System-Level Performance Decline with Age of 26 GW$_{DC}$ of Utility-Scale PV Plants in the United States

Mark Bolinger, Will Gorman, Dev Millstein—LBNL
Dirk Jordan—NREL

September 2020 update to July 2020 journal article

This work was funded by the U.S. Department of Energy’s Solar Energy Technologies Office under Contract No. DE-AC02-05CH11231.
Presentation overview

- Introduction—why this matters
- System-level performance decline vs. module-level degradation
- Data sample and description
- Overview of analysis approach—the fixed effects model
- Updated performance decline over time (and comparison to prior results)
- Potential drivers of performance decline with age
Introduction—why this matters

• Utility-scale PV is the largest segment of the US solar market, and is growing rapidly
• The utility-scale PV market is relatively young, and lacks a lengthy track record
 ➢ In the United States, the first utility-scale PV plants—defined here as ground-mounted and larger than 5 MW\textsubscript{AC}—came online in 2007
 ➢ The average plant is just a few years old
 ➢ \textit{This September 2020 update adds another year of sample (2017 projects) and performance period (2019)}
• With such a young fleet contributing the bulk of all solar generation, understanding performance is key, particularly given that:
 ➢ The federal investment tax credit has begun to phase down, elevating the importance of good performance
 ➢ The price and duration of power purchase agreements (PPAs) has been declining, elevating the importance of long-term performance and reliability in the post-PPA period
• Much of the performance/reliability literature has focused on module degradation, but total system performance is what impacts the bottom line (see distinction on next slide)
System performance decline versus module degradation

- Graph shows stylized example of how module degradation (dark blue) is just one element of system-level performance loss over time.

- Vertical bars show hypothetical loss events related to different BOS components, while the corresponding shaded areas track cumulative loss over time. For example:
 - Failure of inverters and/or breakers may cut the entire output of the plant for some period, blown fuses may cut output in half, misaligned/stuck trackers and curtailment might each cut 20-30% on occasion.
 - As explained later, we do attempt to control for curtailment within our analysis—but don’t have good visibility into these other causes.
• 551 plants totaling 26 GW_{DC} (20 GW_{AC}) installed across 32 states from 2007-2017

• Operational history ranges from two (2018-2019) to twelve (2008-2019) full calendar years, with an average of 4.0 years—indicative of the relative youth of the utility-scale PV sector

• In aggregate, these plants contributed ~50% of all solar electricity generated in the United States in 2018 (across all sectors—residential, commercial, and utility-scale—and including concentrating solar thermal power)

• They collectively offer 2,211 project-years of operational experience, 1/3 of which are in California
Table shows progressively larger sample of projects and capacity added over time.

- Also increasing prevalence of tracking, as well as a higher DC:AC ratio.

- Roughly 80% of projects use Si modules.

Histogram shows the majority of projects fall into the 20-50 MW\textsubscript{DC} capacity bin. Nearly 87% of projects are 100 MW\textsubscript{DC} or less, but a number of projects feature several hundred MW\textsubscript{DC} of capacity, with the largest being nearly 760 MW\textsubscript{DC}.
Data collected for each project

• **Key plant characteristics:** Module type (Si vs. thin-film), module manufacturer, mount type (fixed-tilt vs. tracking), tilt (for fixed-tilt mounts), azimuth, latitude and longitude, commercial operation date, capacity (MW_{DC} and MW_{AC}), and DC:AC ratio
 - These “metadata” are sourced from LBNL’s “Utility-Scale Solar” report series (utilityscalesolar.lbl.gov)

• **Net generation data over time:** Compiled from a variety of sources, including Form EIA-923, FERC Form 1, FERC Electric Quarterly Reports, the California Energy Commission

• **Irradiance data over time:** 2008-2019 data for each site come from the National Solar Radiation Database (NSRDB)

• **Hourly curtailment data over time:** Sourced from the California Independent System Operator (CAISO) and the Electric Reliability Council of Texas (ERCOT), and used to gross up the actual capacity factors of plants that have been curtailed in California and Texas

We use these data to calculate *actual* and *ideal* “capacity factors” for each plant:

$$\text{Capacity Factor}_y = \frac{MWh \ generated \ in \ calendar \ year \ y}{(MW_{DC} \ of \ capacity \ in \ calendar \ year \ y \ * \ number \ of \ hours \ in \ calendar \ year \ y)}$$
Measuring performance decline with age using a “fixed effects” regression model—defining terms

Actual capacity factor of plant \(f \) at time \(t \) (raw empirical data, but grossed up for curtailment in CAISO and ERCOT)

\[
CF_{f,t}^{\text{actual}} = CF_{f,t}^{\text{ideal}} + S_f + A_T + \epsilon_{f,t}
\]

Eq. 1

Site-level “fixed effects” of plant \(f \):
Dummy variable to control for differences in capacity factor **across plants** that are not already captured via the “ideal” capacity factor

“Ideal” capacity factor of plant \(f \) at time \(t \):
Estimated based on physical plant characteristics and solar resource at the site

Residual of plant \(f \) at time \(t \):

