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 Webinar audio is only streamed over the internet via readytalk.com.

* Webinar participants will be in a listen-only mode. Please use the
chat box should you have any technical difficulties hearing us.

 The webinar presentation will be followed by a Q&A session.
Please submit any questions you may have already during the
presentation via the chat-box.

 The webinar and Q&A session will be recorded and can be viewed
afterwards at:

https://emp.lbl.gov/iea-wind-expert-survey

* You can also find the full technical report, the journal article, a short
and long slide-deck and additional supplementary material at that
website.
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Expert elicitation survey on future wind

energy costs

Ryan Wiser'®, Karen JenniZ, Joachim Seel", Erin Baker®, Maureen Hand®, Eric Lantz* and Aaron Smith*
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Background and Motivation



Significant Recent Wind Power Deployment Growth '\] ;¢|
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Onshore (land-based): Turbine Scaling in U.S. Has e
Reduced Capital Costs, Increased Capacity Factors _—
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U.S. Capacity Factors by Project Vintage Affected by —
Multiple Trends, but Show Steep Recent Increase '\]|
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Long-Term Reductions in Total Installed Project COStS IN g
U.S. Notwithstanding Focus on Increased Performance ’\]
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2015 projects had an average cost of $1,690/kW, down $640/kW since
2009 and 2010; limited sample of under-construction projects slated for
completion in 2016 suggest no material change in costs




Wind Power Purchase (PPA) Prices Remain Very Low, e
Especially in U.S. Interior Region ~ $20/MWh (with PTC) ’\]
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The United States Is Not Alone in Witnessing Significant  puregm
Onshore Wind Power Advancements ceeee)p
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Figurs 19 TOTAL INSTALLED COSTS OF OMSHORE WIND PROJECTS BY COUNTRY, 1983-2014
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Offshore: Turbine Scaling and Market Maturity Beginning gy «
to Bend the Cost Curve Downward ceeee)p
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Figure 13. Global turbine capacities, rotor diameters, and hub heights over time
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Figure 12. Global offshore wind projects as a function of water depth and distance to shore
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Offshore CapEx & Pricing Trends Are Favorable; Steep —
Reductions Revealed by Most Recent Pricing Points eceees)f
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Motivation: Where Will Onshore and Offshore Costs —
Go in Future, and How Might those Costs be Achieved? ‘\]
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IEA Wind Survey of 163 of the World’s Foremost Wind -
Experts, Focused on Cost and Technology Trends '\ﬂ
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What Why Who

Expert survey to gain Inform policy & planning, Largest single expert
insight on possible R&D, and industry elicitation ever
magnitude of future investment & strategy performed on an energy
wind energy cost development while also technology in terms of
reductions, sources of improving treatment of expert participation:
reductions, and wind in energy-sector 163 of the world’s
enabling conditions planning models foremost wind energy
needed to realize experts

continued innovation
and lower costs

Complement other tools
for evaluating cost Led by LBNL and NREL,
reduction, including under auspices of IEA
Covering onshore, learning curves, Wind Task 26 on “Cost
fixed-bottom offshore, engineering assessments, of Wind Energy,” and
and floating offshore other ways to synthesize with numerous critical
wind applications expert knowledge advisers throughout

Survey focus was primarily on changes in levelized cost of energy (LCOE) from 2014 to 2020,
2030, and 2050 under low/median/high scenarios, and on build-up of LCOE in 2014 & 2030;

LCOE excludes any subsidies and excludes grid interconnection costs outside plant boundary
. __________________________________________________________________________________________________________________________________________________________________________________]
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Survey Leadership: Thanks! —\]\
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IEA Wind Task 26 and U.S. DOE

e Conducted under auspices of IEA Wind “Cost of Wind Energy”, and its member countries (US,
Denmark, Germany, Ireland, Netherlands, Norway, Sweden, UK, European Commission); funded
largely by U.S. DOE (Zayas, Gilman, Tusing, Higgins)

Survey Leadership Team

e Ryan Wiser and Joachim Seel (LBNL); Karen Jenni (Insight Decisions); Maureen Hand, Eric Lantz and
Aaron Smith (NREL); Erin Baker (U Mass. Amherst)

