

Identifying Threats, Predicting Vulnerabilities, and Assessing the Risks

Tom Wall, Ph.D., Argonne National Laboratory

Resilience Training for States – Western Region

Presentation Outline

Uncertainty, Risks, and Vulnerability

- Introduction to Uncertainty & Risk
- Integrating Threat Information into Risk-Based Assessments
- Assessing Infrastructure Vulnerability

Climate Change Impacts

- Climate Science & Modeling 101
- Climate Impact Data Resources

Wrapping Up

Questions to Ask

Uncertainty, Risks, and Vulnerability

Uncertainty

- "...any departure from the unachievable ideal of complete determinism." Walker et al. (2003)
- Randomness in events (aleatoric uncertainty)
- Limited knowledge (epistemic uncertainty)

Images: unsplash.com

Risk

Historical definition:

...derives from random adverse events with probabilities of occurrence that can be statistically calculated.

~Knight, 1921 (paraphrased)

- This suggests that risk can be viewed as a subset of uncertainty that can be quantified by statistical probability
- Modern definition:
 - "...a measure of the probability and severity of adverse effects" from some event. ~Lowrance,1976, in Haimes, 2004
 - Risk is a function of (1) the likelihood (i.e., probability) of an event's occurrence, and (2) the consequences of that event.

- Quantitative approaches to risk & uncertainty
 - Risk = Likelihood X Consequence
 - Easiest to do when likelihood can be statistically quantified...
 - ...and/or consequences can be quantified
 - E.g., Risk = 10% probability X \$1M in losses
 - Frequently incorporated into engineering design standards
- Qualitative approaches to risk & uncertainty
 - Risk matrices
 - Scenario analysis (can also be used in quantitative analysis)

		Impact					
		Catastrophic	Major	Moderate	Minor		
	Very Likely	High	High	Med	Med		
Likelihood	Likely	High	High	Med	Low		
	Medium	High	Med	Med	Low		
	Unlikely	Med	Med	Low	Low		
	Very Unlikely	Med	Med	Low	Low		

Functional Classification	Allowable Backwater, Annual EP	Roadway Serviceability, Annual EP	Service- ability Freeboard *	Bridge, Allowable Velocity, Annual EP	Culvert, Allowable Velocity, Annual EP
Freeway	1%	1%	2 ft	1%	2%
Ramp	1%	1%	0 ft	1%	2%
Non-Freeway, 4 or More Lanes	1%	1%	2 ft	1%	2%
Two-Lane Facility, AADT > 3000	1%	1%	1 ft	1%	2%
Two-Lane Facility, 1000 < AADT ≤ 3000	1%	4%	0 ft	1%	4%
Two-Lane Facility, AADT ≤ 1000	1%	10%	0 ft	1%	10%
Drive	1%	10%	0 ft	1%	10%

⁴ Required serviceability freeboard is based on the difference between the edge-of-pavement and the structure-headwater elevations throughout the floodplain or watershed. Roadway serviceability should consider backwater effects from a larger downstream waterway.

DESIGN-STORM FREQUENCY FOR BRIDGE OR CULVERT

Source: (Indiana Department of Transportation, 2013

Systematically Thinking About Risk

- ISO 31000:2018 "Risk Management Guidelines"
- Risk Assessment
 - 1. Risk Identification Find, recognize and describe risks
 - 2. Risk Analysis Model, quantify, measure level of risk
 - Risk Evaluation Prioritize; compare with the established risk criteria to determine what actions, if any at all

7

Integrating Threat Information into Risk-Based Assessments (1)

Infrastructure Risk – Catastrophe Model

How does threat and hazard information fit into the construct of risk?

Integrating Threat Information into Risk-Based Assessments (2)

Probabilistic vs. Deterministic Hazard Information

- Likelihood or probability based threat information
- Deterministic/scenario-based threat information

Example

Probability: Return intervals (e.g., flooding, storms, etc.)

