ρ; and i  is the error of the observations.  

We note that, hereafter, φ is defined as the vector of WTP for a set of technologies and is estimated 

using aggregate market data and implicit life-cycle cost-benefit analysis. The uncertainty and errors in the 

market data, implicit life-cycle cost-benefit estimates and underlying economic assumptions will 

inevitably affect the estimation of the vector of WTP φ. We can utilize the knowledge of the data and 

input parameters to conduct Monte Carlo simulation for estimating the vector of WTP φ and analyzing 

the properties of the estimate. More specifically, denote φ̂  as the estimate of vector of WTP φ, we are 

interested in the properties and empirical distribution of the estimate φ̂  given the distribution of the 

vector of input parameters ρ. 

Based on the knowledge of the vector of input parameters ρ, L sets of samples are randomly generated 

from a multivariate distribution: 

     ~ ( )l Fρ ρ  for 1,2, ,l L  ,          (11) 

where each element of the vector of input parameters ρ is a random variable. Note that these random 

variables—elements of the vector of input parameters ρ—do not necessarily follow the same distribution 

and they also might or might not be correlated. 

For each sample of the vector of input parameters ,1 ,2 ,[ , , , ]l l l l q  ρ    , where 1,2, ,l L  , we can 

then obtain an estimate ,1 ,2 ,ˆ ˆ ˆ ˆ[ , , , ]l l l l n  φ   for the vector of WTP 1 2[ , , , ]n  φ  . 

Consider the ith element i  of the vector of WTP  1 2, , , n  φ  , the simulation sample mean ˆi , 

variance ˆi
Var , standard deviation ˆi

 , skewness 1ig , and (excess) kurtosis 2ig  can then be computed as 

follows [54, 55]: 
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The empirical probability distribution of WTP for specific technology, say i , can be further 

examined based on the L estimates ,1 ,2 ,ˆ ˆ ˆ, , ,i i i L   . For convenience, we use the term “Monte Carlo 

estimation” to refer to the above method. 

We note that the basic idea of the above Monte Carlo estimation is to build empirical models of 

feasible WTP estimations by Monte Carlo simulation combined with the indirect WTP estimation method 

using constrained optimization described in Section 2.2. More specifically, Monte Carlo simulation 

generates a large number of samples of the vector of input parameters based on the joint probability 

distribution for the input parameters (affecting factors, e.g., real discount rate) that have inherent 

uncertainties, and then constrained optimization is used to find the possible feasible solution to the WTP 

estimation problem based on each sample of the vector of input parameters. Put differently, for each 

sample of the vector of input parameters generated by the Monte Carlo simulation, constrained 

optimization is used to determine the feasibility of the optimization-based WTP estimation problem and 

to estimate the WTP if it is feasible. The empirical probability distribution of the WTP could then be 

constructed using those estimation results. 

 
2.4 Relative gain expectation for technology adoption 

Note that the above WTP estimate suggests customer willingness to pay for adopting some specific 

technology and usually reflects the private (individual or company) preferences and economic 

perspective, and it also supports analyzing the relative gain expectation for efficient and clean technology 

adoption.  

For simplicity, we consider a simple two-technology case: one baseline technology (indexed as 0) and 

one more efficient technology (indexed as 1) during a certain time period. 

We take the special case of utility function described by Equation (8) but drop the time index for 

simplicity purpose: 

( )i i i iu g w p      for 0,1i  ,          (17) 

where: p0 and p1 are respectively the purchase price of the baseline technology and efficient technology; 

w0 and w1 are respectively the WTP for the baseline technology and efficient technology; i i ig w p  ,

0,1i  , is a gain (surplus) expectation; and   is the gain coefficient. We note that the purchase price of a 

more efficient technology is usually, but not always, higher than the baseline technology.  

Let 0,1 1 0p p p   denote incremental price and 0,1 1 0w w w   denote incremental WTP, define 

relative gain expectation 0,1g  as: 

       0,1 1 0 1 1 0 0 1 0 1 0 0,1 0,1( ) ( ) ( ) ( )g g g w p w p w w p p w p                      (18) 



 
 

Note that 0 ,1g  reflects the relative expected gain change for a more efficient technology but with a 

higher price compared to the baseline technology. 

