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ABSTRACT 

In many countries, the fan pressurization method is the most frequently chosen approach for 
measuring the air leakage of houses. The measurements are usually performed at pressures that 
far exceed pressures to which buildings are exposed to under normal conditions. A fit of these 
tests to the power-law formulation allows an extrapolation to data points outside the measured 
pressure range. With the Ordinary Least Square (OLS) fitting method, the pressure exponent and 
flow coefficient can be determined. However, the measurement results are highly sensitive to 
uncertainties induced by external factors like changing wind conditions during the tests, which is 
neglected by OLS. This may lead to errors in the prediction of flows at lower pressures. The 
Weighted Line of Organic Correlation (WLOC) is an alternative approach and takes 
measurement uncertainty into account.  In this paper, a statistical analysis of an extensive data 
set of pressurization measurements has been performed. Both regression techniques have been 
compared for almost 7500 fan pressurization measurements of six houses in 109 different house 
leak configurations. The variability in predicting pressure exponent and flow coefficient for both 
WLOC and OLS regression was analyzed using probability density functions. It was found that 
the Weighted Line of Organic Correlation significantly decreases the uncertainty in predicting 
pressure exponent, flow coefficient, and other low-pressure air leakage metrics compared to the 
Ordinary Least Square fitting. The authors highly recommend the implementation of WLOC in 
current measurement standards and test equipment. 
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1. INTRODUCTION  

According to the International Energy Agency [1], the residential and non-residential buildings 
together accounted for 30 % of the global final energy use and 28 % of energy-related CO2 
emissions in 2018. In addition to the industry (32 %) and the transport sector (28 %), buildings 
are, therefore, a key to the viability of current climate goals. Globally, space heating is the 
primary source of energy consumption in the building sector, and space cooling is one of the 
fastest-growing sources. The uncontrolled airflow through the building envelope contributes 
significantly to this increased consumption of heating and cooling energy [2–4]. In addition to 
rising costs for homeowners and higher greenhouse gas emissions, this can lead to an impairment 
of indoor air quality [5], can significantly affect the performance of existing ventilation systems 
[6] or may cause construction damages through mold formation inside walls [7,8]. 
The airtightness of building envelopes is typically ascertained by the fan pressurization method 
(“blower-door test”), which is specified in various standards like ASTM E779 [9], 
DIN EN ISO 9972 [10] or CAN/CGSB 149.10 [11]. A pressure difference is applied across the 
building envelope with a fan, which moves air in (pressurization) and out (depressurization) of a 
building. Typically, the airflow through the fan is determined by the pressure difference across a 
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previously calibrated orifice. The pressure difference and the respective airflow through the fan 
are recorded at several pressure differences.  
The pressure range across the envelope during the measurements dramatically exceeds the 
pressures leaks in a building are exposed to under normal operation. At these higher pressure 
differences, relative impacts due to ambient disturbances (like wind) and uncertainty of the 
measurement devices are usually lower. However, a subsequent interpolation of the measured 
pressures and an extrapolation to low pressure where natural infiltration occurs may contain a 
significant uncertainty [12]. Therefore, the most precise measurements at high pressure are the 
least accurate ones [13,14]. The determination of infiltration at low pressures (< 4 Pa) may not be 
interesting to fulfill energy performance standards (e.g., passive house) or used in building 
standards to compare the relative airtightness of different buildings, but is essential for building 
energy calculations [15] or indoor air quality assessments [16]. Although measurement 
uncertainties may significantly influence the prediction of airflow rates at low pressures, the 
current standards do not necessitate the acquisition of uncertainties of the measured values. 
The importance of the consideration of uncertainties in fan pressurization measurement was 
already discussed by Persily et al. [17] in 1985 and Herrlin et al. in 1988 [18]. Geissler 
performed simulations about the estimation of errors of blower door measurements [19]. 
Sherman et al. [20] analyzed in 1995 the errors of extrapolation to low pressures using the 
Ordinary Least Square (OLS) regression method. Recent studies also confirmed that the 
uncertainty of fan pressurization measurements could not be neglected [21]. Furthermore, 
Carrié et al. [22] recently highlighted, in particular, the influence of wind fluctuations and 
frequency on the uncertainty of building airtightness pressurization tests. 
In addition to the conventionally used OLS regression method,  Delmotte et al. [23] discussed in 
2011 the applicability of a weighted least square regression, and Okuyama et al. [24] introduced 
in 2012 an Iterative Weighted Least Square (IWLS) regression approach. In 2017, Delmotte [25] 
suggested the Weighted Line of Organic Correlation (WLOC) as an improved non-iterative 
regressing method, which takes measurement uncertainties into account. 
In this work, the OLS and WLOC regression methods are applied to a large dataset of almost 
7500 blower-door measurements in six different single-story, single-family houses. The goal was 
to identify the uncertainties in the prediction of the pressure exponent and flow coefficient of the 
power-law using both regression techniques. In addition to the work done by Prignon et al. 
[26,27], this work investigates a statistical analysis of a larger data set of blower door 
measurements. 
 