T = N/n

Recurrence interval (**T**) is the number of years in record (**N**), divided by number of events (**n**)

Image: https://serc.carleton.edu/hydromodules/steps/168500.html; Argonne National Laboratory

Integrating Threat Information into Risk-Based Assessments (3)

Probabilistic vs. Deterministic Hazard Information

- Likelihood or probability based threat information
- Deterministic/scenario-based threat information

Example

Scenario: Earthquake planning scenarios

-- Earthquake Planning Scenario --ShakeMap for Mount Angel fault - Median ground motions Scenario Scenario Date: May 12, 2017 02:14:08 PM MDT M 6.8 N45.04 W122.64 Depth: 9.0km

-- Earthquake Planning Scenario --ShakeMap for Portland Hills fault - Median ground motions Scenario Scenario Date: May 12, 2017 02:14:08 PM MDT M 7.0 N45.52 W122.79 Depth: 9.0km

PERCEIVED	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL INTENSITY	1	11-111	IV	V	VI	VII	VIII	IX	X+

Light

12

9.6

VI

Strong Very strong

Moderate

22

20

VII

Severe

Mod /Heavy

40

41

Violent

Heavy

75

86

Extrem

Very Hear

>139

>178

Not felt

попе

<0.05

<0.02

1

PEAK ACC.(%g)

PEAK VEL.(cm/s)

INTENSITY

Weak

попе

0.3

0.1

11-111

Light

none

2.8

1.4

Moderate

Very light

6.2

4.7

Integrating Threat Information into Risk-Based Assessments (4)

Probabilistic vs. Deterministic Hazard Information

- Likelihood or probability based threat information
- Deterministic/scenario-based threat information

Hybrid Approach – Ensemble Scenarios

Key feature of techniques like Robust
 Decisionmaking (RDM)

11

 Examining large numbers of scenarios moves
 toward a more comprehensive characterization of hazard impacts, or risk

The Importance of Place-Based Information & Data

Source: Grossi and Kunreuther (2005)

The Importance of Place-Based Information & Data

Image: https://storymaps.arcgis.com/stones/e45fb304d10b4917b6adb0d5bf11dac5; adapted from: https://resilientconnecticut.uconn.edu/wp-content/uploads/sites/2761/2021/10/CCVI-Fact-Sheet-2.pdf

The Important Role of GIS and Mapping Tools

- Exposure: the *degree* to which an asset or facility will be subjected to a certain type of hazard, threat or impact
- ► Hazard severity is extremely place-based, and depending on the type of hazard, may vary widely across regions

14

Images: Argonne National Laboratory

The Important Role of GIS and Mapping Tools

- Exposure: the *degree* to which an asset or facility will be subjected to a certain type of hazard, threat or impact
- Hazard severity is extremely place-based, and depending on the type of hazard, may vary widely across regions

Recall: Per ISO31000:2018, risk analysis concerns modeling, quantifying, or measuring level of risk

15

Infrastructure Sensitivity Information

16

Image: https://storymaps.arcgis.com/stories/e45fb304d10b4917b6adb0d5bf11dac5; adapted from: https://resilientconnecticut.uconn.edu/wp-content/uploads/sites/2761/2021/10/CCVI-Fact-Sheet-2.pdf

Infrastructure Sensitivity Information

- Sensitivity: the *degree* to which built, natural, or human systems will be affected by a change or impact
- Not all assets or facilities, even if they are co-located, will be equally affected by an impact

Infrastructure Sensitivity Information

- Sensitivity: the *degree* to which built, natural, or human systems will be affected by a change or impact
- Not all assets or facilities, even if they are co-located, will be equally affected by an impact
- Fragility curves or response curves are a commonly used way to assess asset sensitivity to an impact

Vulnerability

Loss

Source: Grossi and Kunreuther (2005)

Hazard

Inventory

Infrastructure Adaptive Capacity

19

Image: https://storymaps.arcgis.com/stories/e45fb304d10b4917b6adb0d5bf11dac5; adapted from: https://resilientconnecticut.uconn.edu/wp-content/uploads/sites/2761/2021/10/CCVI-Fact-Sheet-2.pdf

Infrastructure Adaptive Capacity

Adaptive Capacity: the *ability* of a system to adjust to changes, manage damages, take advantage of opportunities, or cope with consequences

Infrastructure Adaptive Capacity

- Adaptive Capacity: the *ability* of a system to adjust to changes, manage damages, take advantage of opportunities, or cope with consequences
- ► This is not exclusively an engineering challenge/solution; concerns operations, emergency response, others solutions

Thinking About Vulnerability and Risk through the Lens of Resiliency

RESILIENCE

The ability to **prepare** for and **adapt** to changing conditions and **withstand** and **recover** rapidly from disruptions.