We consider the following three possible cases: 

0,1 0,1 0,1

0,1 0,1 0,1

0,1 0,1 0,1

Case I : 0,

Case II : 0,

Case III : 0.

g w p

g w p

g w p

  

  

  

  

  

  

           (19) 

The three cases in Equation (19) indicate that the incremental WTP can be respectively smaller than, 

equal to, or larger than the incremental price for adopting a more efficient technology rather than the 

baseline technology. In each of these cases, the sign of the relative gain expectation 0,1g  will depend on 

two factors that are embedded in Equation (19). The first factor is the price change for the more efficient 

technology compared to the baseline technology, and the second is the WTP change for the more efficient 

technology compared to the baseline technology. When the relative gain expectation 0,1g  is less than zero 

(i.e., Case I), it is less attractive, in terms of customer willingness, to adopt the more efficient technology 

rather than adopt the baseline technology. This will happen when the incremental WTP is lower than the 

incremental price ( 0,1 0,1w p  ) for adopting the more efficient technology. When the relative gain 

expectation 0,1g  is zero (i.e., Case II), it is indifferent, in terms of customer willingness, to adopt either 

the more efficient technology or the baseline technology. This will happen when the incremental WTP is 

equal to the incremental price ( 0,1 0,1w p  ) for adopting the more efficient technology. Finally, when the 

relative gain expectation is greater than zero (i.e., Case III), it is more attractive, in terms of customer 

willingness, to adopt the more efficient technology rather than the baseline technology. This will happen 

when the incremental WTP is greater than the incremental price ( 0,1 0,1w p  ) for adopting the more 

efficient technology. 

We note that: a) the above simple case could be easily extended to more complicated multi-technology 

cases; and b) the above analysis could also be performed using derivatives and sensitivity analysis. 

 

3. Illustrative examples 

 

In this section, we present the results and analysis of two illustrative examples to demonstrate the 

potential application of the proposed indirect estimation method. Synthetic2 but realistic market and 

economic data for two different examples of energy-use technologies are utilized to demonstrate findings 

and insights from this new method of estimating customer WTP for adopting more efficient technology. 

Specifically, the two examples are constructed based on a mix of public and synthetic data, as well as 

ongoing research. While the data used in these two examples are illustrative and do not represent any 

specific energy technologies, they represent realistic economic and market data for energy technologies. 

These two examples were selected because the estimated average WTP for the more efficient technology 

is higher than the average retail price in the first example, and lower than the average retail price in the 

                                                            
2 Synthetic data are used to decouple the examples from specific energy technologies. 



 
 

second example. The iLCCBA and Monte Carlo methods are used to evaluate the potential underlying 

factors impacting customer WTP in each example and findings and insights from using this method.  

We take the special case of utility function described by Equation (8) for both examples to show the 

basic idea of the methodology. The coefficient of expected gain ϕt is estimated by utilizing iLCCBA and 

mathematical optimization that is subject to the constraint ϕt > 0. We further assume that the customer 

WTP for the baseline technology is equal to the average retail price of the baseline technology for 

simplicity purpose. We note that, in a two-technology case, the estimation of ϕt and WTP for the more 

efficient technology could be actually solved directly from the Equation (4) based on the above 

assumptions, while a numerical optimization is usually required for a general case or choice among more 

than two technologies. 

 

3.1 Illustrative example 1 

The first illustrative example considers one baseline technology BT1 and one efficient technology ET1 

for a specific energy end-use application. The data used for the estimation are listed in Table 1 and input 

parameters and assumptions are listed in Table 2. As shown in Table 1, the volume of sales of the 

efficient technology ET1 is larger than baseline technology BT1 even though the average retail price of 

ET1 is higher than BT1. This suggests that the relative gain expectation for ET1 is larger than zero. As 

shown in Table 2, ET1 has lower average installation and operation and maintenance (O&M) costs, which 

could lead to a larger net benefit of adopting ET1 compared to BT1 despite a higher retail price for ET1. 

From the customer perspective, it is reasonable to assume based on the data that the average life-cycle 

net benefit of adopting ET1 is greater than that of adopting BT1. We therefore assume that the market-

aggregate average NPV of adopting ET1 is larger than BT1.  