2. METHODOLOGY 

2.1. Test Site and Measurement Equipment 

In this paper, a data set of fan pressurization measurements is used, which was recorded at the 
Alberta Home Research Facility (AHHRF). This facility consists of six unoccupied houses, 
which are each of different construction. These houses were located south of Edmonton, Alberta, 
Canada, and were used to test different heating and ventilation strategies. Each of these six 
houses is a single-story construction with a floor area of 6.7 m by 7.3 m, a wall height of 2.4 m, 
and a full basement. For more detailed information about this test facility and data source, see 
[14] and [28]. 
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Repeated fan pressurization measurements have been performed at each of these six houses. 
These repetitions allow an investigation of how external factors (like the presence and strength of 
wind) may affect the measurement results when the building construction and, therefore, the 
airtightness remain constant. All tests were automated, which prevents additional uncertainties 
due to equipment installation and operator errors, and enables the recording of a large data set. A 
total of almost 7500 fan pressurization tests have been performed, where each test contains 
between 20 and 100 measurements of pressure difference and airflow rate, which enables to 
obtain a complete flow-pressure difference characteristic for each test. The covered pressure 
range lies between 1 and 100 Pa, for both pressurization and depressurization, which is a broader 
range than required by the ASTM E779 [9] or DIN EN ISO 9972 [10] standard. 
The houses were operated in 109 different test configurations, e.g., pressurization and 
depressurization tests, open and closed flues, windows, or passive vents. Prior to this analysis, 
the data set was filtered to remove erroneous files, where, e.g., no standard deviation or offset 
pressure was recorded. This filtering results in 7402 sets of measurements from the original 7500 
sets being selected for this study. 
Because wind (and stack) pressures vary over the building envelope, the testing procedure would 
ideally measure the indoor-outdoor pressure difference at each leak location. However, this 
approach is impractical. For this study, indoor-outdoor pressure differences were taken from 
pressure taps on each wall of the test building connected to a pressure averaging manifold. This 
averaging of multiple pressure taps was intended to reduce uncertainties and biases due to wind 
speed and direction [29] and follows the guidance in standardized testing [9]. Despite the use of 
multiple pressure taps, we still expect some test uncertainty due to varying wind direction during 
a test. Wind direction was measured during these tests, but the additional analysis of wind 
direction effects is beyond the scope of this paper, and we note that wind direction effects will 
also scale with wind speed, with the effect of wind direction variability being more significant at 
higher wind speeds. 
In most field measurements, only one pressure tap is used to record outside pressure data and 
may result in higher sensitivities than presented here. Each measured envelope pressure 
consisted of about 150 individual measurements over a period of 15 seconds. The mean and 
standard deviations of the pressure measurements at each station are recorded. These standard 
deviations are used as an uncertainty estimate for each pressure station and are an essential input 
to the WLOC analysis. 
In contrast to the required measurement procedure in most standards, where offset pressures have 
to be recorded at the beginning and end of each measurement series, for this study, every 
pressure difference data point has been corrected by a reference pressure at zero flow rate for this 
point in this analysis. For this purpose, a damper closed the fan opening for each offset pressure 
measurement because this opening may affect the pressure distribution throughout the building. 
The airflow rates Q (in m³/h) were measured using a laminar element flowmeter, which was 
connected to the outside with a flexible duct. All flow rates were corrected with indoor and 
outdoor air temperatures according to the ASTM E779 [9] standard. As with the pressure 
difference measurements, the air flows were taken over a period of 15 seconds, at a sampling rate 
of about ten samples per second. From the pressure measurements across the laminar element 
flowmeter, both the mean ΔPflowmeter (in Pa) and standard deviation (σΔP flowmeter) were recorded. 
Due to the linear behavior of the flowmeter, the respective standard deviation of the airflow (σQ) 
was determined by the following equation: 
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σ" = σ∆%	'()*+,-,. ∙
𝑄