Other IEA Wind Task 26 Advisors

e Berkhout, Duffy, Cleary, Lacal-Arantegui, Husabg, Lemming, Liiers, Mast, Musial, Prinsen, Skytte,
Smart, Smith, Sperstad, Veers, Vitina, Weir

Online Survey Platform

e Survey implemented online via Near Zero platform

The Surveyed Experts

e 163 of the world’s leading experts graciously offered their time




Our Approach: Expert Elicitation

e Online survey of large sample of the world’s foremost wind experts

y

A
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* One of the first efforts to use “formal” expert elicitation methods to understand
wind cost reduction (many previous efforts have leveraged expert knowledge)

e Expert elicitation is a tool—with established protocols—to develop estimates of
unknown or uncertain quantities based on careful assessment of the knowledge

and beliefs of subject-matter experts

e Often considered best way to develop estimates when data are sparse, or when
projections are sought for future conditions very different from past conditions

* Not without challenges, but insights can complement other tools:

— Learning curves: causal mechanisms poorly understood;
few studies on wind LCOE; historical trends may be poor
guide; some technologies have limited historical data

— Engineering assessments: opportunities captured often
incremental and near-term; requires complex models;
rarely provides insight on probability

— Expert knowledge: absent care, informal tools to extract
knowledge may be prone to bias/overconfidence

&

(" Seven step pr for

formal expert elicitation

Characterization of
uncertainties

~ o

Scope and format of the
elicitation

==

Selection of experts |

Design of the elicitation
protocol

- =

Preparation of the elicitation
session

==

—| Elicitation of expert judgments

==

Possible aggregation and

reporting

 Factors that condition the
design and execution of the

expert elicitation

Types of uncertainties
considered

Intended use of the
elicited information

Resources (time,
money)

-
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Targeted Survey Respondents ‘\ﬂ
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Global survey: identified 482 possible survey respondents from IEA Task 26
members, affiliated organizations, others

Of these, selected smaller group of 42 uniquely-qualified “leading” experts
to mirror more-traditional elicitation

Casting a Wide Net
e sought relatively wide distribution of survey
|deal Respondent

e strategic, system-level thought leaders, w/ wind tech, cost, market expertise
Respondent Type

e industry, R&D institutions, academia, others
Technology Specialization

e onshore, fixed-bottom offshore, floating offshore
Geography

e primarily Europe and U.S., but did not foreclose other regions




Diverse Set of 163 Survey Participants (34% response e
rate), Including 22 from Leading-Expert Group (52%) ’\]|
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Wind Application Area Familiarity with Geographic Regions
Onshore | 134 North America 104
Europe 100
Fixed-bottom
" 110 Asia  mm—— 27

offshore
Latin America 24

Floating offshore 44 Middle East & Africa mm 7

0 50 100 150 0 50 100 150
Type of Wind Expertise

Wind energy markets and/or cost analysis G 116

Systems-level wind technologies, focused on entire wind turbine
and/or wind plant

T a7

Subsystem-level wind technologies, focused on specific turbine and/or [N 41
plant subystems or components

0 50 100 150

Organization Type
Other private-sector wind industry [T g6
Wind developer, owner, financier, or operator e 29
Public research or research management [N 28
Wind turbine and/or component manufacturer [ 25
University or other degree-granting institution [N 15
Other not-for-profit organization [N 10
Government agency not associated with research [ 4
Construction [ installation contractor [ 3
Other B 2

0 10 20 30 40 50

Smaller group of 22 “leading experts” pre-identified as uniquely-qualified

EEEEEEEEEE————————————————————————————————————————————————————————————————————————
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Expectations for Significant LCOE Reduction: S
Median “Best Guess” Scenario, Median Respondent ’\]
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2014 onshore baseline:
$79 or 59€/MWh

-38%

1-10% +6%
-30%
-35% -41%

2014 offshore baseline: $169 or 127€/MWh

2010 2020 2030 2040 2050 2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

Lines/markers indicate the median expert response

For floating, change is shown relative to 2014 baseline for fixed-bottom

All dates are based on the year in which a new wind project is commissioned
]
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Uncertainty Revealed When Reviewing Range of Expert g ,\
Responses:. Median “Best Guess” Scenario ’\]
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m Fixed-Bottom Offshore Floating Offshore
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0% 0—:\
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_60% | | | | [ | | | | T T T T
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Lines/markers indicate the median expert response
Shaded areas show the 25t to 75t percentile range of expert responses