Source: The White House, PPD-21

Thinking About Vulnerability and Risk through the Lens of Resiliency

Climate Change Impacts

Greenhouse Gas (GHG) Emission Scenarios

- Plausible future scenarios for atmospheric greenhouse gas concentrations, and the pathways to get there
 - Current Generation: Shared Socioeconomic Pathway (SSP)
 - Prior Generation: Representative Concentration Pathway (RCP)
- No probabilistic likelihood is assigned to any individual scenario

(a) Global surface temperature change relative to 1850–1900

Images: https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers

Global Climate Models

Mathematical representations of the climate system based on physical laws and understanding of processes

Global Climate Models

27

- > As computing resources have improved over time, models have become increasingly complex and more detailed
- Smaller grid squares or "pixel sizes" enable more place-specific and detailed projections of locally relevant climate

Downscaling Techniques to Increase Model Resolution

- Statistical Downscaling: A statistical relationship is developed between historical observed climate data and the output of a global climate model that has been run for the same historical period. That historically-based statistical relationship is then applied to forwardlooking global climate model projections to develop higher-resolution future climate data. Essential for statistical downscaling is the availability of local weather data.
- Dynamical Downscaling: A higher resolution regional climate model (RCM) uses lower resolution climate models as boundary conditions and physical principles to reproduce local climate. Essential for dynamical downscaling is the availability of large computing resources.

Example: Dynamical downscaling at Argonne National Laboratory

- From coarse resolution (100-200km) to high resolution, community-level data (12km)
- Physics-based models that incorporate local geography & features (e.g., mountains, waterbodies)
- Downscaled data from three different global climate models
- Two GHG emission pathways: RCP8.5 (high emissions) + RCP4.5 (mid-century peak)
- Three timeframes: historical (1995-2004), mid-century (2045-2054), and end-of-century (2085-2094)
- Scientific transparency: widely published and peer reviewed modeling and outcomes

29

Example: Dynamical downscaling at Argonne National Laboratory

- From coarse resolution (100-200km) to high resolution, community-level data (12km)
- Physics-based models that incorporate local geography & features (e.g., mountains, waterbodies)
- Downscaled data from three different global climate models
- Two GHG emission pathways: RCP8.5 (high emissions) + RCP4.5 (mid-century peak)
- Three timeframes: historical (1995-2004), mid-century (2045-2054), and end-of-century (2085-2094)
- Scientific transparency: widely published and peer reviewed modeling and outcomes

30

Climate Impact Data Resources

- Climate Risk and Resilience Portal (ClimRR) Argonne National Laboratory, Federal Emergency Management Agency, DOE Grid Deployment Office, AT&T
- https://climrr.anl.gov

Choose a Point on the Map to Generate local climate projections. The walk through how to use the tool by clicking through the steps below:

National Map Explorer Data Catalog Learn 🛩 About 🐱

CLIMATE RESILIENCE AND DECISION SCIENCE

🚔 AT&T 🍘 GDO 📚 FEMA

Climate Impact Data Resources

Climate Mapping for Resilience and Adaptation (CMRA) Assessment Tool - NOAA, Esri

https://livingatlas.arcgis.com/assessment-tool/home (find at https://resilience.climate.gov)

Climate Impact Data Resources

- Cal-Adapt California Energy Commission, California Strategic Growth Council, UC-Berkeley
- https://cal-adapt.org

Risk-Based Climate Vulnerability Assessments

How is Climate Change Affecting the Electric Grid?

