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ABSTRACT 
Weather data at nearby airports are usually used in building energy 
simulation to estimate energy use in buildings or evaluate building 
design or retrofit options. However, due to urbanization and 
geography characteristics, local weather conditions can differ 
significantly from those at airports. This study presents the 
visualization of 10-year hourly weather data measured at 27 sites 
in San Francisco, aiming to provide insights into the urban 
microclimate and urban heat island effect in San Francisco and how 
they evolve during the recent decade. The 10-year weather data are 
used in building energy simulations to investigate its influence on 
energy use and electrical peak demand, which informs the city’s 
policy making on building energy efficiency and resilience. The 
visualization feature is implemented in CityBES, an open web-
based data and computing platform for urban building energy 
research. 

CCS CONCEPTS 
• Human-centered computing → Visualization 
• Human-centered computing → Heat maps 
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1 INTRODUCTION 
San Francisco is a coastal city in Northern California. It has a mild 
climate 3C and an area of 121.4 km2. Even though the city is not 
large geographically, its local climate can vary significantly across 
the city. Such microclimate variations have strong implications on 
building energy demand and outdoor thermal environment. We 
analyzed 10-year hourly weather data measured at 27 weather 
stations across the city and visualized the results using maps with 
the CityBES tool to reveal microclimate spatial patterns and the 
temporal trends. We also use building energy modeling to quantify 
the urban microclimate impact on building energy demand using 
local weather data at 13 sites. Here the impact refers to the same 
building in different locations of San Francisco will have different 
energy uses and peak demands due to local microclimate 
conditions. These results can inform the city’s policy on the urban 
environment, building energy planning, as well as resilience issues 
due to extreme weather events such as heatwaves. 

2 VISUALIZATION OF SAN FRANCISCO 
LOCAL CLIMATE 

We developed a web-based map interface to visualize the spatial 
variation and temporal trends of San Francisco local climate. It is 
part of the City Building Energy Saver (CityBES) platform [1]. 

2.1 Data Source and Data Cleaning 
2008 to 2017 hourly weather data were acquired from White Box 
Technologies [2]. The data set consists of 149 weather files in 
EnergyPlus epw format, each with one-year duration, containing 22 
weather variables. The format and detailed variable descriptions 
follow section 2.9.1 in [3]. Among the files we received, seven of 
them have non-matching weather station IDs inside the weather 
file, and in the file name. This makes it difficult to locate the 
associated stations for those files. Mis-placing weather station data 
will impair the accuracy of the spatial interpolation step, thus we 
removed them from the data set. The second cleaning step involves 
dropping measurements with invalid data range. In this step, we 
removed three records with negative relative humidity values. After 
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cleaning, we selected four variables to visualize in the interface: 
dry bulb temperature (⁰F), relative humidity (%), global horizontal 
radiation (Wh/m2), and wind speed (m/s). There are 27 weather 
stations in our cleaned data set. Figure 1 shows the location and 
start and end year of each weather station. 

 

Figure 1: Weather Stations in San Francisco 

In addition to the four direct measurements, the interface also 
displays four derived weather metrics: heating degree-day (HDD), 
cooling degree-day (CDD), heat index, and urban heat island index 
(UHII). HDD and CDD could inform urban planners and policy 
makers about the potential heating and cooling loads at various 
locations and at different times of the year. Heat index and UHII 
could assist policy analysis of adaptation strategies to short-term 
heat waves, and long-term climate change. The calculations of the 
derived metrics are described as follows. 
 
2.1.1 HDD and CDD. Degree-days are often used for rough 
estimation of the heating or cooling load. Degree-days for a certain 
period 𝑃𝑃 (e.g., a month or a year) are computed as the accumulated 
difference between the mean daily temperature and some base 
temperature (Equation 1 and 2). Here we use 65⁰F as the base 
temperature for heating degree day, and 50⁰F for cooling degree 
day, consistent with the practice of ASHRAE handbooks. 
 
HDD𝑃𝑃 = ∑ max(0, 65−  𝑇𝑇i,mean)𝑖𝑖∈𝑃𝑃    (1) 
 
CDD𝑃𝑃 = ∑ max(0,𝑇𝑇i,mean − 50)𝑖𝑖∈𝑃𝑃    (2) 
 
𝑇𝑇i,mean is the average of the daily max and the daily min temperature 
of day 𝑖𝑖 in the period 𝑃𝑃. 
 
