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Abstract 
The surge in interval meter data availability and associated activity in energy data analytics has 
inspired new interest in advanced methods for building efficiency savings estimation. Statistical 
and machine learning approaches are being explored to improve the energy baseline models used 
to measure and verify savings. One outstanding challenge is the ability to identify and account for 
operational changes that may confound savings estimates. In the measurement and verification 
(M&V) context, ‘non-routine events’ (NREs) cause changes in building energy use that are not 
attributable to installed efficiency measures, and not accounted for in the baseline model’s 
independent variables. In the M&V process NREs must be accounted for as ‘adjustments’ to 
appropriately attribute the estimated energy savings to the specific efficiency interventions that 
were implemented. Currently this is a manual and custom process, conducted using professional 
judgment and engineering expertise. As such it remains a barrier in scaling and standardizing 
meter-based savings estimation. 

In this work, a data driven methodology was developed to (partially) automate, and therefore 
streamline the process of detecting NREs in the post-retrofit period and making associated 
savings adjustments. The proposed NRE detection algorithm is based on a statistical change point 
detection method and a dissimilarity metric. The dissimilarity metric measures the proximity 
between the actual time series of the post-retrofit energy consumption and the projected baseline, 
which is generated using a statistical baseline model. The suggested approach for NRE 
adjustment involves the NRE detection algorithm, the M&V practitioner, and a regression 
modeling algorithm. The performance of the detection and adjustment algorithm was evaluated 
using a simulation-generated test data set, and two benchmark algorithms. Results show a high 
true positive detection rate (75%-100% across the test cases), higher than ideal false positive 
detection rates (20%-70%), and low errors in energy adjustment (<0.7%). These results indicate 
that the algorithm holds for helping M&V practitioners to streamline the process of handling 
NREs. Moreover, the change point algorithm and underlying statistical principles could prove 
valuable for other building analytics applications such as anomaly detection and fault diagnostics.  

1. Introduction
The growing availability of interval energy use data and the rapid expansion of energy analytics 
offerings presents tremendous promise to both enable efficiency savings and automate savings 
quantification. Industry-wide, there is a desire to streamline the measurement & verification 
(M&V) process for energy-saving projects, in terms of time, costs, and complexity. As 
organizations work to meet aggressive building energy reduction goals at the national and state 
levels, there is increasing interest in moving toward performance-based outcomes - whether in 
codes, incentives, or operational energy goals. In association, there is a growing appetite for 
measured and verified, as opposed to deemed or calculated savings. At the same time, the 
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industry is beginning to ask for increased rigor, transparency, and consistency in how savings are 
determined. 
 
Prior work [1,2] developed and tested promising “M&V 2.0” or “Advanced M&V” approaches to 
automate the savings estimation process through the analysis of time series meter data. Through 
statistical test procedures, these articles show that for a large fraction of buildings, automated 
techniques are accurate in characterizing and predicting building energy use for M&V 
applications. One critical question that has not yet been fully addressed is how to account for 
“non-routine events” (NREs). Non-routine events cause changes in energy use that are not 
attributable to installed efficiency measures and not accounted for in the baseline model’s 
independent variables. They must be accounted for as ‘adjustments’ [3] to appropriately attribute 
metered change in consumption to the specific efficiency interventions that were implemented. 
Commonly encountered non-routine events are associated with fluctuation in occupancy levels, 
the addition of internal loads such as business-specific equipment, computers and servers, and 
changes to control operational strategies that are not part of the efficiency measure.  
  
Industry methods to conduct non-routine events adjustments are currently manual and non-
standardized; they comprise custom developed estimates based on a project engineer’s or an 
evaluator’s professional judgment and expertise, on a case by case basis. Current methods span a 
diversity of solutions that for detection rely upon site audits, surveys and interviews, and 
inspection of system-level data should it be available. For quantification, methods used in 
professional practice span: short-term site measurement, engineering calculations, short-term 
‘mini’ regressions before and after the event, and simulation modeling. A robust statistical 
approach based on building consumption data has the potential to provide consistency as well as 
transparency, addressing one of the capability gaps [4] in today’s technologies for meter-based 
automated savings estimation.  
 