- Literature review of academic and industry studies
- https://www.osti.gov/biblio/1900595

Asset Type	Hazards	Effect	References ⁸
	Cold	Freeze expansion (concrete)	[21]
	Wind	Toppling, debris fall	[2]
Distribution Dolos	Flooding	Toppling, maintenance route closure	[2]
Distribution Poles	Stream Flow	Earth destabilization, toppling	[4]
	Ice	Toppling, debris fall, freeze expansion	[21]
	Overgrowth	Debris fall, maintenance interference	[22]
	Heat	Self-islanding, overloading, battery derating	[23]
DED- (COLAD)	Cold	Self-islanding, overloading, photovoltaic (PV) icing	[23]
DERs (SOLAR), Community Microgrid	Wind	Debris fall, unseating/destruction	[23]
	Flooding	Destruction, grounding	[23]
	Humidity	HVAC demand (depletion)	[15], [17], [18]
	Ice	PV and battery icing, maintenance prevention	[23]

Risk-Based Climate Vulnerability Assessments

How is Climate Change Affecting the Electric Grid?

- Literature review of academic and industry studies
- https://www.osti.gov/biblio/1900595

Asset Type	Hazards	Effect	References ⁵
	Heat	Sagging, ampacity derating	[7], [8]
	Humidity	Insulation derating, flashover	[2], [3]
.	Wind	Cross-whipping, snapping, grounding	[7]
Transmission		contact	
Lines	Ice	Snapping, flashover faults	[9], [10]
	Flooding	Buried asset damage	[11]
	Overgrowth	Debris fall, arcing contact	[12]
	Wind	Toppling	[2]
Transmission	Flooding	Maintenance route closure	[13]
Structures	Ice	Toppling	[25], [10]
	Stream Flow	Earth destabilization (on embankments)	[4]
	Heat	Derating, loss of asset life, overloading	[14], [15]
	Humidity	Insulation derating, loss of asset life,	[16], [15],
Transformers		heating, ventilation, and air-conditioning (HVAC) demand	[17], [18]
	Flooding	Destruction, faulting	[19]
	Cold	Overloading, HVAC demand	[15]
Switchgoor	Cold	Freezing, gas pressure loss	[20]
Switchgear	Ice	Freezing	[20]
Other Substation	Humidity	Grounding impedance, HVAC demand	[2], [15], [17], [18]
Assets	Heat	Overloading	[15]
	Flooding	Destruction, maintenance route closure	[2], [19]
	Wind	Cross-whipping, snapping, grounding contact	[7]
	Heat	Sagging, ampacity derating, overloading	[6]
	Ice	Snapping, debris fall	[10]
Distribution Lines	Overgrowth	Debris fall, arcing contact	[12]
	Flooding	Buried asset damage, maintenance route closure	[11]
	Humidity	Insulator derating, HVAC demand	[2], [15], [17], [18]

Risk-Based Climate Vulnerability Assessments

How is Climate Change Affecting the Electric Grid?

- Literature review of academic and industry studies
- https://www.osti.gov/biblio/1900595

Asset Type	Hazards	Effect	References ²
	Cold	Supply pressure collapse	[1]
	Ice	Supply pressure collapse, fuel leak	[1]
Gas Lines	Flooding	Destruction	[2]
	Fire	Destruction, ignition	
	Stream Flow	Earth destabilization (on banks), destruction at crossing	[4]
	Cold	Water supply icing, equipment freeze	[24], [1]
	Heat	Cooling water shortage, cooling water inefficacy, ambient cooling impacts	[5]
	Ice	Structural damage, water supply icing	[24]
Generation	Wind	Structural damage, hydroelectric overflow	[24], [6]
	Stream Flow	Water supply overflow	[24]
	Flooding	structural damage, maintenance route closure	[25]

- A California Energy Commission study found that capacity of natural gas combined-cycle power plants decreases by 0.3-0.5 percent for each 1C increase above a reference temperature of 15C (59F)
- Power transformer average power output decreases 0.7% to 1% per 1C increase in air temperature, above a reference temperature (usually 20C, or 68F) (Source: Allen-Dumas et al. 2019)

Wrapping Up

Questions to Ask

Questions to set that set the stage for understanding how utilities are assessing climate impacts and risks