 

Table 1. Data used for baseline technology BT1 and efficient technology ET1. 
Data BT1 ET1 

Volume of sales (unit) 14305 20122 

Average retail price ($/unit) 5660 6390 

 

Table 2. Parameters and assumptions for baseline technology BT1 and efficient technology ET1. 

Parameters and assumptions BT1 ET1 
Correlation 

coefficient 

Installation cost ($) 
TN(μ, σ 2, a, b), μ =1920, 

σ =192, a = 0, b = 3840 

TN(μ, σ 2, a, b), μ =1130, 

σ =113, a = 0, b = 2260 
0.7 

Annual O&M cost ($) 
TN(μ, σ 2, a, b), μ = 597, 

σ = 60, a = 0, b = 1193 

TN(μ, σ 2, a, b), μ = 489, 

σ = 49, a = 0, b = 978 
0.8 

Lifetime expectation (year) 12  

Real discount rate υ(a, b), a = 3%, b = 100% 

Note: O&M stands for operation and maintenance. TN(μ, σ 2, a, b) denotes truncated normal distribution of parent normal 

distribution  N(μ, σ 2) with mean μ, standard deviation σ, lower truncation point a and upper truncation point b (a < b). υ(a, b) 

denotes uniform distribution with minimum a and maximum b (a < b). 

 

The estimation results are shown in Figure 1 and Table 3. As shown in Figure 1 and Table 3, the 

estimated mean WTP ($6768) and median WTP ($6703) for efficient technology ET1 are higher than the 



 
 

average retail price ($6390). This indicates that the market-aggregate expected gain from adopting ET1 is 

higher than BT1 and thus more individuals choose ET1 over BT1, which results in a larger market share 

for ET1.  It is worth noting that the estimated empirical distribution of WTP for ET1 is right skewed due to 

the constraint ϕt > 0 and that the market-aggregate expected NPV from adopting ET1 is higher than BT1. 

 

Table 3. Estimated willingness to pay for adopting efficient technology ET1. 
Summary statistics Willingness to pay for ET1 

Mean ($) 6768 

Median ($) 6703 

Standard deviation ($) 274 

Skewness 1.55 

Kurtosis 3.19 

 

 
Figure 1. Willingness to pay (WTP) for adopting efficient technology ET1. 
Note: the blue dashed line denotes estimated mean WTP, and red line denotes estimated kernel density. 

 

3.2 Illustrative example 2 

The second illustrative example considers a different example where the average retail price of the 

more efficient technology ET2 is higher than the baseline technology BT2, and the volume of sales of ET2 

is less than BT2. The data used for this estimation are listed in Table 4 and the input parameters and 

assumptions are listed in Table 5. As shown in Table 4, the average retail price of ET2 is higher than the 

baseline technology BT2, and the volume of sales of ET2 is less than the baseline technology BT2. This 

suggests the relative gain expectation for adopting ET2 is less than zero. As shown in Table 5, ET2 has a 



 
 

higher average installation cost and a lower average O&M cost. In this case, the customer could only 

recover the increased total purchase cost—assumed to be the sum of purchase price and installation cost 

in this case—of ET2 through a decreased O&M cost, which would depend on the future usage of the 

technology and associated economic factors such as energy prices. We note that, for simplicity, we only 

consider economic costs and benefits that could be directly quantified in monetary terms and exclude 

additional non-monetary benefits such as greater convenience, operational control or comfort that an 

energy-efficient and clean technology may provide. 

Because the volume of sales of ET2 is less than BT2, it is reasonable to assume that, from the customer 

perspective, the average life-cycle net benefit of adopting ET2 is smaller than BT2. Specifically, we 

assume that the NPV of adopting the more efficient technology ET2 is smaller than the baseline 

technology BT2. 