Age “fixed effects” at time \(t \):
Dummy variable to control for differences in capacity factor **within plants**, over time, that are not already captured via the “ideal” capacity factor (i.e., this variable isolates the impact of plant age on capacity factor)
Measuring performance decline with age using a “fixed effects” regression model—equation transformations

\[CF_{f,t}^{actual} = CF_{f,t}^{ideal} + S_f + A_T + \epsilon_{f,t} \] \hspace{1cm} \text{Eq. 1}

Equation 1 is known as a “fixed effects” regression because it holds constant or “fixes” the average “effects” of each variable. We can illustrate this through the following two transformations of Equation 1.

\[CF_{f}^{actual} = CF_{f}^{ideal} + S_f + \bar{A} + \bar{\epsilon}_f \] \hspace{1cm} \text{Eq. 2}

Equation 2 calculates the average over time for each variable in Equation 1. Because \(S_f \) does not vary over time in Equation 1, the average of \(S_f \) over time in Equation 2 is simply equal to \(S_f \).

\[CF_{f,t}^{actual} - CF_{f}^{actual} = \left(CF_{f,t}^{ideal} - CF_{f}^{ideal} \right) + (S_f - S_f) + (A_t - \bar{A}) + (\epsilon_{f,t} - \bar{\epsilon}_f) \] \hspace{1cm} \text{Eq. 3}

Equation 3 subtracts Equation 2 from Equation 1. The site-specific fixed effects (\(S_f \)) cancel, dropping out of the regression and leaving only those explanatory variables that vary with time. In other words, by subtracting the means, we eliminate all unobservable “across-plant” variation—a key source of omitted variable bias—and limit all variation to “within-plant” variation (i.e., which tells us how performance changes over time with age).
Performance decline with age—updated results from fixed effects model

The slope (-1.1%/year) is weighted by the number of projects at each age, so ages 9-12 (which have wide 95% confidence intervals) do not receive much weight.

The slope is almost identical (-1.1%/year) if only looking at ages 1-7 (i.e., later ages do not have much impact).
Performance decline with age—comparison to last year’s results

Additional year of sample (2017 projects) and performance period (2019) improved slope from -1.3%/year (original analysis) to -1.1%/year (September 2020 update)

Improvement seems to be driven primarily by performance in 2019 (rather than by adding 2017 projects to the sample)

But confidence interval has widened, particularly for older ages....
Potential drivers of performance decline with age

Project Characteristics (all differences are statistically significant):

- **Vintage:** Post-2012 projects (-0.7%/year, ±0.2%) have declined less than pre-2013 projects (-1.3%/year, ±0.2%)
- **Capacity:** Projects of 25 MW\(_{AC}\) or larger (-0.8%/year, ±0.3%) have declined less than projects less than 25 MW\(_{AC}\) (-1.2%/year, ±0.2%)
- **DC:AC ratio (ILR):** Projects with a DC:AC ratio of 1.25 or greater (-0.9%/year, ±0.2%) degrade less than projects with lower ratios (-1.2%/year, ±0.2%)
- **COMBINATION:** Newer (post-2012), larger (≥25 MW\(_{AC}\)) projects with higher DC:AC ratios (≥ 1.25) have declined less (-1.0%/year, ±0.5%) than their counterparts (-1.5%/year, ±0.2%)

Site Characteristics (all differences are statistically significant):

- **Solar resource:** Projects at sites with an average long-term global horizontal irradiance of less than 210 W/m\(^2\) (-0.6%/year, ±0.3%) have declined less than projects at sunnier sites (-1.2%/year, ±0.2%)
- **Site climate:** Projects with an average site temperature of less than 15 degrees Celsius (-0.7%/year, ±0.3%) have declined less than projects at warmer sites (-1.3%/year, ±0.2%)

Module OEMs (OEM DIFFERENCES ARE NOT STATISTICALLY SIGNIFICANT):

- First Solar projects (-1.0%/year) have declined less than “Other” projects (-1.2%/year), but p-value=0.324 (i.e., not significant)
- SunPower projects (-0.8%/year) have declined less than “Other” projects (-1.2%/year), but p-value=0.149 (i.e., not significant)
- SunPower (-0.8%/year) has declined less than First Solar (-1.0%/year), but p-value=0.733 (i.e., not significant)

A separate multivariate regression supports only some of these fixed effects findings (e.g., vintage)
Contacts

Mark Bolinger: mabolinger@lbl.gov, (603) 795-4937
Will Gorman: wgorman@lbl.gov, (510) 486-4941
Dev Millstein: dmillstein@lbl.gov, (510) 486-4556
Dirk Jordan: dirk.jordan@nrel.gov

For more information

Download the journal article: https://emp.lbl.gov/publications/system-level-performance-and
Download other publications from the Electricity Markets & Policy Department: https://emp.lbl.gov/publications
Sign up for our email list: https://emp.lbl.gov/mailing-list
Follow the Electricity Markets & Policy Group on Twitter: @BerkeleyLabEMP

Acknowledgements

This work was funded by the U.S. Department of Energy’s Solar Energy Technologies Office, under Contract No. DE-AC02-05CH11231.