∆𝑃'()*+,-,.
																																																																								(1) 

In this data set, a wide range of weather conditions are covered with outside temperatures 
between –40°C and +30°C and wind speeds of up to 10 m/s. The wind speed, wind direction, and 
ambient temperature data were gathered from a meteorological station next to the test site.  
 

2.2. Regression Methods 

In the past, there were several approaches [30–32] to predict the relationship between the airflow 
rate Q and the pressure difference ΔP (in Pa) across the building envelope. The current 
formulation in all measurement standards is the power-law relationship [33]: 
𝑄	 = 𝐶∆𝑃6																																																																																																																		(2)  
C (in m³/(h·Pan)) is the flow coefficient, which can be a measure of the overall leakage size, and 
n is the pressure exponent, which characterizes the leakage shape [34]. The flow exponent is 
limited to values between 0.5 (turbulent flow) and 1.0 (laminar flow) but is typically in the 
vicinity of 2/3 [33]. This formulation is a reasonable model to describe the airflow through a 
network of cracks that can vary in size and shape in a building envelope. 
For the determination of flow coefficient and pressure exponent, this power-law needs to be 
transformed to its linear form by expressing both sides of Eq. (2) for each measured value as 
logarithms: 

ln(𝑄) = ln(𝐶) + n ∙ ln(∆𝑃)																																																																																		(3) 
A regression is applied to this linear form of the power law, where n is the slope, and ln(C) is the 
intercept of this regression. In the following paragraphs, the OLS and the WLOC regression 
techniques, which are compared in this study, are introduced. 
 
Ordinary Least Square Method 
In current standards [9, 10], the Ordinary Least Square (OLS) method is used for determining the 
flow coefficient C and pressure exponent n. The OLS method minimizes the residuals, which are 
geometrically the distances in the y-direction between the fitted line and the measured values 
[35]. In this case,	𝑥= = ln(∆𝑃=) is the independent and 𝑦= = ln(𝑄=) is the dependent variable 
(with 1 ≤ i ≤ N). The pressure exponent and flow coefficient of the power-law formulation 
(cf. Eq. (2)) can directly be determined using following formulas: 

𝑛 =
∑ A𝑥= − ∑

𝑥=
𝑁

D
=EF G A𝑦= − ∑

𝑦=
𝑁

D
=EF GD

=EF

∑ A𝑥= − ∑
𝑥=
𝑁

D
=EF G

H
D
=EF

																																																													(4)	

𝐶 = 𝑒𝑥𝑝LM
𝑦=
𝑁

D

=EF

− 𝑛 ∙M
𝑥=
𝑁

D

=EF

N																																																																															(5) 

Here, the assumption is made that values in the y-direction are equally uncertain, and the 
uncertainties in the x-direction, which correspond to the pressure difference measurements, are 
not taken into account [36]. These assumptions are, however, not valid for measurements in real 
buildings. Imperfect knowledge of the uncertainties may lead to a shifting and rotation of the 
linear regression line of the power-law. The fractional error is usually more significant for lower 
pressure points (e.g., 4 or 10 Pa) than for higher pressure points and may lead, therefore, to 
uncertain predictions of flows at these pressures [25]. 
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Weighted Line of Organic Correlation 
In contrast to OLS, the Weighted Line of Organic Correlation (WLOC) minimizes the sum of the 
product of the measured values and the weighted horizontal as well as vertical differences and 
the predicted line [25]. Consequently, measurement points with higher uncertainty are less 
significant in the calculation of the regression line. This is an important characteristic, mainly if 
airflows at low pressures shall be predicted. Unlike the Iterative Weighted Least Square (IWLS) 
regression approach [24], pressure exponent and flow coefficient can be calculated without 
iteration: 