- Scope, context, criteria
 - What GHG emission/concentration scenarios form basis of the assessment? RCP/SSP8.5? RCP/SSP4.5?
 - What is your assessment timeframe? Mid-century? End-of-century?
 - What models and data will you use? A single model? A multiple model ensemble?
 - How can the state ensure consistency across multiple utilities' assessments?
- Risk Identification
 - What are the climate impacts of greatest concern and why? (This will be different by region/location)
 - What aspects of these impacts are of greatest concern? Averages?
 Extremes? Highs/lows? How does emission scenario affect this?
 - Does the assessment examine chronic (reliability) problems as well
- **38** as catastrophic (resiliency) problems?

Image: https://www.iso.org/obp/ui/#iso:std:iso:31000:ed-2:v1:en

Questions to Ask

- Risk Analysis
 - How are risks different according to various climate impacts and asset/equipment/facility types?
 - What are critical planning/operational thresholds?
 - Are there gaps in climate data/information that prevent certain risk analyses? Are there work-around solutions?
- Risk Evaluation
 - How will you determine risk levels and compare/prioritize?
 - What metrics and criteria will you use to assess risk?
 - Disruption time?
 - Economic impacts? Capital, customer, etc.?
 - How will you identify and prioritize risk treatments?
 - How will you reconcile/align climate impact risks with other risks and opportunities? Transition risk? Asset management? Decarbonization?

Contact

https://www.energy.gov/gdo/grid-deployment-

office

Tom Wall, Ph.D. twall@anl.gov

References

- Allen-Dumas, Melissa R., Binita K.C., and Colin I Cunliff (2019). "Extreme Weather and Climate Vulnerabilities of the Electric Grid: A summary of Environmental Sensitivity Quantification Methods." Oak Ridge National Laboratory., Oak Ridge, T.N. Report No. ORNL/TM-2019-1252
- Copernicus.EU (Undated). "What is Statistical and Dynamical downscaling?" European Union Space Programme, Prague, Czech Republic. https://climate.copernicus.eu/sites/default/files/2021-01/infosheet8.pdf, Accessed 11/12/2023
- ▶ Grossi, P., and Kunreuther, H. (2005). "Catastrophe Modeling: A New Approach to Managing Risk." Springer, New York, NY.
- ▶ Haimes, Y. Y. (2004). *Risk Modeling, Assessment, and Management*, John Wiley & Sons, Inc., Hoboken, NJ.
- Huang, Liping & Cun, Xin & Wang, Yifei & Lai, Chun Sing & Lai, Loi Lei & Tang, Junxi & Zhong, Bang. (2018). Resilience-Constrained Economic Dispatch for Blackout Prevention. IFAC-PapersOnLine. 51. 450-455. 10.1016/j.ifacol.2018.11.744.
- ▶ Indiana Department of Transportation (2013). "Indiana Department of Transportation 2013 Design Manual," IDOT, Indianapolis, IN
- International Organization for Standardization (2018). "Risk Management Guidelines ISO 31000:2018." International Organization for Standardization, Geneva.
- ▶ Knight, F. H. (1921). *Risk, Uncertainty, and Profit*, Houghton Mifflin Co., Boston, MA.
- ▶ Lowrance, W. W. (1976). Of acceptable risk: science and the determination of safety, W. Kaufmann, Los Altos, CA.
- MacArthur, J., Mote, P., Ideker, J., Figliozzi, M., and Lee, M. (2012). "Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska." Oregon Transportation Research and Education Consortium & Washington State DOT, Olympia, WA.
- Madson, Katherine & Franz, Bryan & Leicht, Robert. (2017). Framework for assessing resilience in the communication networks of AEC Teams.
- Walker, W., Harremoes, P., Rotmans, J., Sluijs, J. P. V. D., Asselt, M. B. A. V., Janssen, P., and Krauss, M. P. K. V. (2003). "Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support." *Integrated Assessment*, 4(1), 5-17.
- The White House (2013). "Presidential Policy Directive 21: Critical Infrastructure Security and Resilience (PPD-21)" Washington, DC. Feb. 12, 2013

Thank You