 

Table 4. Data used for the baseline technology BT2 and efficient technology ET2. 
Data BT2 ET2 

Volume of sales (unit) 4942 2946 

Average retail price ($/unit) 9060 11075 

 

Table 5. Parameters and assumptions for baseline technology BT2 and efficient technology ET2. 
Parameters and assumptions BT2 ET2 Correlation 

coefficient 

Installation cost ($) TN(μ, σ 2, a, b), μ =3700, 

σ =370, a = 0, b = 7400 

TN(μ, σ 2, a, b), μ =4400, 

σ =440, a = 0, b = 8800 

0.8 

Annual O&M cost ($) TN(μ, σ 2, a, b), μ =2803, 

σ =280, a = 0, b = 5606 

TN(μ, σ 2, a, b), μ =2560, 

σ =256, a = 0, b = 5120 

0.9 

Lifetime expectation (year) 15 

Real discount rate BP(a, b, c), a = 3%, b = 30%, c = 40% 

Note: O&M stands for operation and maintenance. TN(μ, σ 2, a, b) denotes truncated normal distribution of parent normal 

distribution  N(μ, σ 2) with mean μ, standard deviation σ, lower truncation point a and upper truncation point b (a < b). BP(a, b, c) 

denotes a beta-PERT distribution with minimum a, likeliest b, and maximum c (a < b < c). 

 

As shown in Figure 2 and Table 6, the estimated empirical distribution of WTP for ET2 is generally 

symmetric and bell-shaped with a mean value of $9259 and a standard deviation of $550. The estimated 

mean WTP ($9259) and median WTP ($9227) for the efficient technology ET2 are notably lower than the 

average retail price ($11075). This indicates that the market-aggregate expected gain from adopting ET2 

is lower than baseline technology BT2 and thus less individuals choose efficient technology ET2 over 

baseline technology BT2, which results in a larger market share for baseline technology BT2. Note that the 

estimation is subject to constraint ϕt > 0. 

 

Table 6. Estimated willingness to pay for adopting efficiency technology ET2. 
Summary statistics Willingness to pay for ET2 

Mean ($) 9259 

Median ($) 9227 

Standard deviation ($) 550 

Skewness 0.31 



 
 

Kurtosis 0.18 

 

 
Figure 2. Willingness to pay (WTP) for adopting the more efficient technology ET2. 
Note: the blue dashed line denotes estimated mean WTP, and red line denotes estimated kernel density. 

 

4. Limitations and discussions 

 

While the above optimization-based indirect WTP estimation method using implicit life-cycle analysis 

and market data can be useful in several ways, it is essential to recognize the limitations of the method. 

We note the following potential limitations: 

First, the estimate is the implicit customer WTP for the technology at an aggregate level. More 

precisely, this method develops an estimate of the relative market aggregate WTP for a technology over a 

time period, not an individual customer’s WTP. As a market aggregate WTP, this estimate can provide 

some insights on the aggregate customer preferences and willingness to pay towards a technology. 

Second, the market data used in this method may be incomplete, non-representative, uncertain and 

noisy, which could lead to inaccurate and biased estimates. High quality market data are generally 

required to draw reliable information based on the data. In practice, uncertainties and possible errors in 

the data should be carefully considered and evaluated. Furthermore, market data are usually historical 

data and may not be readily available for new technologies which have not been widely introduced to the 

market [56]. 

Third, life-cycle analysis requires a comprehensive understanding of the costs and benefits as well as 

techno-economic assessment. For example, how customers discount future costs and benefits and value 



 
 

losses and gains are usually context-specific and can vary significantly across individuals and companies, 

and change over time.  

Last, the WTP estimated using the optimization-based indirect method is dependent on the underlying 

economic assumptions and customers’ utility function. Specific customer preference on technology 

adoption often plays an important role in the technology adoption choices but some may be more difficult 

to quantify or express solely using monetary terms, and therefore requires tentative modeling of the utility 

underlying customer choice. For example, building energy efficiency technologies can provide multiple 

benefits for the building occupants including improved convenience, operational control or increased 

thermal comfort, moderated indoor temperatures, low humidity, and better indoor air quality [6]. 

However, these benefits are usually individual- and context-sensitive, making it difficult to accurately 

quantify the economic value of these benefits. Instead, these benefits are often broadly represented using 

general but reasonable assumptions in modeling.  