A non-routine event detection algorithm must be capable of detecting multiple changes within a 
given energy time series. Because non-routine events may be temporary, the start and end points 
of the event must be resolved. In addition, multiple events may occur across a period of interest. 
However, with high frequency metered energy data, the number of possible solutions to the 
multiple change point problem increases combinatorially. Hence, in addition to the accuracy in 
event detection, the algorithm needs to be computationally efficient for scalability across a large 
number of buildings. Furthermore, commercial building energy consumption time series usually 
feature non-stationarity (i.e., changes in the statistical properties over time), which make it 
challenging to distinguish between typical behaviors and NREs. In commercial buildings, the 
non-stationarity of the energy consumption time series can be due to many different factors, e.g., 
vacation periods, weather changes, occupancy changes, etc. Thus, unlike the traditional change 
point detection statistical problem [5], the NRE detection doesn’t simply aim to detect changes 
within a given time series but rather to detect changes that are not attributable to a normal 
operation of the building. To address this issue the detection algorithm must be able to distinguish 
between these different behaviors of the energy consumption time series.  
 
In the proposed methodology an approach based on a statistical change point algorithm is used to 
detect potential NREs. We specifically focus on NREs that occur after the implementation of an 
efficiency measure (as opposed to those that might occur during the baseline period); this 
provides a tractable starting point that can be expanded in future investigations. Change points are 
considered to be the points in the time series where a change in the statistical properties, such as 
mean and/or variance, is observed. Since NREs vary in nature, they are classified into three 
categories: (1) short-term NREs, that occur for a limited number of days (usually one or two 
days); (2) temporary NREs, which may span several weeks to several months; (3) permanent 
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NREs that result in a lasting change in the energy consumption.   This work also introduces a data 
driven approach to quantify the changes in the energy consumption that are induced by these 
events, in order to adjust the savings estimate.  

2. Non-Routine Event Detection and Adjustment Methodology 
 
2.1 Non-Routine Event Detection 
 
This section proposes an algorithm for detection of potential NRE during the post period (i.e., the 
period after the implementation of an efficiency measure), which involves four steps: (1) create a 
building energy use baseline model using pre period data (typically 1 year of data to cover all 
weather seasons). The baseline model is taken as reflective of the typical behavior of the building; 
(2) During the post period use the baseline model to generate prediction values representing the 
energy consumption if the retrofit had not been implemented; (3) For each day of the post period 
estimate the dissimilarity between the predicted time series and the actual consumption values; 
(4) Apply change points algorithm to the time series of dissimilarity values.  
 
The proposed approach assumes that if there is no NRE the difference in the behavior of the pre 
and post energy consumption time series is stable. In addition, it is supposed that there are not 
significant periods of missing data in the post period (i.e., that there is continuity in the time 
series). The concept is that when an NRE occurs the difference in the behavior of the time series 
will change enough to be detected by a change point detection algorithm. This difference in the 
behavior can be estimated using a proximity measure, also known as “dissimilarity index,” which 
characterizes how close two time-series are to each other in term of values and temporal 
correlation. The following subsections describe the dissimilarity measure, the change point 
algorithm and the baseline modeling used in this work. Then the algorithm of the proposed 
methodology of potential NRE detection is presented.  
 
2.1.1 Dissimilarity measure 
 
In the context of time series data analysis, the definition of dissimilarity (i.e., time series 
proximity measure) is not straightforward because of the interdependent relationship between 
observations. Several approaches to define dissimilarity measures of time series have been 
introduced in literature [6]. The most common approaches consist of evaluating the proximity 
between time series based on the closeness of the observed values at specific points of time (e.g., 
Euclidean distance, Minkowski distance and Fréchet distance). However, these measures ignore 
the temporal structure of the values since the closeness is computed using the differences between 
the observed values without considering the behavior around these values (i.e., increases or 
decrease in values). For NRE detection it is important to measure the closeness considering both 
behavior and value. Figure 1 illustrates time series dissimilarity in value and behavior. In the left 
figure the dissimilarity between the two time series is only in value, while in the right figure there 
is a difference in value and in behavior (e.g., from 6 pm to 8 pm one can note a significant 
decrease in the time series depicted by the solid line while the dashed line time series remains 
constant). 
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Figure 1. Example of dissimilarity between two time series. The left plot depicts dissimilarity in 

value, while the right plot depicts dissimilarity in value and behavior. 
 