EEEEEEEEEE————————————————————————————————————————————————————————————————————————
22



Smaller “Leading Experts” Group Expects Greater LCOE g :
Reduction than Larger Survey Group: Median Scenario ’\]
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m Fixed-Bottom Offshore Floating Offshore

20% - —4—Large Group
-l -Leading Experts \+6%
0% é
R
5%\ -15%
-20% \
35% ' s
-40% \\
-38% S o
W -51% T -50%

-60% I I I I [ I I I I [ I I I I
2010 2020 2030 2040 2050 2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

Leading experts (22) foresee greater LCOE reductions in comparison to larger group less those
leading experts (141) in the median scenario (shown) as well as in the low scenario

Equipment manufacturers sometimes expect less LCOE reduction, especially in near term for
fixed-bottom offshore; respondents who only expressed knowledge of offshore wind (not also

onshore) tend to be more aggressive on LCOE reduction

EEEEEEEEEE————————————————————————————————————————————————————————————————————————
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In Absolute Terms, Narrowing Gap Between Onshore & e
Offshore, and Fixed-Bottom & Floating: Median Scenario [l

BERKELEY LAB

250
LCOE reductions -m-Floating offshore
. v .
for floating © —+—Fixed-bottom offshore 2
offshore are S 200 ~e-Onshore 150 ¥
(%2]
expected tobe S
especially sizable s T
(o] fd
between 2020 = 1°0 c
o 100 =
and 2030 p -§
S 100 %
Greater % 2
uncertainty in = 50 i
offshore wind g 0 S
LCOE than in
shore LCOE
on 0 0
2010 2020 2030 2040 2050
Lines/ma rkers indicate the median expert response Note: Percentage changes from baseline are most broadly
. applicable approach to presenting findings (because each region
Shaded areas show the 25" to 75" percentlle range & expert might have a different baseline value), but the relative
of expert responses absolute values of expert-specified LCOEs are also relevant

.|
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Sizable Opportunity Space for LCOE Reductions (and e
Uncertainty) lllustrated by Low / High Scenario Results '\]

BERKELEY LAB

m Fixed-Bottom Offshore Floating Offshore

= -High Estimates

20% - i .
=¢=[Median Estimates
= =Low Estimates
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\ -10%
\
-20% - i -24%
h
\ -35% .
-40% - . ~38%
N -
b S
an% -43% . -53%
W -53% | -45% m -53%
'60% T T T T T T T T f T T T T

2010 2020 2030 2040 2050 2010 2020 2030 2040 2050 2010 2020 2030 2040 2050
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Managing Uncertainty and Aiming for Lower LCOE Is —
Partly Within the Control of Decision Makers cecee)

BERKELEY LAB

Asked respondents to rank broad drivers that might enable achieving low-
scenario LCOE, separately for onshore and fixed-bottom offshore

5 Learning with market growth 33% 2.2
% Research & development 32% 2.4
o - .
g Increased competition & decreased risk 16% 25
Eased wind project & transmission siting 14% 3.2
z Learning with market growth 33% 2.2
% Research & development 32% 23
o . . . .
é Eased wind project & transmission siting 25% 23
(@)
Increased competition & decreased risk 5% 3.4

Learning with market growth and Research and development are the
two most-significant enablers for the low LCOE scenario
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How Will We Get There? Factor-Contribution to Median

)

LCOE Scenario, 2014 to 2030 ceeee)p
BERKELEY LAB
Onshore Fixed-Bottom Offshore Floating Offshore
-24% -30% -25%
/ A Capacity Factor: +10% Capacity Factor: +4% Capacity Factor: +9%
Absolute Change Project life: +10% Project life: +15% Project life: +25%
in five factors A
from 2014 to 2030 | |V
in median scenario CapEx: -12% CapEx: -14% CapEx: -5%
OpEx: -9% OpEXx: -9% OpEXx: -8%
K v WACC: 0% WACC: -10% WACC: -5%

ﬁelative Impact
of five factor changes

i -B
lee;if hottom Floating Offshore
from 2014 to 2030 Offshore

in median scenario
on LCOE reduction
W CapEx
m Capacity Factor
M Financing Cost
M OpEx
\ “ Project Life

