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ABSTRACT 
 

Faults occurring in heating, ventilation and air-conditioning (HVAC) systems have 
significantly negative impacts on building energy consumption, occupant comfort, and indoor air 
quality. In the past thirty years, extensive research has been conducted on fault detection and 
diagnostics (FDD) methods, and there are now dozens of commercially available FDD software 
tools. Growing adoption of FDD tools has the potential to generate a massive and useful data set 
on fault characteristics. However, the lack of a unifying taxonomy is a significant barrier to 
efficient analysis and evaluation of FDD outputs. Therefore, there is a strong need to develop a 
robust taxonomy which can better represent and interpret FDD output data. 

This paper documents the development of a unifying taxonomy for HVAC system faults 
in commercial buildings, with initial focus on air handling units, variable air volume terminal 
units, and roof top unit systems. The developed fault taxonomy employs both a physical 
hierarchy of HVAC equipment and a cause-effect relationship model as tools to better 
understand and support root cause analysis for HVAC faults. A variable air volume terminal unit 
is used as an example to demonstrate the application of the developed fault taxonomy. The 
taxonomy has short-term application in a major U.S. study on fault prevalence, and promises 
longer term benefits to FDD software developers and building operators by creating a foundation 
for improved approaches to identifying and resolving HVAC faults. 
 
Introduction 
 

In the United States (U.S.), buildings consumed around 40% of primary energy and 70% 
of electricity consumption in 2018 (EIA 2019). Significant energy savings can be achieved by 
integrating state-of-art technologies such as optimal building control strategies, building data 
analytics, and smart maintenance (Shaikh, Nor et al. 2014). With rapid development of data 
collection and communication technologies, data generated from the entire lifecycle of a building 
such as design, installation, operation, and maintenance can be more efficiently collected. This 
data may be employed through data analytics software to improve building operation reliability, 
increase occupants’ thermal comfort, reduce energy consumption, and enhance building’s 
capabilities to interact with electric grids and renewable energy systems (Blum, Lin et al. 2018). 

Fault Detection and Diagnostics (FDD) software is a building analytics tool that has seen 
significant growth and attention over the past decade. FDD tools analyze building operational 
data to determine whether a system operates abnormally, as well as to support root cause analysis 
efforts. These tools apply sophisticated algorithms to building automation system (BAS) data to 
produce detailed fault reports. For example, whereas a BAS may alert users to a single 
operational point being outside of a specified range, an FDD tool can analyze many points in 
combination to determine that the system as a whole is operating sub-optimally. Recent data 



 

from a United States government funded partnership (Smart Energy Analytics Campaign) with 
commercial building owners has demonstrated a median savings of 9% whole building energy 
savings from FDD deployment (Kramer et al. 2019) In the past two decades, extensive research 
efforts have been conducted on the development of advanced approaches to improve data 
analytics capabilities of FDD tools in buildings (Brown, Walter et al. 2014). The number of 
commercial FDD tools has been rapidly growing, with at least 32 tools available in the U.S. as of 
2020 (Lawrence Berkeley National Laboratory 2020).  

The rapid expansion in deployment of FDD software is generating and storing 
operational data at a scale orders of magnitude beyond what was occurring just a decade ago. 
This, in theory, offers an opportunity to understand the nature of commercial buildings’ 
performance at an unprecedented level of granularity. However, there are several fundamental 
barriers to meta-analysis of FDD data, including: 

 
● Inconsistent fault naming conventions; 
● A mixture of fault type definitions with opaque relationships between them; 
● Lack of a consistent physical hierarchy that can be used to classify faults occurring at 

different levels of operation (e.g., component level, sub-system level, whole system 
level). 
 
Inconsistent data architecture and naming conventions will significantly reduce the value 

of FDD-generated data. Data labels, structure, class, type and other features are very important 
for a consistent data representation, which can be used to enable efficient operations and 
analytics on various datasets (Chen, Mao et al. 2014). Some attempts have been made to address 
this issue in the building controls industry. For example, Brick provides a uniform metadata 
schema which defines a concrete ontology for sensors, subsystems and the relationships between 
them (Balaji, Bhattacharya et al. 2018). Another example is Project Haystack (Charpenay, 
Käbisch et al. 2015) which uses standardized tags to label different entities, i.e., Site (single 
building with its own street address), Equip (physical or logical piece of equipment within a 
site), and Point (sensor, actuator or setpoint value for an equipment). In both attempts, semantic 
data models have been developed to dramatically increase the efficiency of data analytics from a 
diversity of data analysts such as building facility operators, maintenance providers, utility 
companies and so on.  