Chouakria and Nagabhushan [7] introduced a dissimilarity measure that covers both behavior and 
values. The proximity of the behavior of the time series is measured by computing the first order 
temporal correlation defined as: 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆1, 𝑆𝑆2) = ∑ (𝑆𝑆1(𝑡𝑡+1)−𝑆𝑆1(𝑡𝑡))(𝑆𝑆2(𝑡𝑡+1)−𝑆𝑆2(𝑡𝑡))𝑇𝑇−1
𝑡𝑡=1

�∑ (𝑆𝑆1(𝑡𝑡+1)−𝑆𝑆1(𝑡𝑡))2𝑇𝑇−1
𝑡𝑡=1 �∑ (𝑆𝑆2(𝑡𝑡+1)−𝑆𝑆2(𝑡𝑡))2𝑇𝑇−1

𝑡𝑡=1

        (1) 

 
where S1 and S2 are two time series of T values.  
 
The CORT measure takes a value in the interval [-1,1]. If 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆1, 𝑆𝑆2) = 1 then the two time 
series have similar behavior, i.e., their increase/decrease at any time step is similar in direction 
and rate. If 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆1, 𝑆𝑆2) = −1 then the series have an opposite increase/decrease behavior but 
similar growth in rate. Finally, if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆1, 𝑆𝑆2) = 0 then there is no monotonicity between S1 and 
S2 and their growth in rates are stochastically linearly independent. The dissimilarity metric 
introduced by [7] modulates between the proximity in value and the proximity in behavior. This 
is done using a modulating function (i.e., 2

1+exp (𝑘𝑘 𝑥𝑥)
) that will increase the value proximity when 

the temporal correlation (i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) decreases from 0 to -1, and will decrease the value 
proximity in value when the temporal correlation increases from 0 to 1. Note that the proximity in 
value can be calculated using any of the traditional metrics mentioned previously. In this work, 
Euclidian distance is considered to evaluate the proximity in values. Thus, the dissimilarity 
proposed by [7] is defined as: 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝑆𝑆1, 𝑆𝑆2) = 2
1+exp (𝑘𝑘 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆1,𝑆𝑆2))

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐸𝐸(𝑆𝑆1, 𝑆𝑆2)       (2) 
 
where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐸𝐸(𝑆𝑆1, 𝑆𝑆2) is the Euclidean distance and k is a tuning parameter that modulates the 
contribution between the proximity in values and the proximity in behavior. In order to have 
similar contribution of proximity in value and behavior k=1 is selected as default in this work. 
(For further detail see [7]). For example, the CORT dissimilarity (i.e., 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡) for the time 
series in Figure 1 are ~39.5 for the left scenario and ~180.4 for the right scenario. Note that the 
sums of the differences between the time series (i.e., savings) are exactly the same (i.e., equal to 
360 kWh) for both scenarios.  
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2.1.2 Change point detection algorithm 
 