𝑛 =
P∑ 𝑣=𝑤=D

=EF ∑ 𝑣=𝑤=𝑦=H − (∑ 𝑣=𝑤=D
=EF 𝑦=)HD

=EF

P∑ 𝑣=𝑤=D
=EF ∑ 𝑣=𝑤=𝑥=H − (∑ 𝑣=𝑤=D

=EF 𝑥=)HD
=EF

																																														(6) 

𝐶 = expW
∑ 𝑣=𝑤=D
=EF 𝑦= − 𝑛 ∙ ∑ 𝑣=𝑤=D

=EF 𝑥=
∑ 𝑣=𝑤=D
=EF

X																																																							(7) 

 
In Eq. (6) and (7), vi and wi are the weights of each measurement point xi and yi. These weights 
are defined by Delmotte [25] as the reciprocal value of the measured standard deviation at each 
pressure level: 

𝑣= =
1

𝜎(𝑥=)
																																																																																																																	(8) 

𝑤= =
1

𝜎(𝑦=)
																																																																																																																(9) 

Thus, lower variability in the measured data gives it more significant weight in the analysis, and 
therefore, these points are more important in the fitting. 
In Figure 1, an example of a typical blower-door measurement with twelve different pressure 
differences and their corresponding airflow rates is shown. This specific example is just one out 
of the 7402 considered measurement series in this work in order to demonstrate the difference 
between the fitting of OLS and WLOC (a depressurization test of a masonry structure with an 
open 150 mm diameter furnace flue). The measured standard deviations for each point are 
displayed as well. For the same measurement series, both previously described regression 
methods are applied, and the resulting power-law functions are plotted on a linear scale. The 
Ordinary Least Square fitting (blue line) tries to find an appropriate fit for all pressure 
differences equally. In contrast, the Weighted Line of Organic Correlation (red line) considerably 
improves the fit for data points with low measurement uncertainty. Data with more significant 
errors are less important in the fitting. In this specific case, WLOC shows a significantly better 
fitting for measurement data points in particular above 25 Pa pressure difference. 
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FIG. 1  Linear display of a comparison between OLS and WLOC fitting technique for one 
blower-door measurement series 
 
2.3. Probability Density Functions 

To determine the potential improvement using WLOC, we took the results for each of the 109 
configurations and looked at the distribution of calculated n and C for both WLOC and OLS for 
multiple measurements. This comparison was achieved by the analysis of Probability Density 
Functions (PDFs) for each individual leakage configuration. The area under the PDF curve 
between two points equals the probability of getting a value between these two points. Therefore, 
not the value of the function is essential but the integral. Here, the PDFs were calculated using 
the Kernel Density Estimation (KDE) algorithm, which allows estimating an unknown 
continuous density function from a set of N discrete 1D data samples xs,i, with 1 ≤ i ≤ N [37]. The 
use of KDE has a significant advantage of directly evaluating the data without previously 
applying a model onto it [38]. In contrast to the commonly used histogram as an estimation of a 
datasets density, the shape of the kernel density estimation is continuous and seems to be a 
reasonable estimation of the “true” PDF [39]. According to Sheather [40], the bias of kernel 
density estimation is one order better compared to a histogram estimator.  
The approximated PDF fh_(𝑥`) was computed as (cf. [41]): 

𝑓b_ (𝑥`) =
1

𝑁 ∙ ℎM𝐾 A
𝑥` − 𝑥`,=

ℎ G
D

=EF

																																																																							(10) 

Each observed sample is first replaced with a uniform kernel K, which is here based on the 
normal Gaussian distribution, which is the most frequently used kernel [39]: 

𝐾(𝑥) =
1
√2𝜋

𝑒i
jk
H 																																																																																																	(11) 
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A summation of these curves and a subsequent normalization to obtain an area of 1 under the 
final curve, leads to an approximated PDF. The parameter h in Eq. (10) is the bandwidth, which 
adjusts the smoothness of the PDF and is calculated as recommended by Silverman [38]:  

ℎ = 1.06 ∙ 𝜎 ∙ 𝑁iFm																																																																																																(12) 
The narrower the distribution of the results (i.e., lower variance), the less sensitive the analysis is 
to experimental variation (primary from wind), and the lower the uncertainty is for any given test 
in predicting the correct leakage. 
 