2.1.2 Heat Index (HI) This metric reflect the hotness considering 
both temperature and relative humidity. The calculation follows the 
NOAA method [4], where the Steadman's formula is applied first. 
For high HI cases (higher than 80), the Rothfusz formula with 
certain adjustments is applied. 
 
2.1.3 Urban Heat Island Index (UHII) Taha and Freed developed a 
UHII metric [5]. A UHII is calculated for each census tract as the 

accumulated hourly temperature difference between the urban and 
the non-urban areas within the census tract. We modified this 
definition and developed our own UHII metric to reflect more 
detailed spatial heterogeneity. In our definition, we put grids over 
the San Francisco area and compute a UHII for each grid cell (a 
30m x 30m region). We used the same reference non-urban-area 
temperature for all regions (pixels), as opposed to the approach of 
Taha and Freed [5] where each region (census tract) has its own un-
urban area reference temperature. Equation 3 shows our definition 
of urban heat island index for pixel p for duration D, 𝑈𝑈𝑈𝑈𝑈𝑈𝐼𝐼𝑝𝑝𝑝𝑝 

UHII𝑝𝑝𝑝𝑝 =  ∑ 𝕝𝕝[urban(𝑝𝑝)] ⋅ (max�0,𝑇𝑇𝑝𝑝,ℎ − 𝑇𝑇𝑢𝑢ℎ������)ℎ∈𝐷𝐷   (3) 
𝕝𝕝[𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑝𝑝)] is an indicator variable of whether pixel p is of an 
urban land use type. 𝑇𝑇𝑢𝑢ℎ����� is the average temperature of all un-urban 
pixels in San Francisco. We used the 2011 National Land Cover 
Database (NLCD) raster file [6] to classify whether a pixel on the 
map is urban or non-urban. We follow [5] and label category 21 to 
24 (the developed land use types) as urban area, and the rest as non-
urban area. The NLCD data is retrieved with the R package, 
FedData [7]. 

  

Figure 2: Land use pattern from NLCD (left), urban heat 
island index for April 2008 (right) 

2.2 Interface Design 

The map interface displays the space-time patterns of various 
weather metrics in San Francisco, with a 2D map view, a time slider 
navigating through different snapshots of the map view, and some 
data summary charts. 

The spatial heterogeneity of each weather metric is presented as 
a heat map overlaid on top of the San Francisco regional map. To 
provide some spatial context, we overlaid the San Francisco 
planning district shape. The heat map of each weather variable is 
generated for each time stamp with an inverse distance weighted 
spatial interpolation of measurements at each weather station. A 
button on the bottom right of the map window (component 10) 
toggles a close-up view of local weather conditions around some 
building portfolio (Figure 2). Exact measurements at each weather 
station are shown as white labels on the map. Users can navigate 
through different time stamps with a time slider at the bottom of the 
interface.  
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Figure 3: Components of the Interface (top), a screenshot of 
the interface (bottom) 

 

Figure 4: Spatial Close-up View 

The temporal trend is shown as time-series plots (component 2 
and 4). The plot below the map window shows the spatial-temporal 
aggregation (the solid line) and the spatial extremes (the min and 
max of the color-coded values displayed on the map, shown with 
two dashed lines) of the temporal aggregation.  A histogram to the 
left of the map shows the distribution of the spatial-temporal 
aggregation for the displayed period, with the value of the current 
time step marked as a red dashed line. 

Weather variables are anticipated to have strong seasonality at 
various temporal scales, thus we provided several temporal 
resolutions, and temporal aggregation options (component 7). For 
example, when the “year” resolution and the “mean” aggregation 
method are chosen, weather station data are aggregated to annual 

averages. Then a heat map is generated for each year with spatial 
interpolation of the annual average weather station data. 

2.3 Implementation 

R is used for data cleaning, processing, image and data file (CSV 
or JSON) generation. The heat maps are png images generated 
using R raster package [8], gstat package [9], and sf package [10]. 
The interface is written in HTML and JavaScript. We use Leaflet 
[11] to create the map view and load the heat map image onto the 
regional map. The time-series plots are created with dygraphs [12]. 
The histogram is produced with Plotly [13]. 