Change points are considered to be the location in a time series where a change in the statistical 
properties of the sequence of observations is observed. Given a time series 𝑆𝑆1:𝐶𝐶 = (𝑦𝑦1, … ,𝑦𝑦𝐶𝐶), it 
is said that there is a change point in the time series 𝑆𝑆1:𝐶𝐶 when there exists a time step 𝛿𝛿 with 𝛿𝛿 ∈
(1,𝐶𝐶 − 1) such that the statistical properties of  𝑆𝑆1:𝛿𝛿 = (𝑦𝑦1, … ,𝑦𝑦𝛿𝛿) and 𝑆𝑆𝛿𝛿+1:𝐶𝐶 = (𝑦𝑦𝛿𝛿+1, … ,𝑦𝑦𝐶𝐶) 
are different. If there are n change points with locations 𝛿𝛿1:𝑛𝑛 = (𝛿𝛿1, … , 𝛿𝛿𝑛𝑛) then the time series 
will be split into n+1 distinct segments with the ith containing observations 𝑆𝑆(𝛿𝛿𝑖𝑖−1+1):𝛿𝛿𝑖𝑖 =
(𝑦𝑦𝛿𝛿𝑖𝑖−1 , … ,𝑦𝑦𝛿𝛿𝑖𝑖). Therefore, the statistical problem is to estimate the number of change points and 
their locations. The most common approach is to introduce a cost function for each segment. The 
sum of costs across the segments can then be defined as the cost of the segmentation process. The 
change points can be identified by minimizing the segmentation cost. Since n the number of 
change points is unknown, the typical approach to jointly estimate the number of change points 
and their locations is to solve a penalized segmentation cost function defined as:  
 

∑ �𝐶𝐶�𝑆𝑆(𝛿𝛿𝑖𝑖−1+1):𝛿𝛿𝑖𝑖��
𝑛𝑛+1
𝑖𝑖=1 + 𝛽𝛽𝛽𝛽        (3) 

 
Where 𝐶𝐶�𝑆𝑆(𝛿𝛿𝑖𝑖−1+1):𝛿𝛿𝑖𝑖� denotes the segment specific (i.e., (𝑦𝑦𝛿𝛿𝑖𝑖−1 , … ,𝑦𝑦𝛿𝛿𝑖𝑖)) cost function, and 𝛽𝛽𝛽𝛽 is 
a linear penalty term that prevents overfitting the data. The choice of the penalty constant (i.e., 𝛽𝛽) 
in (3), can have an important impact on the accuracy of the change points detection and therefore 
on the non-routine events detection. Several choices for selecting 𝛽𝛽 have been introduced in the 
literature. Some of the most commonly used are the Akaike’s information criteria (AIC), 
Schwartz’s information criteria (SIC), Bayesian information criteria (BIC) and modified Bayesian 
information criteria (mBIC) [8], which accounts for the length of the segments. In this work 
mBIC is used for penalty constant selection; this choice was motivated by the fact that some test 
results showed that in comparison with using the other mentioned criteria, mBIC improved the 
accuracy of the proposed algorithm. 
  
A standard approach to define the segment specific cost function is to specify a statistical model 
for the observed data points within a segment. It is therefore possible to define the cost function 
as proportional to minus the maximum log-likelihood. In this work the observations within a 
segment are assumed to be independent, identically distributed and generated from a Gaussian 
distribution with two segment specific parameters mean 𝜇𝜇 and variance 𝜎𝜎2. Thus, the log-
likelihood of the observations 𝑆𝑆(𝛿𝛿𝑖𝑖−1+1):𝛿𝛿𝑖𝑖 is defined as: 
 

𝑙𝑙�𝑆𝑆(𝛿𝛿𝑖𝑖−1+1):𝛿𝛿𝑖𝑖 ;𝜇𝜇,𝜎𝜎2� = −𝛿𝛿𝑖𝑖−𝛿𝛿𝑖𝑖−1
2

log(2𝜋𝜋) − 𝛿𝛿𝑖𝑖−𝛿𝛿𝑖𝑖−1
2

log(𝜎𝜎2) − 1
2𝜎𝜎2

∑ �𝑦𝑦𝑗𝑗 − 𝜇𝜇�𝛿𝛿𝑖𝑖
𝑗𝑗=𝛿𝛿𝑖𝑖−1+1     (4) 

 
In this work we operate under the assumption that changes may occur in both the mean and the 
variance. Therefore, computing the segment specific cost function involves using minus twice the 
log-likelihood function after maximizing it over 𝜇𝜇 and 𝜎𝜎2. Then the segment cost function is 
defined as: 
 

