

Reviewing Utility Distribution Plans

Tim Woolf

Synapse Energy Economics, for Berkeley Lab

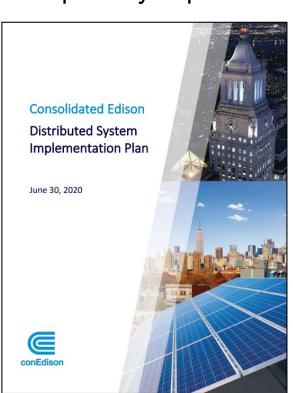
National Association of Regulatory Utility Commissioners Peer-Sharing Series on Integrated Distribution System Planning

April 10, 2022

Overview

- ► Integrated distribution planning (IDP) is an evolving practice because it accounts for new and emerging grid technologies and processes:
 - For example, distributed energy resources (DERs), analysis of non-wires alternatives (NWAs), layering core components and applications for grid modernization
- ► States take different approaches to IDP, and there are many options for how to review IDPs.
 - Sometimes the options are dictated by statutes or regulations.
 - Typically, commissions have a lot of discretion.
- ► For a comprehensive overview of state IDP activities, see:
 - Lawrence Berkeley National Laboratory, State Regulatory Approaches for Distribution *Planning*, Schwartz and Mims Frick, Training webinar on electricity system planning, New England Conference of Public Utilities Commissioners, June 16, 2022. Link
- ► This presentation will walk through the key elements of IDPs and offer suggestions for the types of questions to ask when reviewing IDPs.

Filing Requirements



➤ Commissions can establish IDP filing requirements upfront – to encourage complete filings and expedited review.

► As Commission expectations for IDP evolve, it is especially important to

establish and update filing requirements.

- ➤ Outline of filing requirements
 - Overall IDP strategy and objectives
 - Description of the current distribution system
 - Planned retirements and committed additions
 - Advanced load forecasting
 - Assessment of grid needs
 - Identification of new options for meeting needs
 - Economic analysis of those options
 - Action plan for implementing chosen options

Load and DER Forecasting

► Forecasting methods and inputs

- Does the forecast use probabilistic analyses to account for uncertainties?
- Does the forecast use multiple scenarios to account for unknowns?
- Does the forecast include feedback iterations based on other elements of the IDP?
- Is there consistency between forecasts for IDP and other utility planning processes (e.g., resource planning, energy efficiency planning)?

▶ Locational details

Does the load forecast include peak demands at the circuit or substation level?

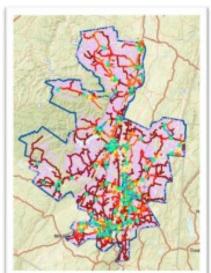
▶ Temporal details

- Is the peak load forecast sufficiently granular?
 - Hourly, daily, weekly, monthly, annual?

DER forecasts

Does the load forecast account for all types of future DERs and both naturally-occurring and utility-sponsored future DERs?

Assessment of Grid Needs



► Assessment of current system

- Does the IDP include an assessment of existing equipment condition, reliability performance, resilience performance, historical spending, and DER interconnection needs?
- ► Ensure safety, reliability, security
 - Does the IDP identify where upgrades are needed for safety, reliability, and resilience?
 - Does the IDP identify storm hardening needs?

▶ Optimization of DERs

- Does the IDP identify where the grid would benefit from DER?
- Does the IDP include a sound DER hosting capacity analysis?
- Does the IDP provide detailed "value of DER" estimates for different parts of the distribution system?
- Does the IDP address the interconnection of DERs?



Source for hosting capacity graphic: *Central Hudson 2020 DSIP General Information Session*, September 21, 2020

Identification of New Options: Traditional Options

- ► Traditional distribution options
 - Does the IDP include all traditional options?
 - Substations, transformers, feeders, new poles, distribution line extensions?