While some efforts have been made to classify FDD outputs, none have been 
comprehensive to the degree necessary to enable effective meta-analysis of HVAC faults at 
national scale. With the increasing deployment of FDD tools in the marketplace, a high volume 
of fault data is being generated across equipment/systems in different types of buildings. These 
FDD tools exhibit very different fault naming and indexing conventions for the faults they 
identify. In addition, various fault definitions may be used across FDD software tools (Frank, Lin 
et al. 2019). Further, FDD reports lack vital information and standardized name labels.  

In this paper we describe the development of an HVAC fault taxonomy that formalizes 
fault naming conventions, resolves issues arising from the mixing of different fault type 
definitions, and presents a consistent physical hierarchy within which fault relationships can be 
better understood. The taxonomy was principally designed to support a large-scale U.S. fault 
prevalence study, but will have broader application for HVAC researchers, FDD software 
developers, and commercial building owners. This paper is organized as follows: 

 



 

● Background section covers the state of the art in HVAC fault classification, FDD 
software development, and barriers to efficient analysis of FDD tool outputs;  

● Taxonomy Development Methodology will describe the key elements of the HVAC fault 
taxonomy and how each element was developed to address unique considerations; 

● Example Application of Taxonomy provides a practical example of how the taxonomy is 
applied to a variable air volume (VAV) terminal unit; 

● Discussion will cover the implications of the fault taxonomy and related challenges;  
● Conclusions and Future Work will summarize the key outputs of the taxonomy 

development effort, short-term applications, its broader long term significance.  
 
Background  
 
FDD Software Description  
 

Existing FDD software tools employ HVAC system trend data from BAS (sometimes in 
combination with meter data, weather data or other information) to implement FDD algorithms 
(e.g., BAS instructs AHU outside air damper to be at minimum position, but FDD algorithm 
identifies that mixed air temperature tracks the outside air temperature, indicating that the 
outdoor air damper is actually stuck in an open position) and support HVAC system operating 
management (Granderson, Lin et al., 2018). FDD tools can output their analytics results in a 
variety of formats, including tabular/text and visual format, as shown in Figure 1. In the 
tabular/text summary example (Figure 1a), a semantic description of a fault is given. A semantic 
representation of systems/equipment/components operational status is used to describe a fault. 
Each description can be viewed as a fault message log and be recorded with different time 
duration in the database. To support root cause analysis of reported faults, FDD tools may also 
offer charting and trending capabilities to users (Figure 1b). The underlying fault detection 
algorithms may be the same in either case; these examples relate specifically to the presentation 
of FDD results. Real case study 

 

 
(a)                                 (b) 

Figure 1. Examples of FDD tool analytics outputs: (a) tabular/text summary (b) visual display showing time-series 
trend of supply air temperature (SAT) and SAT setpoint 

 
Strictly speaking, FDD software does not truly “diagnose” the root causes of faults, e.g., 

the software may identify an inoperable damper but would not know exactly why the damper is 
inoperable. However, FDD software has proven very effective for flagging inefficient operation 



 

and supporting operator’s efforts to hone in on the specific components or control-related issues 
that need to be addressed. 

 
Variety of Fault Type Definitions used by Existing FDD Software 
 

The definition of the term “fault” is key to understanding the analysis output of FDD 
tools. Existing literature and commercial FDD tools use three general categories of fault type 
definition based upon how the faults are presented: condition-based, behavior-based, or 
outcome-based (Frank, Lin et al. 2019). The categories and corresponding definitions are 
provided in Table 1. As an introductory example shown in Table 1, consider an air handling unit 
(AHU) with its cooling coil valve stuck open. The unit’s faulted state may be defined by the 
unit’s condition (the cooling coil valve is stuck open), behavior (the supply air temperature can’t 
meet its setpoint), or outcome (the unit’s chilled water consumption is more than expected). If, 
however, the unit is experiencing a call for cooling, it would still be considered faulted under the 
condition-based definition (the valve is still stuck), but not under the behavior-based definition 
(The extra cooling due to the cooling valve stuck is compensated by the heating provided by the 
heating coil at the same time, the supply air temperature meets setpoint). The unit’s state under 
the outcome-based definition would be determined by the amount of chilled water flow through 
the stuck valve compared to an expected level of chilled water consumption. While condition-
based and behavior-based fault conventions are more often seen in the tabular/text analysis 
summary of the commercial FDD tools outputs, all three definitions may be used in the tools 
depending on the available input data and the tool developer’s preferred approach. 