Nevertheless, we note that this method provides some insights on indirectly estimating the WTP based 

on customers’ implicit life-cycle analysis and market data, and thus on understanding customer 

preferences and willingness to adopt a specific technology. The method is particularly applicable in cases 

where commonly-used methods such as survey or purchase experiments are not feasible due to budget, 

time, labor or data constraints. The indirect estimation method presented in this paper could therefore be a 

good starting point for discussion and further research given the importance of customers’ WTP on 

efficient and clean energy technology adoption. 

 

5. Conclusions 

 

To accelerate the adoption of energy-efficient and clean technologies, it is necessary and important to 

assess the barriers and drivers for energy-efficient and clean technology adoption. We think that—from 

the perspective of private individuals and companies—availability, knowledge, affordability, gain, and 

willingness are among the major factors affecting energy technology adoption. 

Willingness to pay (WTP) can largely be used to gauge the willingness of a private individual or 

company to adopt a specific energy technology and thus has important implications for increasing the 

market adoption of energy-efficient and clean technologies. Estimation of the WTPs for energy 

technologies from the perspective of private individuals or companies is important for informing the 

development of supporting policies and programs for deploying and scaling up energy-efficient and clean 

technologies. However, there are many existing challenges to understanding customer behavior, implicit 

cost-benefit analysis, decision-making, and how these factors affect the customers’ WTP, especially when 

some commonly-used WTP estimation methods are not practical or feasible due to budget, time, labor or 

data constraints. 

This study proposes a new indirect method for estimating the WTP for energy technology adoption 

using customers’ implicit life-cycle cost-benefit analysis and market data. This new approach essentially 

converts the estimation of WTP for energy technology adoption into a constrained optimization problem. 

The empirical probability distribution of WTP for energy technology adoption is further estimated using 

the Monte Carlo methods and the policy implications of WTP for energy technology adoption are also 



 
 

addressed. Two illustrative examples of this method using synthetic but realistic economic and market 

data are used to demonstrate the feasibility and advantages of this method.  

Relative gain expectation—which can be estimated using incremental WTP and incremental price—

reflects the relative expected gain change for a more efficient technology but with a higher price 

compared to the baseline technology. From the perspective of policymakers, different cases of the relative 

gain expectation have different implications. When the relative gain expectation is less than zero, the 

incremental WTP is outpaced by the incremental price for the more efficient technology and the customer 

is less willing to adopt the more efficient technology, which indicates that there may be barriers or 

disincentives to customer adoption. In this case, the possible barriers (e.g., lack of awareness or 

knowledge, or financial difficulty) or disincentives need to be identified and evaluated to inform the 

development of education, awareness, or incentives programs to make the efficient technology more 

competitive by reducing the incremental cost or increasing the customer WTP for the efficient 

technology. When the relative gain expectation is zero, there is no difference for the customer (assuming 

that the customer’s preference will be determined only by gain expectation), in terms of willingness to 

adopt either the efficient technology or the baseline technology. This suggests that it is reasonable to 

expect, even without further policy interventions such as incentives, the more efficient technology is at 

least as market competitive as the baseline technology. Because the baseline technology will likely be 

gradually replaced by the more efficient technology given the potential additional benefits of the more 

efficient technology, policy intervention may not be necessary in this case. When the relative gain 

expectation is greater than zero, the incremental WTP outpaces the incremental price for the more 

efficient technology, and the customer is more willing to adopt the more efficient technology rather than 

the baseline technology. It suggests that the more efficient technology can be considered a market success 

to a large extent, in terms of both efficiency improvement and competitiveness enhancement. Generally 

speaking, policy intervention may not be needed in this case unless aiming for significantly accelerating 

the adoption of the more efficient technology. 

Finally, the indirect WTP estimation method has several potential limitations. First, the estimate is the 

implicit customer WTP at an aggregate level, rather than for a specific customer, for a technology. 

Second, incomplete, non-representative, uncertain or noisy market data could lead to inaccurate and 

biased estimates. Third, life-cycle analysis requires a comprehensive understanding of the costs and 

benefits as well as techno-economic assessment. Fourth, the WTP estimated is dependent on the 

underlying economic assumptions and customers’ utility function. Despite these potential limiting factors, 

this indirect estimation method sheds more light on deeper understandings of existing market barriers and 

customers’ willingness to adopt energy-efficient and clean technologies, and supports policymaking and 

program design to address existing barriers. 
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