3. RESULTS AND DISCUSSION 

Results are presented here in terms of PDFs of predictions of pressure exponent n and flow 
coefficient C for different leak configuration. We also examined the variability in other metrics 
that are commonly used: the building envelope flow and the equivalent leakage area at both 4 
and 10 Pa reference pressures. 
 
3.1. Pressure Exponent and Flow Coefficient 

The PDFs were calculated for all 109 configurations. We provide example figures for illustration 
purposes. Each example is for one single leak configuration. The small vertical lines next to the 
x-Axis indicate the predicted values of n and C for a complete series of measurements using the 
OLS (blue line) and WLOC (red line) regression method, respectively. The global maximum of 
the PDFs can be interpreted as the mode and is here the expected true value of n and C for the 
respective data set and regression technique. 
 
The results were broken down into five different fundamental cases: 

1. Equal expected values and higher variances for OLS: 

In this case, both regression methods predict approximately the same values of n and C, but the 
PDFs of the OLS regression have a significantly higher variance. An example is shown in 
Figure 2. In this specific configuration, the OLS regression method predicts the pressure 
exponent values over a broad range, here between 0.55 and 0.78. The distribution of calculated 
pressure exponent values using the WLOC regression method is here limited between 0.57 and 
0.69. Even though the highest density of calculated pressure exponents and flow coefficients for 
both regression methods has roughly the same value (𝑛 = 0.6), the probability of getting close to 
this value with one single measurement, which is often done in field testing, is much higher 
using WLOC regression. For this specific configuration, the variance using the WLOC 
regressing technique is reduced by 67 % for the pressure exponent and by 52 % for the flow 
coefficient. 
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FIG. 2  PDF of calculation of n and C using OLS and WLOC fitting method, with a  
higher variance of OLS and approximately the same mean values 
 

2. Different expected values and higher variances for OLS: 

The estimation of the expected values differs significantly for both regression techniques. In 
addition, the PDFs of the OLS regression method have a higher variance. Most of the 
investigated leak configurations fall into this case. In the displayed configuration (see Figure 3), 
the point of the highest density of the predicted pressure exponent n differs by approximately 
0.11 (𝑛nop = 0.76, 𝑛qonr = 0.65). In most cases, a higher prediction of n simultaneously 
results in a lower prediction of C because C and n tend to be highly correlated [20]. The variance 
of n is reduced by 75 % and the variance of C by 61 % using WLOC in the displayed 
configuration. Thus, even with multiple fan pressurization measurement series, the probability of 
getting close to the correct values for n and C is challenging using OLS. 
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FIG. 3  PDF of calculation of n and C using OLS and WLOC fitting method, with a 
higher variance of OLS and different mean values 
 

3. Equal expected values and equal variances: 

In the third case, the shapes of the PDFs of pressure exponent and flow coefficient with both 
fitting methods are approximately the same. Here, both regression methods predict n and C with 
an equal probability. An example is shown in Figure 4, where	𝑛 = 0.67 for both regression 
methods. In this case, the choice of regression method is of no importance, because the 
performance of both is the same. 
 
Different expected values and equal variances: 
The shapes of the PDFs classified as case 4 are similar and, therefore, the variances are similar 
for both regression techniques. However, the expected values are considerably different (see 
Figure 5, where	𝑛nop = 0.66, 𝑛qonr = 0.61). Here, it is not clearly evident which value of n or 
C can be interpreted as the true value for this configuration. Only a few leak configurations fall 
into this category. 
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FIG. 4  PDF of calculation of n and C using OLS and WLOC fitting method, with 
approximately the same variances and the same mean values 
 

 

 

FIG. 5  PDF of calculation of n and C using OLS and WLOC fitting method, with 
approximately the same variances and different mean values 
 