𝐶𝐶�𝑆𝑆(𝛿𝛿𝑖𝑖−1+1):𝛿𝛿𝑖𝑖� = (𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖−1) �𝑙𝑙𝑙𝑙𝑙𝑙 � 1
𝛿𝛿𝑖𝑖−𝛿𝛿𝑖𝑖−1

∑ �𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑖𝑖�
2𝛿𝛿𝑖𝑖

𝑗𝑗=𝛿𝛿𝑖𝑖−1+1
� + 1� (5) 

 
Where 𝑦𝑦�𝑖𝑖 = 1

𝛿𝛿𝑖𝑖−𝛿𝛿𝑖𝑖−1
∑ 𝑦𝑦𝑘𝑘
𝛿𝛿𝑖𝑖
𝑘𝑘=𝛿𝛿𝑖𝑖−1+1  is the mean value of the ith segment (i.e., 𝑆𝑆(𝛿𝛿𝑖𝑖−1+1):𝛿𝛿𝑖𝑖). 

 
Commonly used approaches to find the optimal solution for the optimization problem (3) include 
binary segmentation (BS) [9], the segment neighborhood (SN) [10] and optimal partitioning (OP) 



6 

[11]. The BS is computationally fast but at the expense of accuracy, since it provides an 
approximate minimization of (3). The SN and OP uses dynamic programming to exactly 
minimize the objective function (3), however the computational cost of this method is too high to 
scale when a large volume of time series data is analyzed. To avoid this tradeoff between 
accuracy and speed the pruned exact linear time (PELT) algorithm was introduced [12], which is 
similar to SN and OP algorithm in that it also computes an exact minimization of the objective 
function (3). The PELT algorithm explores the data sequentially and exhaustively through the 
solution space. The computational efficiency of the PELT algorithm is achieved by removing 
from the minimization, at each iterative step, the candidate location values that are known not to 
lead to the optimal solutions (see section 3 of [12] for more details). In this article, PELT is used 
as the change points method for detecting potential NRE locations. 
 
 
2.1.3 Baseline model 
 
Regression methods are a standard approach used for developing baseline models that aim to 
model the relationship between the response y, which is the pre whole-building energy use and a 
set of independent variables (also known as explanatory variables) 𝒙𝒙 = (𝑥𝑥(1), … , 𝑥𝑥(𝑑𝑑)), where d is 
the number of independent variables. For example, in the case of energy use baseline modeling, 
the input variables can be time of the week and the outdoor air temperature. Mathematically the 
regression problem can be represented for a given observation set {(x1,y1),…, (xT,yT)}, as 
 

𝑦𝑦𝑡𝑡 = 𝑓𝑓(𝒙𝒙𝑡𝑡) +  𝜀𝜀𝑡𝑡 ,           𝜀𝜀 𝑡𝑡~ 𝑁𝑁(0,𝜎𝜎𝜀𝜀2)      (6) 
  
where 𝒙𝒙𝑡𝑡 = (𝑥𝑥(1), … , 𝑥𝑥(𝑑𝑑)),  𝑡𝑡 = 1, … ,𝐶𝐶  are d dimensional vectors of inputs variables,  𝜀𝜀𝑡𝑡 is 
independent Gaussian noise with mean 0 and variance 𝜎𝜎𝜀𝜀2. Building a baseline model consists of 
approximating the function 𝑓𝑓(𝒙𝒙) given a set of T observation {(x1,y1),…, (xT,yT)}. 
 
In recent years several baseline energy modeling approaches that use interval meter data have 
been introduced in the academic literature and in the industry. These methods are based on 
traditional linear regression, nonlinear regression, and machine learning regression methods. In 
this study a gradient boosting machine (GBM) baseline model is used [13]. The GBM baseline 
model is an ensemble trees based machine learning method that generates a model of the energy 
consumption using the following independent variables: time of week, temperature and when the 
considered building is a school, a vacation indicator. A holiday indicator is not used as an 
independent variable in the analysis performed in this work in order to use some of holidays as a 
test case for short-term NRE detection. 
 