2.4 Example use cases 

The visualization tool reveals some interesting patterns in the 
weather data. We present three use cases as examples: 

1. With the daily or hourly view, users could identify certain 
historical weather events. For example, in the 2017 daily dry-
bulb temperature display (Figure 5), we could observe that the 
timing (September 1st) and the magnitude (101.4⁰F) of the 
heatwave from the time-series plot, and the current-value label 
(component 5). The distribution plot further demonstrated that 
the temperature at the current time stamp is at the right end of 
the distribution. 
 

 
Figure 5: Components of the Interface (top), a screenshot 
of the interface (bottom) 
 

2. With the monthly views, users could spot seasonality of 
certain variables. For example, we could observe strong 
seasonal patterns in temperature, solar radiation, and wind 
speed, while relative humidity is relatively stable – not 
seasonal. 

3. Using the time-series plot (component 2), users could identify 
the overall level of spatial heterogeneity of a variable (the 
distance between the two dashed lines). With the map view, 
user could locate the spatial extreme positions. For example, 
in the daily mean relative humidity view, we notice substantial 
spatial variations where the maximum is almost twice the 
minimum. The map view shows the highest values are close 
to the coastal area, and the lowest values appear in inland 
regions. 
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Figure 6: Spatial heterogeneity of relative humidity 

3 MICROCLIMATE IMPACT ON BUILDING 
ENERGY USE 

3.1 Simulation description 

A simulation study was performed to evaluate the impact of 
microclimate on building energy use. The weather data in 2017 at 
13 stations were applied to four DOE prototype building energy 
models [15], covering two building types (the large office and the 
large hotel) and two vintages (2004 and 2013).  EnergyPlus is used 
as the building performance simulation tool in this study to 
calculate the annual energy use and peak demand of the four 
building models using the 10-year weather files at the 13 weather 
stations. EnergyPlus is an open-source program that models 
heating, ventilation, cooling, lighting, water use, renewable energy 
generation, and other building energy flows [16] and is the flagship 
building simulation engine supported by the United States 
Department of Energy (DOE). 

3.2 Results 

Figures 7-10 illustrate the box-whisker plots, which indicate the 
distribution of several energy performance indices on the four 
prototype models, including the annual total site and source energy, 
annual cooling energy use (electricity), annual heating energy use 
(natural gas), peak electricity & natural gas use. Key findings are 
summarized as follows: 

(1) The impact of microclimate on the energy use of the HVAC 
systems is significant. Using different microclimate data can lead 
to as much as over 100% difference in annual heating energy use 
and 65% difference in annual cooling energy use.  

(2) The impact of microclimate on the total annual site or source 
energy is much smaller. This is because (1) microclimate only 
affects HVAC energy use, which accounts for 20~25% of total 
energy use in the large office, and 40~50% in the large hotel. In this 
case, the relative impact on total energy use is reduced, (2) the 
heating demand and cooling demand compensate each other. For 
example, when cooling demand is increased under warmer weather, 
heating demand is decreased, so the overall impact is reduced. 

(3) The impact of microclimate on building peak cooling and 
heating demand is significant, as much as a 30% difference in peak 
cooling electricity demand and over 100% difference in peak 
natural gas demand. This is critical from the supply-side 
perspective, as it will directly affect the required utility generation 
capacity. The impact on the total building peak demand is a bit less 
than the peak HVAC demand because of other end uses (e.g., 
lighting and plug loads). 

(4) The impact of microclimate on energy performance varies with 
building types and vintages. Cooling and heating loads mainly 
consist of (1) heat gains through the envelope, mechanical 
ventilation, and infiltration, which microclimate has an impact on, 
and (2) heat gains from other sources, such as occupant, lighting 
and plug load, which barely change with climate. The variation of 
the absolute values of energy performance is purely affected by the 
former heat gains. On the other hand, the percentage difference is 
affected by the former heat gains, the proportion of former heat 
gains in the total load, and the baseline level. All the above factors 
vary with building types and vintages, resulting in different levels 
of microclimate impact on building energy performance. 

In summary, microclimate data may be optional for estimating the 
total building energy consumption, but is crucial for more accurate 
estimation of the cooling and heating energy use, and more 
importantly, the peak demand, especially from the perspective of 
the utility supply side. 

 

Figure 7: Box-whisker plot of energy performance index for the 
large hotel at the 2004 vintage. 