Equal expected values and higher variances for WLOC: 
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This case is the opposite of case 1. Both regression methods predict values of n and C, which are 
very close to each other, but WLOC has a higher variance this time. In the example, displayed in 
Figure 6, the values for n are 𝑛nop = 0.69 and	𝑛qonr = 0.70. At leak configurations that fit in 
case 5, the WLOC regression method seems to perform worse than the OLS method. However, 
the number of configurations allocated to this case is far lower compared to the number of 
configurations in cases 1 or 2. Additionally, the number of measurements per leak configuration 
and thus, the number of data samples that were used to calculate the PDF was considerably lower 
for the configurations in case 5. Therefore, the reliability of these PDFs might be lower. 
 

 

FIG. 6  PDF of calculation of n and C using OLS and WLOC fitting method, with a 
higher variance of WLOC and approximately the same mean values 
 
There is no distinct case where the prediction of both regression curves is significantly different 
and where the variances of the PDFs of WLOC are higher. 
The effectiveness of the WLOC approach depends on how often tests fall into these different 
categories. For this data set of 7.402 sets of measurements with 109 different test configurations, 
17.4 % can be allocated to case 1, 40.5 % to case 2, 15.6 % to case 3, 7.3 % to case 4 and 12.8 % 
to case 5, which is shown in Figure 7. Only 6.4 % of the investigated tests cannot explicitly be 
allocated to one of these cases. The most popular case (case 2) has both a lower variance for 
WLOC and differences in predicted leakage parameters, C and n. This is an interesting result 
because we might have expected a lower variance for WLOC but not necessarily a change in the 
predicted value. Combining cases 2 and 4 shows that about half the tests show changes in 
predicted value between the two approaches. The example for case 5 shows that even when 
WLOC has higher variance, it is not as high as the higher variance result for OLS. In most of the 
investigated leak configurations, the variance of WLOC is lower compared to OLS, and the 
expected value is different. 
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FIG. 7  Share of each case of the total number of investigated leak configurations  
 
In 73.5 % of all investigated configurations, the WLOC regression technique that gives lower 
weighting to data with higher variability is better than or at least as good as the conventionally 
used OLS regression. Overall, the WLOC substantially reduces the variances in the test results 
on average for all 7402 tests by 32 % for pressure exponent n and by 22 % for flow coefficient 
C. 
 

3.2. Airflow Rate and Equivalent Leakage Area 

In addition to the test-to-test uncertainty, there may be biases introduced by testing at different 
wind speeds [29]. Here, the airflow rates and the equivalent leakage areas (ELAs) are shown for 
one specific example (depressurization of a masonry structure with an open 150 mm diameter 
furnace flue). This example has been chosen because it contains a large amount of 65 tests.  
The equivalent leakage area is the area of a sharp-edged hole (that has a pressure exponent of 
0.5) that has the same flow at a fixed reference pressure as the power-law formulation. The ELA4 
at a pressure of 4 Pa can be defined as followed: 

𝐸𝐿𝐴v =
𝑄v
𝐶w
x

𝜌
2∆𝑃v

																																																																																															(13) 

Here, Q4 (m³/s) is the airflow at 4 Pa pressure difference, ρ (kg/m³) is the density of air, CD is a 
fixed discharge coefficient, and ΔP4 is the reference pressure at 4 Pa. 
To better observe the sensitivity of testing bias to wind, the results of the 65 repeated tests for 
this configuration were binned every 1 m/s of wind speed. This process reveals any biases due to 
testing at different wind speeds. The results are plotted as differences between the calculated 
value (using the power-law) and a reference value. This reference value has been chosen as the 
value with the lowest corresponding wind speed in the data set and can be seen as a benchmark 
to the other measurements at higher wind speeds because the influence of wind is the smallest. 
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These reference cases at low wind speeds have also been used in previous studies, e.g., [14]. A 
good fit, and thus a reasonable estimation of airflow rates or ELAs at low pressures, is therefore 
characterized by a small difference between the estimated value and the reference value. 
For this analysis, airflow rates and ELAs at 4 and 10 Pa pressure difference have been chosen. 
Airflow rates at 4 Pa pressure differences are relevant for users because it is a typical metric for 
energy simulations [15] or indoor air quality applications [16]. The ELA at 4 Pa pressure 
difference is part of the ASTM E779 standard [9] and is at 10 Pa pressure difference part of the 
Canadian CGSB 149.10 standard [11]. 
In Figure 8, the average relative airflow rate is plotted as a function of the mean wind speed 
during the measurement, evaluated at 4 (a) and 10 Pa (b) pressure difference. For mean wind 
speeds up to 2 m/s, both regression techniques appear to be equally good. For mean winds speed 
of more than 2 m/s, the difference between the reference value and the calculated values 
increases particularly for OLS up to 6 m/s. This increase in uncertainty at higher wind speeds has 
been recognized in the DIN EN  ISO 9972 test method [10] that states that above a 
meteorological wind speed of 6 m/s it is unlikely to obtain satisfactory pressure difference 
measurements. At the last bin between 6 and 7 m/s, the OLS seems to obtain better values again 
(compared to the previous bin). However, this last bin needs to be treated with caution because it 
contains only one single measurement. All other bins include far more than one measurement 
and are therefore more reliable. 
 