2.1.4 Algorithms for non-routine event detection 
 
In this section, three algorithms for detecting potential NREs are described. The first one is the 
main contribution of this work (using the CORT dissimilarity metric), while the second and third 
are used as comparison cases. The second algorithm follows the same steps as algorithm 1 but 
rather than using the CORT dissimilarity the Euclidian dissimilarity was applied. The third 
algorithm is a naïve comparison case where the change point detection algorithm (i.e., PELT) is 
applied directly to the post period data.  
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Algorithm 1  
Input: Post period time series and baseline model predictions for the post period 
 

1) Extract the energy consumption time series for each day of the post period. This produces 
two 𝑑𝑑 × 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 matrices, 𝑀𝑀𝑑𝑑𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 and 𝑀𝑀𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛, where 𝑑𝑑 is the number of days that are 
found in the post period and 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 is the number of observations in each day (e.g., with 
hourly data 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 = 24). This matrix representation of the post period time series is used 
to compute the dissimilarity metric. 

2) For each row of 𝑀𝑀𝑑𝑑𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎  and 𝑀𝑀𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 compute the daily CORT dissimilarity metric 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡�𝑀𝑀𝑑𝑑𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎[𝑑𝑑, 1:𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑],𝑀𝑀𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛[𝑑𝑑, 1:𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑]�, with 𝑑𝑑 = 1, … ,𝑑𝑑. The results will 
be a time series 𝐷𝐷 of length 𝑑𝑑 where each element represent the dissimilarity between the 
actual and the prediction energy consumption time series for each day. 

3) Apply the change point PELT algorithm (described in section 2.1.2) to the 𝐷𝐷 time series.  
 
Output: 𝛿𝛿1:𝑛𝑛 = (𝛿𝛿1, … , 𝛿𝛿𝑛𝑛), a vector with locations of n change points (i.e., potential NREs) 
 
Algorithm 2  
Input: Post period time series and baseline model predictions for the post period. 
 

1) Extract the energy consumption time series for each day of the post period. This produces 
two 𝑑𝑑 × 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 matrices, 𝑀𝑀𝑑𝑑𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 and 𝑀𝑀𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛, where 𝑑𝑑 is the number of days that are 
found in the post period and 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 is the number of observations in each day (e.g., with 
hourly data 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 = 24). This matrix representation of the post period time series is used 
to compute the dissimilarity metric. 

2) For each row of 𝑀𝑀𝑑𝑑𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎  and 𝑀𝑀𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛 compute the daily Euclidian dissimilarity metric 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐸𝐸�𝑀𝑀𝑑𝑑𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎[𝑑𝑑, 1:𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑],𝑀𝑀𝑝𝑝𝑐𝑐𝑝𝑝𝑑𝑑𝑖𝑖𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛[𝑑𝑑, 1:𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑]�, with 𝑑𝑑 = 1, … ,𝑑𝑑. The results will be a 
time series 𝐷𝐷 of length 𝑑𝑑 where each element represent the Euclidian dissimilarity 
between the actual and the prediction energy consumption time series for each day. 

3) Apply the change point PELT algorithm (defined in section 2.1.2) to the 𝐷𝐷 time series.  
 
Output: 𝛿𝛿1:𝑛𝑛 = (𝛿𝛿1, … , 𝛿𝛿𝑛𝑛), a vector with locations of n change points (i.e., potential NRE) 
 
Algorithm 3  
Input: Post period time series  
 

1) Extract the energy consumption time series for each day of the actual post period. This 
produces a 𝑑𝑑 × 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 matrix 𝑀𝑀𝑑𝑑𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎 , where 𝑑𝑑 is the number of days that are found in the 
post-period and 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 is the number of observations in each day (e.g., with hourly data 
𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 = 24). 