For floating offshore wind, change and impact are shown relative to 2014 baseline for fixed-bottom 27
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How Will We Get There? Factor-Contribution to Low

)

LCOE Scenario, 2014 to 2030 ceeee)p
BERKELEY LAB
Onshore Fixed-Bottom Offshore Floating Offshore
-44% -43% -45%
/ A Capacity Factor: +17% Capacity Factor: +11% Capacity Factor: +14%
Absolute Change Project life: +25% Project life: +25% Project life: +25%
in five factors A
from 2014 to 2030 | |V
in low scenario CapEx: -24% CapEx: -25% CapEx: -14%
OpEx: -25% OpEx: -21% OpEx: -18%
K v WACC: -11% WACC: -20% WACC: -15%

ﬁelative Impact
of five factor changes
from 2014 to 2030

in low scenario
on LCOE reduction

W CapEx
" Capacity Factor

M Financing Cost

Fixed-Bottom ] \
Offshore Floating Offshore
M OpEx

For floating offshore wind, change and impact are shown relative to 2014 baseline for fixed-bottom 28




CapEx & Capacity Factor Trends Driven by Growth in

)

Turbine Size: Median Onshore Turbine Stats in 2030 ceceen)f

BERKELEY LAB

Onshore: Continued scaling in nameplate capacity, hub height and rotor

diameter, with decline in specific power globally to current U.S. levels and
increase in hub height to current German levels—> focus on capacity factors

Average Nameplate Capacity (MW)

4.0

35

3.0

2.5

2.0
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0.0 -

B Average Nameplate Capacity (left axis)
~ OAverage Hub Height (rightaxis)

@ Average Rotor Diameter (right axis)

1998-99
2000-01
2002-03
2004-05

United States

- 120

- 100

- 80

- 60

- 40

160

o Current average

specific power

e US.: 250 W/m?
* Germany: 330 W/m?
e Denmark: 350 W/m?

2030 average
specific power
e N. Amer: 250 W/m?

Average Hub Height and Rotor Diameter (m)

%0 e Europe: 260 W/m?
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CapEx & Capacity Factor Trends Driven by Growth in e
Turbine Size: Median Offshore Turbine Stats in 2030 s

BERKELEY LAB

Offshore: Emphasis on increased nameplate capacity to reduce CapEx, with

proportional scaling in hub height and rotor diameter leaving specific power

at roughly current levels; somewhat larger turbines in Europe than N. Amer.
i L U, O - 240

B Average Nameplate Capacity (left axis)
0 | g buskegii e | o0 T Current average
— @ Average Rotor Diameter (right axis) e o o
= g specific power
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. 2
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1] [
o 2
S 2
- ©
2 6 120 § 2030 average
Q -
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5 ® o® § specific power
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- I ..006600000 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, BB = 2 - Global: 380 W/m?
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Drivers for LCOE Reduction by 2030 Are Diverse: e
It's Not Just Turbine Size ceeee)p

BERKELEY LAB

Survey asked about expected impact of 28 different technology, market, and other changes
on LCOE reductions by 2030; Table shows top 5 responses for each turbine application

% of Experts | Rating Distribution
rating 3- large impact

Wind technology, market, or other change "Large 2- medium impact
expected 1- small impact
impact" 0- no impact

Increased rotor diameter such that specific power declines
g Rotor design advancements 45%
-Fé, Increased tower height 33%
O |Reduced financing costs and project contingencies 32%
Improved component durability and reliability 31%
ncreased turbine capacity and rotor diameter (thereby maintaining specific power 6
£ I d turbi it d rotor di ter (thereb intaini ifi ) 55%
% g Foundation and support structure design advancements 53%
] f, Reduced financing costs and project contingencies 49%
©
9 O |Economies of scale through increased project size 48%
= Improved component durability and reliability 48%
Foundation and support structure design advancements 80%
i g Installation process efficiencies 78%
§ ..':‘2 Foundation/support structure manufacturing standardization, efficiencies, and volume 68%
= O |Economies of scale through increased project size 65%
Installation and transportation equipment advancements 63%
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Implicit Learning Rates for Onshore Wind from Expert —
Survey Broadly Consistent with Historical Observations '\]|

BERKELEY LAB

Implicit single-factor onshore learning rate for the Median Scenario in 2030
(14-18%) is in the same range as historical LCOE-based learning (10-19%)