 
FIG. 8  Average relative airflow rate as a function of the mean wind speed at (a) 4 Pa and 
(b) 10 Pa pressure difference binned every 1 m/s of wind speed 
 
Figure 9 shows the average relative ELAs at 4 (a) and 10 Pa (b) pressure difference. Here, the 
differences between the calculated values and the reference value increase much more with the 
mean wind speed for OLS. The vertical bars show the variability in ELA within each bin. In 
contrast to the relative airflow rate, the error of predicted ELAs seems to increase with 
decreasing pressure. The error for extrapolation up to 4 Pa is in this specific configuration for 
OLS higher than for 10 Pa. The error for WLOC seems to remain more or less the same. Again, 
the last bin contains only one value. 
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FIG. 9  Average relative equivalent leakage area as a function of the mean wind speed at 
(a) 4 Pa and (b) 10 Pa pressure difference binned every 1 m/s of wind speed 
 
In general, Figures 8 and 9 show that OLS has much higher wind-induced biases, and these 
biases toughly increase with wind speed. Even though standards (e.g., [10]) allow fan 
pressurization measurements up to 6 m/s, these findings show that the extrapolation error of OLS 
is much higher in this range compared to WLOC. 
 

4. CONCLUSION AND FUTURE WORK 

WLOC reduces the variances for pressure exponent n and flow coefficient C, typically by 
32 % and 22 %, respectively, averaged over 7402 fan pressurization tests. Therefore, the use of 
this analysis technique is encouraged and should be adopted by building test standards. One 
caveat is that each pressure station needs to record the uncertainty (variance or standards 
deviation) at each point in addition to the mean. Given modern test equipment and test 
automation, this should not be too much of a barrier. Work will be required with test equipment 
manufacturers to incorporate the recording of these data, together with the calculation procedures 
for WLOC. 
 

5. NOMENCLATURE 

Abbreviations 
AHHRF Alberta Home Research Facility 
ELA  Equivalent Leakage Area 
IWLS  Iterative Weighted Least Square 
KDE  Kernel Density Estimation 
OLS  Ordinary Least Square  
PDF  Probability Density Function 
WLOC  Weighted Line of Organic Correlation 
Latin Symbols 
C  Flow coefficient [m³/(h·Pan)] 
CD  Discharge coefficient [-] 
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fh_(𝑥`)  Density function which approximated the probability density function 
N  Number of measurement points 
n  Pressure exponent [-] 
P  Pressure [Pa] 
Q  Airflow [m³/h] 
u  Wind speed [m/s] 
vi  Weight of the x-value 
wi  Weight of the y-value 
xi  Measurement coordinate which corresponds to ln(∆𝑃=) 
xs  Data samples 
yi  Measurement coordinate which corresponds to ln(𝑄=)  
Greek Symbols 
Δ  Difference 
ρ  Density of air [kg/m³] 
σ  Standard deviation 
Subscripts 
4  Evaluated at 4 Pa pressure difference 
10  Evaluated at 10 Pa pressure difference 
i  Single measurement point 
ref  Reference point 
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