 

Figure 8: Box-whisker plot of energy performance index for the 
large hotel at the 2013 vintage. 
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Figure 9: Box-whisker plot of energy performance index for the 
large office at the 2004 vintage. 

 

Figure 10: Box-whisker plot of energy performance index for the 
large office at the 2013 vintage. 

CONCLUSIONS 

A visualization of urban microclimate feature is developed in 
CityBES. San Francisco microclimate variations are significant and 
should be considered in building energy codes and standards as 
well as heat resilience policymaking. Local weather data should be 
used in building energy modeling to estimate building energy use. 
Future work will expand the coverage for other cities. 

ACKNOWLEDGMENTS 
We thank San Francisco the Department of Energy for providing 
the weather data. This work was also supported by the Assistant 
Secretary for Energy Efficiency and Renewable Energy, Office of 
Building Technologies of the United States Department of Energy, 
under Contract No. DE-AC02-05CH11231. 

 
 

 

 

 

 

 

REFERENCES 
[1]  Hong, T., Chen, Y., Lee, S. H., & Piette, M. A. (2016). CityBES: A web-based 

platform to support city-scale building energy efficiency. Urban Computing, 14. 
[2]  WBT. (2007). White Box Technologies Weather Data. Retrieved July 8, 2019, 

from http://weather.whiteboxtechnologies.com/. 
[3]  U.S. Department of Energy. (2019). Auxiliary Programs (p. 259). Retrieved from 

https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v9.1.0/A
uxiliaryPrograms.pdf 

[4] NOAA/ National Weather Service. (2014, May 28). Heat Index Equation. 
Retrieved July 2, 2019, from 
https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml 

[5]  Dean, W. (2015). Creating and Mapping an Urban Heat Island Index for 
California. CalEPA. 

[6]  Yang, L.,  Jin, S.,  Danielson, P., Homer, C., Gass, L., Case, A., Costello, C., 
Dewitz, J., Fry, J., Funk, M., Grannemann, B., Rigge, M. and G. Xian. 2018.  A 
New Generation of the United States National Land Cover Database: 
Requirements, Research Priorities, Design, and Implementation Strategies, p. 
108–123. 

[7]  R. Kyle Bocinsky (2019). FedData: Functions to Automate Downloading 
Geospatial Data Available from Several Federated Data Sources. R package 
version 2.5.7. https://CRAN.R-project.org/package=FedData 

[8]  Robert J. Hijmans (2019). raster: Geographic Data Analysis and Modeling. R 
package version 2.9-5. https://CRAN.R-project.org/package=raster 

[9]  Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. 
Computers & Geosciences, 30: 683-691. 

[10]  Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial 
Vector Data. The R Journal 10 (1), 439-446, https://doi.org/10.32614/RJ-2018-
009 

[11]  Leaflet contributors. (2019). Leaflet - a JavaScript library for interactive maps. 
Retrieved July 9, 2019, from https://leafletjs.com/index.html 

[12]  dygraphs contributors. (2014, September 18). dygraphs. Retrieved July 9, 2019, 
from http://dygraphs.com/ 

[13]  Plotly contributors. (2019, March 3). Modern Analytic Apps for the Enterprise - 
Plotly. Retrieved July 9, 2019, from https://plot.ly/ 

[14]  Saito, T., Miyamura, H. N., Yamamoto, M., Saito, H., Hoshiya, Y., & Kaseda, T. 
(2005, October). Two-tone pseudo coloring: Compact visualization for one-
dimensional data. In IEEE Symposium on Information Visualization, 2005. 
INFOVIS 2005. (pp. 173-180). IEEE. 

[15] U.S. Department of Energy. (2013). Commercial Prototype Building Models. 
Retrieved from 
https://www.energycodes.gov/development/commercial/prototype_models 

[16] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. 
Pedersen, et al., EnergyPlus: creating a new-generation building energy 
simulation program, Energy Build. 33 (2001) 319–331, http://dx.doi.org/10. 
1016/S0378-7788(00)00114-6. 

 
 
 
 

http://weather.whiteboxtechnologies.com/
https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
https://cran.r-project.org/package=FedData
https://cran.r-project.org/package=raster
https://leafletjs.com/index.html
http://dygraphs.com/
https://plot.ly/
https://www.energycodes.gov/development/commercial/prototype_models