 
Table 1. Fault definition conventions 

Category Condition-Based Fault Behavior-Based Fault Outcome-Based Fault 

Definition Presence of an improper or 
undesired physical 
condition in a system or 
piece of equipment 

Presence of improper or 
undesired behavior during the 
operation of a system or piece 
of equipment 

A state in which a 
quantifiable outcome or 
performance metric for a 
system or piece of equipment 
deviates from a correct or 
reference outcome, termed 
the expected outcome 

Example The cooling coil valve is 
stuck open 

The supply air temperature can’t 
meet its setpoint 

The chilled water 
consumption is more than 
expected 

 
Barriers to Meta-Analysis of FDD Tool Analytics Outputs 
 
      As mentioned in the introduction, there are three fundamental barriers to meta-analysis 
of FDD tool analytics outputs, which drives a need to develop a unified HVAC fault taxonomy. 
Each of the three barriers are addressed in detail below:  

Inconsistent fault naming conventions: Various fault names, which may refer to the 
same fault in the system, are used in different FDD tools. This issue may even arise with 
different versions of the same software tool, or with unique installations of any given tool. This 
causes an obvious discrepancy among different FDD reports or software. For example, in one 



 

commercial FDD tool, a “discharge air damper hunting” fault is reported to reflect a 
malfunctioning damper control in variable air volume (VAV) terminal units. But in another FDD 
tool, this fault may be reported as a “discharge air damper cycling” fault or an “unstable 
damper” fault. This inconsistency in naming does not inhibit the FDD software’s effectiveness 
for an individual building (i.e., building operators will become familiar with the fault and the 
appropriate actions to take in response), but it is a significant barrier when wanting to gather a 
large set of meta-data for the purpose of characterizing faults at a national scale. 

Mixture of fault definition conventions: Both condition-based and behavior-based fault 
conventions are widely used across FDD tools. However, the relationships between these two 
conventions are not sufficiently defined to identify causal relationships between those faults. 
Therefore, when using FDD tools’ default naming conventions, redundant information may be 
used repeatedly. This may cause an over-count of faults and increasing difficulty to identify root 
causes in a complex system without an accurate model to unify different fault conventions. For 
example, a “low supply air temperature” fault, a “simultaneous heating and cooling” fault and a 
“stuck cooling coil valve” fault may be reported concurrently. At face value this would be 
counted as three faults, when in reality the stuck cooling valve may be the single true fault that is 
resulting in the other two effects being observed. A successful meta-analysis of FDD data 
requires the relationships between different fault types to be defined. 

Lack of a consistent hierarchy that can be used to resolve faults occurring at different 
levels of operation: A study of faults occurring in commercial buildings may be viewed on many 
levels, for example by system type, sub-system, equipment, or individual components. However, 
there is no single hierarchy employed by FDD tools for the purpose of consistently identifying a 
fault’s position within the system as a whole. Some key information is sometimes missing in the 
fault name generated by the FDD report. For example, a “flat sensor” fault may be reported by a 
FDD tool but no information on what type of sensor (e.g., temperature or air flow) is given in the 
fault name. Given that FDD tools include fault rules built upon data from different hierarchical 
levels, the lack of a formal hierarchy presents challenges when collecting and analyzing data 
from multiple tools and many buildings. 

These three barriers significantly hinder effective large scale meta-analysis of FDD 
results. Addressing these issues was critical to a planned study of nationwide HVAC fault 
prevalence. Beyond that specific short-term need, standardized taxonomies have generally 
proven useful in a variety of contexts. For example, a taxonomy that resolves the above-
mentioned barriers may support development of more optimized FDD software algorithms and 
standardized approaches to root cause analysis of faults. With those issues in mind, we propose a 
novel taxonomy to better represent HVAC system faults and hierarchy.  