Identification of New Options: NWAs

- ▶ Does the NWA analysis consider all options?
 - Customer-owned DERs at the location of need?
 - Energy efficiency, demand response, distributed generation, distributed storage?
 - Utility-owned resources at the location of need?
 - For example, storage (large or small)
- ▶ Does the NWA analysis consider all options for obtaining DERs?
 - Procurement, programs, pricing?
- ▶ Does the NWA analysis use appropriate economic analysis techniques?
 - Are the methods and assumptions consistent with those used for other options?
- ▶ Does the NWA analysis properly account for potential distribution investment deferral?
 - Does it use appropriate thresholds for identifying candidates?
 - Thresholds for the magnitude of distribution investment to be deferred?
 - Thresholds for the time to develop the NWA?

Identification of New Options: Grid Modernization

- ► Are grid modernization goals and objectives clearly articulated?
 - Are these goals consistent with state policy and regulatory guidance?
 - Are the grid modernization investments proposed consistent with state objectives?
- ► Are the grid modernization proposals consistent with the utility's distribution, transmission, and resource plans (if relevant)?
- ▶ Does the IDP apply appropriate economic analysis techniques?
 - To what extent are grid modernization components evaluated together or separately?
 - Does the economic analysis properly address interrelated grid mod components?
 - Does the economic analysis properly account for non-monetary impacts?
- ▶ Does the IDP present options for phasing in grid mod components?
 - Phasing in grid mod components over time can reduce risks.
- ► How will the utility report on performance of grid mod projects?
 - Does the IDP include metrics with concrete measurable outcomes?

Economic Analyses: Principles

- ► With so many options for meeting distribution needs, IDPs should prioritize and justify which options are in the best interest of customers.
- ▶ Does the economic analysis:
 - Account for the state's energy policy goals?
 - Compare new resource options consistently with traditional options?
 - Account for all relevant costs and benefits, including those difficult to monetize?
 - Include an appropriate study period, including the full life-cycle of options?
 - Properly address locational impacts?
 - Properly address temporal impacts?
 - Address relevant costs and benefits symmetrically?
 - Consider customer equity issues?
 - Use the appropriate discount rate, reflecting regulatory goals?
 - Include a separate assessment of rates, bills, and participation?
 - Document assumptions, methods, and results transparently?

Source: Adapted from Minnesota Department of Commerce, *Review and Assessment of Grid Modernization Plans: Guidance for Regulators, Utilities, and Other Stakeholders,* Attachment to Department of Commerce Letter. Docket No. E002/M-21-814, February 9, 2022

Economic Analysis: Least-Cost/Best-Fit vs. BCA

Two primary techniques for economic assessments for IDP

Technique	Need	Purpose	Costs	Benefits	Example Applications
Least-Cost/ Best-Fit	Need for the investment has been established	To identify the investment that meets the need at lowest cost	Included Typically includes only utility system costs	Not Required Benefits are not necessarily accounted for; presumed to exceed the costs	Constructing a new distribution line to serve a new residential development
Benefit- Cost Analysis	Need for the investment has not been established	To determine whether to make the proposed investment	Included Extent of costs depends upon BCA test chosen	Included Extent of benefits depends upon BCA test chosen	Investments in NWAs and advanced meters (often but not always)

Stakeholder Engagement

- ▶ Breadth of stakeholders
 - Did the stakeholders include all groups that might be affected by the IDP?
- ► Meaningful engagement throughout
 - Were stakeholders meaningfully engaged?
 - Before the IDP was developed?
 - During IDP development?
 - During commission review of the IDP?

- ► Technical working groups
 - Were technical working groups used to facilitate stakeholder engagement?
- ► Independent experts
 - Were independent experts used to support stakeholders in their review and input?

Action Plans

▶ Timeline

■ Does the Action Plan address short- to medium-term actions, e.g., 3-5 years?

► Capital investment plans

- Does the Action Plan articulate where and when capital investments will be made?
 - Replacement of aging infrastructure? Distribution system upgrades? Grid mod elements, storm hardening infrastructure, others?

▶ Procurement of NWAs

Does the Action Plan describe when and how NWAs will be procured?

► Hosting capacity analyses

- Does the Action Plan describe when the results will be provided and updated?
- Does the Action Plan describe who will have access to the analyses and how (e.g., standardized maps and data)?

► DER interconnection practices

■ Does the Action Plan describe the steps the utility will take to ensure streamlined interconnection of the DERs forecasted and included in the IDP?