For offshore, experts either anticipate lower offshore-only learning relative to onshore (8%),
or expect learning spillovers from onshore to offshore (leading to learning rates of 16%-20%)

1000
(750€)

LR: 18.6%

LR: 17.8%

LR: 15.5%

LCOE in real 2014 $/MWh (and €/MWh)

LR: 10.5%
100
(75€)
LR (median, 2030):
~14%-18%
——Historical Global LCOE =m=Fxpert Survey: High Scenario Forecast
——Historical US LCOE: Good to Excellent Sites =#=Expert Survey: Median Scenario Forecast
——Historical Denmark LCOE =@=Expert Survey: Low Scenario Forecast
——Historical Coastal European LCOE
10
(7.5€) 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000

Cumulative Global Wind Deployment (MW)
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Experts Generally More Optimistic for Onshore Wind than g ﬂ\
Other LCOE Forecasts, but More Cautious for Offshore '\]

BERKELEY LAB
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0%

-10%
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-30%

-40%

o Literature Derived » ~
-50% Estimates
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ALL High scenario
-60% ePmoExpert Survey:

ALL Median scenario
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ALL Low scenario
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Change in LCOE relative to 2014 baseline

-70%
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Conclusions
BERKELEY LAB

e Significant opportunities remain for LCOE reduction both onshore and

offshore, but uncertainties are large
— Planning-level assessments and decisions ought, ideally, to reflect this

 CapEx improvements are important, but by no means the only or even

dominant pathway to LCOE reductions
— Capacity factor, financing, OpEx, and project life all play important roles, with

relative importance varying by wind application
— Survey results can help identify high-level targets for R&D and policy

Historical LCOE-based learning may be good guide for future onshore
wind LCOE, but most learning estimates have instead been based on

CapEx with lower onshore learning rates of 6%-9%
e Compare to LCOE-based learning (10-19%) and survey findings (14-18%)

 Use of CapEx-based learning may explain relative conservatism of other
forecasts, and may result in understatement of cost reduction potential

If used to forecast future costs, LCOE-based learning rates should be applied
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Summary and Contact Information

ONSHORE FIXED-BOTTOM FLOATING
(LAND-BASED) OFFSHORE OFFSHORE
20% 20% 20% Note: LCOE compared against
LEVEL'ZED 2014 fixed-bottam baseline
0% 0% - 0% -
cosT $10% Jaax . I l.m, LN P
OFENERGY 0% SR 0w ars | 2% 38%
[median estimates for
median scenario & -40% -40% -A0%
1534 quartile range)
-60% -60% -60%
2010 2020 2030 2040 2050 2010 2020 2030 2040 2050 20010 2020 2030 2040 2050
DRIVERS - 5 A
FOR COST Capacity factor: +10% Capacity factor: +4% Capacity factor: +9%
REDUCTION Project life: +10% Project life: +15% Project life: +25%
IN 2030 CapEx: -12% CapEx: -14% CapEx: -5%
edlian st .
tecion senare) OpEx: -9% OpEx: -9% OpEx: -8%
WACC: no A WACC: -10% WACC: -5%
TURBINE 3.25 MW 11 MW 9 MW
SIZE IN 2030 iy
) - 115 m hub height 125 m hub height 125 m hub height
- 135 m rotor diameter 190 m rotor diameter 190 m rotor diameter
* Larger rotors, reduced specific power * Larger turbine capacity * Foundation [ support structure design
TOP-FIVE * Rotor design advancements * Foundation / support structure design  * Installation process efficiencies
IMPACT * Taller towers * Reduced financing costs * Foundation / support facturing
CATEGORIES

* Reduced financing costs
* Component durability / reliability

* Economies of scale via project size
* Component durability / reliability

* Economies of scale via project size
* Installation / transport equi

-~
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BERKELEY LAB

Ryan Wiser

Lawrence Berkeley National Laboratory

email:
rhwiser@Ibl.gov

Website:
http://emp.lbl.gov

Mailing list:
https://emp.lbl.gov/join-our-mailing-list

Twitter:
@BerkeleyLabEMP

For the full report on the survey results and a complete slide deck, see:
https://emp.lbl.gov/iea-wind-expert-survey

Article summarizing survey results published in Nature Energy:
http://rdcu.be/khRk
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