 
Development of Taxonomy 
 

To date, the taxonomy covers three major system types: packaged rooftop units (RTUs) 
air-handling units (AHUs), and variable air volume (VAV) terminal units. These systems were 
chosen as collectively they cover the majority of U.S. commercial buildings’ HVAC systems. 
Approximately 90% of buildings and nearly half of the commercial floor space is served by 
RTUs. In addition, AHUs are a key element of the built-up systems that are common in large 
commercial facilities. Further, the taxonomy development was targeted at the highest impact 
faults that are commonly encountered in these system types.  



 

In order to address the identified needs and barriers summarized in the Introduction our 
fault taxonomy comprises four key elements:  

 
1. Fault type definitions; 
2. Equipment physical hierarchy; 
3. Fault relation models; 
4. Fault identification code scheme. 

 
Each of these key elements is described in the following sections. 
 

Fault Definition Conventions 
FDD results in literature (Breuker and Braun 1998, Schein and Bushby 2006, Wang, 

Chen et al. 2012) and commercial FDD tools were reviewed and classified using the fault 
definitions presented in Table 1. For example, under such definitions, a “reheat coil valve stuck” 
fault is categorized as a condition-based fault, whereas a “discharge air temperature abnormal” 
fault is categorized as a behavior-based fault. This therefore helps identify the fault instances that 
may in some cases refer to a single fault state as opposed to multiple independent fault states and 
also makes it possible to develop a relation model to disclose the causal relations for the faults 
using different types of definitions. Condition-based faults and behavior-based faults are the 
focus of this study, since the use of outcome-based faults is relatively rare.  

 
Physical Hierarchy and Fault Library 
 

A complete HVAC equipment fault definition should contain information which can be 
used to locate the fault and reflect the fault feature. In order to reach this goal, we first define a 
system physical hierarchy, and then assign a unique fault name from a summary fault library.  

 An accurate physical hierarchy is critical to reflect various levels in a complex HVAC 
system. Some studies have been conducted to use various structures to represent the physical 
entities in a building. For example, Brick presents an integrated, cross-vendor representation of 
the multitude of subsystems in modern buildings which include HVAC, lighting, fire, security, 
and other systems (Balaji, Bhattacharya et al. 2016). The names we selected for the equipment 
and components are drawn from the Brick vocabulary library. However, we also defined some 
new names which Brick standard does not include. In the taxonomy development, four levels 
were adopted to locate a fault, as shown in Figure 2. The highest level defines the system type, 
for example, “HVAC system” (referred to as S1) is used at this level (for our study this is the 
only defined system. The next level identifies the specific equipment within the system. For 
example, AHU, RTU, VAV terminal unit etc., are grouped into this level (for our study these are 
the only equipment types in scope, but others could be added at a later date). Below the 
equipment level, specific components are defined under two separate levels, so that fault location 
can be accurately determined. Two levels are used to identify the component because it can 
differentiate the generic component type from the specific component type. For example, in the 
taxonomy a generic component type “sensor” (Component Level 1, referred to as C1) is used to 
cover all sensors used in a VAV terminal unit. Specific sensor types such as “discharge air 
temperature sensor” may then be defined under Component Level 2 (referred to as “C2”). Within 
this structure, “control sequence” is considered a Level 1 Component. 

 



 

 
Figure 2. Physical hierarchy levels used in the taxonomy, with examples for each level 
 
To address the challenge of inconsistent fault naming conventions, in this study, standard 

fault names are assigned to each component. For example, in the condition-based fault category 
for the component “damper,” three fault names are defined in the taxonomy, i.e., “damper 
leakage,” “damper stuck”, and “damper unspecified”. Each of these three fault names may 
capture multiple faults as reported by FDD tools; for example, “damper leakage” represents fault 
semantic descriptions such as “damper cannot be fully closed,” “damper is not sealing”, 
“damper is not fully closed.”  

For behavior-based faults in the taxonomy, the fault name may represent either the 
abnormality in one physical variable or that a rule among different physical variables is broken. 
For example: 

 
● “Discharge air temperature abnormal” (single physical variable); 
● “Rule between outside air temperature and mixed air temperature is broken” (multiple 

physical variables). 
 
Once fault naming conventions were established in the taxonomy, a fault library was developed 
for each of the three main system types (e.g., 19 condition-based faults and 5 behavior-based 
faults are defined for VAV terminal units).  
 