Cost Recovery

- ► Traditional distribution investments
 - Regulatory review begins in an IDP
 - Cost recovery decision typically occurs in rate cases
 - Costs typically recovered through base rates
 - Some states use riders to allow for some distribution expenditures
- ▶ Non-traditional distribution investments

For example:

- Cost recovery might depend on type of commission action on the plan.
 - Acceptance (informational filing only) or limited preapproval
- Ultimate approval of cost recovery typically occurs in rate cases.
- In some cases, grid modernization costs can be recovered through riders.

It is important to ensure the different cost recovery approaches do not provide utilities with inconsistent incentives.

Cost Recovery: Customer Protection

Regulators can use cost recovery approaches to ensure that customers experience net benefits from large distribution investments (e.g., grid mod).

- ► Incentive for maintaining low costs
 - Limit the amount of costs that the utility can recover to the costs assumed in the IDP
 - Require the utility to absorb cost overruns
 - With allowances for contingencies
- ► Incentive for achieving benefits
 - Limit the amount of future costs that the utility can recover based on achievement of benefits assumed in the IDP
 - Require utilities to absorb a portion of costs if benefits are not achieved
 - Use metrics to assess achievement of benefits
 - With allowances for contingencies

Commission Actions

Commission options

- Accept the IDP as meeting filing requirements; no approval process
- Approve the IDP as filed
- Require utility to modify IDP to address issues raised in review
- Reject portions of the IDP and accept other portions
- Reject the IDP

Commission options might be limited by statutes, regulations, or precedent.

- Implications of Commission acceptance or approval
 - Informational filing only
 - Commission is not bound by the IDP in future rate cases
 - Limited "pre-approval" of investments
 - Approve the need identified in the distribution plan
 - Approve the solutions and technologies proposed in the plan
 - Approve the economic assessment of the costs and benefits
 - Prudence
 - Prudence is rarely, if ever, established as a result of the IDP review

Useful Resources

GridLab, Integrated Distribution Planning: A Path Forward, prepared by Kurt Volkmann, 2018. Link

Grid Modernization Laboratory Consortium, *Benefit-Cost Analysis for Utility-Facing Grid Modernization Investments: Trends, Challenges, and Considerations*, prepared by Synapse Energy Economics, 2021. <u>Link</u>

ICF, Integrated Distribution Planning, prepared for the Minnesota Public Utility Commission, August 2016. Link

Lawrence Berkeley National Laboratory, *State Regulatory Approaches for Distribution Planning*, Schwartz and Mims Frick, Training webinar on electricity system planning, New England Conference of Public Utilities Commissioners, June 16, 2022. <u>Link</u>

Minnesota Department of Commerce, Review and Assessment of Grid Modernization Plans: Guidance for Regulators, Utilities, and Other Stakeholders, Docket No. E002/M-21-814, 2022. Link

New York Public Service Commission, *Order Adopting Distributed System Implementation Plan Guidance*, Case 14-M-0101, Proceeding on motion of the Commission in Regard to Reforming the Energy Vision, April 2016. Link

National Association of Regulatory Commissioners & National Association of State Energy Offices, *Task Force on Comprehensive Electricity Planning*. Link

National Energy Screening Project, *National Standard Practice Manual for Benefit-Cost Analysis of Distributed Energy Resources*, August 2020. <u>Link</u>

Regulatory Assistance Project, *Integrated Distribution Planning for Electric Utilities: Guidance for Public Utility Commissions*, October 2019. Link

Smart Electric Power Alliance, Integrated Distribution Planning: A Framework for the Future, September 2020. Link

US DOE, Modern Distribution Grid: Strategy & Implementation Guidebook, Volume IV, 2020. Link

Contact

Synapse Energy Economics

is a research and consulting firm specializing in technical analyses of energy, economic, and environmental topics. Since 1996 Synapse been a leader in providing rigorous analysis of the electric power and natural gas sectors for public interest and governmental clients.

Tim Woolf

Senior Vice-President
Synapse Energy Economics
617-453-7031

twoolf@synapse-energy.com www.synapse-energy.com