Fault Relation Model 
 

In FDD reporting, both condition-based faults and behavior-based faults can be found in 
the software outputs. For each condition-based fault, a set of related behavioral symptoms 
(behavior-based faults) could occur, and these relationships can be defined using a relation 
model. In this study, we developed a comprehensive relation model to connect the condition-
based faults and associated behavior-based faults based on expert knowledge and in consultation 
with a project Technical Advisory Group.  

It should be noted that a condition-based fault may propagate and affect different 
equipment or even subsystems due to the highly coupled HVAC system (e.g., a chilled water 
supply pump fault in the primary subsystem can cause multiple symptoms in downstream 
equipment such as an abnormal cooling coil valve position and abnormal supply air temperature 
in AHUs). Therefore, a condition-based fault and associated behavior-based faults may cross 
between different pieces of equipment or subsystems. However, in this study, only ‘local’ fault 
relation models with a single piece of equipment were developed.  

 
 



 

Fault Identification Code Structure 
 

A unique fault identification (ID) scheme was designed to label each fault, so that each 
fault in the library can be efficiently retrieved and used in different domains. For the fault ID, a 
unified tagging format is used to differentiate the fault by different character sections as 
described in Figure 3. The first section identifies the equipment name. Both the second section 
and the third section define the component name (one may be sufficient in some cases). This 
increases the physical granularity, and can help diagnose the root cause of a fault more 
efficiently. The last section identifies the fault. This fault ID is used to tag a fault so that it can 
exactly represent the fault type and location in a fault library. For example, the fault ID of fault 
“VAV terminal unit reheat valve stuck” is VAVUNIT-RHC-Vlv-Stuck, as shown in Figure 3. 

 

 
Figure 3. Example of tagging a condition-based fault identification code 

 
Example: Taxonomy Application for VAV Terminal Unit Faults 
 

In this section, we illustrate an example application of the HVAC fault taxonomy for 
VAV terminal unit faults, employing a typical VAV terminal unit configuration. 
 
Physical Configuration of the VAV Terminal Unit 
 

A VAV terminal unit (also known as a “VAV box”) is used to adjust the airflow rate and 
discharge air temperature dispatched into a conditioned space from an AHU. The control of a 
VAV terminal unit is based on the heating/cooling loads and ventilation requirement of the space 
served by the VAV terminal unit (Liu, Wen et al. 2014). 

VAV terminal units can be configured in many ways to meet conditioning requirements. 
We employed a commonly-used physical configuration to develop the fault taxonomy (see 
Figure 4). In this configuration, the VAV terminal unit consists of a discharge air damper, a hot 
water reheat coil and coil valve, and two sensors (discharge air flowrate sensor and discharge air 
temperature sensor). The discharge air damper position is adjusted to introduce variable air flow 
in the zone, so that the zone temperature can meet the temperature setpoint. It is noted that the 
taxonomy will be extended under different equipment configurations because more components 
may be integrated.  

 
Taxonomy of Condition-Based Faults 
 

VAV terminal unit condition-based faults can be physically located using each level of 
the physical hierarchy. A graphical representation of the physical hierarchy of faults for VAV 
terminal units is provided in Figure 5. The hierarchy defines the types of components (sensor, 



 

damper, coil, etc.) at Component Level 1. Component Level 2 provides detailed component 
names, and the fault type applicable to each component category is shown on the bottom level of 
the hierarchy. 

 

 
Figure 4. Typical VAV terminal unit 
configuration, as employed in the HVAC 
fault taxonomy 

 
 

 
Figure 5. Physical hierarchy for VAV terminal faults (condition-based faults) 
 

Table 2 provides an example of the developed taxonomy for a condition-based fault 
affecting a VAV unit reheat coil. In the table, the two-level component and corresponding 
component names are provided in the first two columns. A fault type term and corresponding 
description are given in the third and fourth column. In the fifth column, examples of other 
descriptions found in FDD tools are provided. A fault ID which can be used to transparently 
codify the fault data is given in the last column. 

 
Taxonomy of Behavior-Based Faults 
 

Figure 6 gives the hierarchy for the taxonomy for behavior-based faults applicable to the 
VAV terminal unit example. The physical variable types are given at Component Level 1. At this 
level, four measurements are provided: temperature, damper control, coil valve control and air 
flow. Various measurements are given at Component Level 2.  



 

 
Table 2 Example of condition-based fault types, name and ID 

Component 
Type (L1) 

Component 
Type (L2) 

Fault 
Type 

Fault 
Name 

Other Fault Descriptions Fault ID 

 Coil  Reheat coil 
valve 

Leakage Reheat coil 
valve 

leakage 

Coil valve is leaking by; 
coil valve has leakage; 
coil valve is leaking. 

VAVUNIT-RHC-Vlv-Leak 

 
 

 
Figure 6. Physical hierarchy for VAV terminal faults (behavior-based faults) 

 
Table 3 provides an example of the developed taxonomy for the behavior-based faults.  

Table 3 Example of behavior-based fault types, name and ID 

Component 
Type (L1) 

Component 
Type (L2) 

Fault 
Type 

Fault Name Other Fault Descriptions Fault ID 

 
Temperature 

Discharge air 
temperature  

Abnormal Discharge air 
temperature 
abnormal 

Discharge air temperature 
too high;  
discharge air temperature 
too low;  
discharge air oscillation, 
discharge air temperature 
swing. 

VAVUNIT-DAT-
Abnormal 

 
Relation Model 
 



 

 The relation model can be illustrated with a tree diagram, with a simplified excerpt 
shown in Figure 7. Figure 7 indicates that in a VAV terminal unit, when a “discharge air damper 
stuck” condition-based fault occurs, it may cause multiple associated behavior-based faults such 
as “discharge air flowrate abnormal,” and “zone temperature abnormal.”  

 

 
Figure 7. Illustration of a relation model  
 

Through the application of the taxonomy, data from various FDD tools may be unified into 
a structure such that faults are defined both physically and in causal relation to each other, 
employing a consistent and transparent naming scheme that allows for effective meta-data analysis. 

 
Example Taxonomy Application for a Sample FDD Tool Report 
 

To assess the applicability of the developed taxonomy we mapped faults reported by a 
commercial FDD tool. We obtained an example fault report in a tabular format covering five 
days from five buildings across the U.S. From the semantic text fault list generated from the 
report, we identified a total of seventy-one fault names, which included 36 condition-based fault 
names, 34 behavior-based fault names, and 1outcome-based fault name for the buildings’ AHUs. 
Using the fault taxonomy, 33 condition-based fault names, 28 behavior-based fault names and 1 
outcome-based fault name in the FDD tool’s diagnostic report can be successfully mapped (87% 
of the reported faults). The reason of unsuccessfully mapped names will be discussed in the next 
section. Table 4 lists the mapping results. 
 
Table 4. Fault name mapping results 

 Total Condition-
Based 

Behavior-
Based 

Outcome-
Based 

Total fault names from FDD tool report 71 36 34 1 

Number of faults successfully mapped to taxonomy 62 33 28 1 

Successful mapping percentage 87% 92% 82% 100% 

Consolidated number of unique fault names based 
on taxonomy mapping 

35 16 18 1 

 



 

As shown in Table 4, a total of 62 faults from the FDD sample report were mapped to 35 
unique fault names in the taxonomy. This consolidation is a result of cases where multiple faults 
were mapped to a single fault in the taxonomy. 

 
Discussion 
 

Unifying fault taxonomy libraries for three common system types including AHU, RTU 
and VAV terminal units were developed based on careful analysis of academic literature and 
several example reports from FDD tools. The developed taxonomy is being deployed in support 
of a large-scale empirical study on the prevalence of faults in US commercial buildings. That 
activity will further verify the taxonomy’s completeness and applicability using a large dataset 
sourced from several commercially available FDD tools. Based on the fault prevalence study it is 
expected that certain refinements will be made to the taxonomy, prior to its public release. 
Anticipated challenges and refinement options are discussed below. 

 
Extension and Evolution of Fault Taxonomy 
 

When developing the unifying fault taxonomy, the researchers included the most 
common faults reported in existing academic literature, and also reviewed the range of 
typical/common faults reported by commercial FDD tools. The selected equipment types (AHU, 
RTU and VAV terminal units) are widely deployed in today’s commercial buildings’ HVAC 
systems. However, different system physical configurations and additional components may be 
adopted in each type of equipment to meet different application requirements. For example, 
some AHUs are equipped with additional components such as heat recovery wheels and carbon 
dioxide sensors to improve energy efficiency and indoor air quality. Those components (and 
associated faults) are not included in the existing physical hierarchy. The fault prevalence study 
and other example applications will provide an opportunity to quantify the taxonomy’s coverage, 
i.e., what portion of reported faults can be translated into the taxonomy structure? For those 
faults that cannot be translated into the taxonomy, decisions on updating the taxonomy can be 
made based on the frequency of non-covered faults, energy impact, the level of complexity that 
would be required in updating the taxonomy, etc. 
 
Practical Applicability of Relation Model 
 

The relation models in the fault taxonomy, which reflect the cause and effects 
relationships between condition-based faults and behavior-based faults, were developed to 
represent relationships within one piece of equipment of the system. Application of the relation 
model on large datasets from multiple data sources will provide valuable insights on its 
effectiveness in several dimensions: 

 
● Will the relation model effectively handle the mixture of condition-based and behavior-

based faults reported across a population of buildings, in a way that supports improved 
root cause analysis? 

● What is the optimal way to quantify fault occurrence/prevalence for a population of 
buildings, given the inter-relationship between faults at different component/equipment 
levels and the mixture of condition-based and behavior-based faults? 



 

● In what ways can the relation model be applied to a fault dataset to produce helpful 
insights for FDD software developers and building operators? 
 
Further, HVAC systems are highly interactive, and a fault in one piece of equipment may 

affect other equipment in the system. For example, an AHU outdoor air damper stuck at too high 
a position in the summer season may cause pump speed to be abnormally high in the chiller 
plant. For future evolution of the taxonomy it could be beneficial for the relation models to be 
updated to include cross-equipment faults, so that the root-cause diagnosis of behavior-based 
faults can be more comprehensively covered. More comprehensive root cause analysis and risk 
assessment techniques may also be helpful in improving the relation model or providing 
supplementary resources to building operators. 

 
Limitation of Naming and Tagging Scheme 
 

The fault ID numbering scheme was developed after comparing naming approaches in 
existing fault reports and other naming conventions such as the Project Haystack system. These 
semantic data models make it easier to map complex FDD results and descriptions into a concise 
representation. However, we found that for some behavior-based faults, the naming and tagging 
scheme was vague. For example, when naming a fault where the rule between multiple 
measurements was broken, the taxonomy allows for only two measurements in the naming 
format. This may cause conflicts when more measurements are included. For example, we use 
“mixed air temperature abnormal” fault name to represent “mixed air temperature should be 
between outside air temperature and return air temperature” fault name which actually includes 
three physical measurements. Test applications of the taxonomy will help to fully uncover these 
kinds of gaps (and their impact), to support future taxonomy development efforts.  

An overarching consideration for the taxonomy is long-term governance. Several areas of 
future taxonomy evolution are discussed here, but buildings (and their associated systems) are 
ever-evolving. Within the scope of the U.S. DOE-funded fault prevalence study the taxonomy 
will evolve to a certain degree, but beyond that there may be benefit in establishing an ongoing 
stakeholder-driven effort to maintain and manage future evolution of the taxonomy and related 
resources. 

 
Conclusions and Future Research 
 

The successful applications of data-driven or big data techniques rely on how data is 
represented and whether the data can be efficiently unified and interpreted. In this paper, we 
present a unifying taxonomy for HVAC system faults affecting AHUs, RTUs, and VAV terminal 
units. Built upon four key elements, the developed taxonomy gives an accurate and orderly 
classification of HVAC equipment faults based upon their characteristics and causal relations. 
This taxonomy is a foundational enabler for a major U.S. study on fault prevalence, and is 
expected to offer benefits to FDD software developers and operators by standardizing fault 
naming, system physical hierarchies, and bringing greater transparency to the relationships 
between faults. 

Future work (beyond completion of the fault prevalence study) will include extension of 
the fault taxonomy library so that more equipment, faults, and corresponding physical 
configurations can be included. Further, more comprehensive analysis of cause and effect 



 

relationships and relative levels of risk could improve the taxonomy’s utility for supporting 
ongoing root cause diagnostics. The nature of commercial buildings’ HVAC faults has been 
studied for decades; the provision of a unified, transparent taxonomy will accelerate those efforts 
through common terminology and a more formal definition of physical and causal relationships. 
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