2) For each row of 𝑀𝑀𝑑𝑑𝑐𝑐𝑡𝑡𝑎𝑎𝑑𝑑𝑎𝑎  aggregate the energy consumption. The results will be a time 
series 𝐷𝐷 of length 𝑑𝑑 where each element represent the daily energy consumption. 

3) Apply the change point PELT algorithm (defined in section 2.1.2) to the 𝐷𝐷 time series.  
 
Output: 𝛿𝛿1:𝑛𝑛 = (𝛿𝛿1, … , 𝛿𝛿𝑛𝑛), vector with locations of n change points (i.e., potential NRE) 
 
Note that the changepoint R package [16] was used for computing the PELT algorithm and the 
dissimilarities were computed using the Tsclust R package [17]. 
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2.2 Non-Routine Event Adjustment 
 
The proposed methodology for NRE adjustment is based on a statistical approach that involves 
the NRE detection algorithm, the M&V practitioner’s knowledge, and a regression model (i.e., 
GBM).  
 
The NRE Adjustment methodology follows six steps, some of which can be automated, and some 
of which must be performed by the M&V practitioner: (1) estimate the locations of potential 
NREs using the NRE detection algorithm; (2) verify which detected NREs merit an adjustment to 
the saving calculation using project information or site inquiry, and validate their actual date of 
occurrence; (3) exclude from the post period time series the data points from the verified NRE 
periods; (4) train the regression model using the remaining data of the post period time series; (5) 
use the trained model to predict what the energy consumption would have been within the NRE 
periods if no NRE was present; (6) use the model predicted values as replacement data for the 
periods in which the NRE was present. The final step of the methodology produces the adjusted 
post period time series. Note that in real-world efficiency projects, the question of whether 
detected NREs merit an adjustment to the savings calculation may be quite nuanced, as further 
elaborated in the Discussion in Section 5. 

3. Methods to assess effectiveness of NRE detection and adjustment algorithms 
 
The proposed methodology for NRE detection and adjustment was tested using simulated hourly 
energy consumption data generated using EnergyPlusTM models for two types of DOE reference 
buildings [14]: primary school (PS) and large office (LO). The advantage of using simulation data 
is that it is possible to generate different testing configurations, i.e., a post period without an 
energy efficiency measure (and therefore a base case with no savings), a post period with an 
energy efficiency measure and no NREs, and a post period with an energy efficiency measure and 
with an NRE. Thus, it is possible to evaluate the accuracy of the detected NRE and the accuracy 
of the adjusted savings. A dataset comprising eight different combinations were generated (a 
summary of these eight scenarios is provided in Table 1. For each type of building four different 
TMY weather data were used that correspond to the following cities: Miami, Chicago, San 
Francisco and Phoenix. Note that in order to have different weather data between the pre and post 
periods, TMY2 weather data were used for pre period and TMY3 for post period.  Depending on 
the scenario (see Table 1) one of two different type of retrofit was modeled: reducing lighting 
power density and increasing cooling equipment efficiency. In addition, different NRE were 
introduced at different time steps in the post period. For the LO buildings four NREs types were 
applied (one for each scenario that involves LO): (1) change in occupancy start and end time; (2) 
change in occupancy density; (3) change in the electrical baseload; (4) cooling failure. For the PS 
three NREs were considered: (1) school days scheduled during the summer vacation; (2) change 
in the electrical baseload; (3) fault in cooling (cooling production is stopped). In addition to the 
described NREs, two auxiliary short-term NREs were added in the post period in each scenario. 
These two NREs correspond to two US federal holidays that occur in January 16th and February 
20th (i.e., Martin Luther King Jr. Holiday and Presidents Day). In this study holidays are used as 
convenient proxies for short term NREs - these two days were considered as normal operational 
days when the baseline models were trained (i.e., there is no independent variable in the input 
data that state that these two days are holidays). Note that in the EnergyPlus simulation models 
only these two dates are defined as holidays (i.e., days where the building is considered as 
unoccupied).  
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Table 1- Scenarios simulated to test NRE detection and adjustment 
 

Building 
name 

city Retrofit NRE 

PS_1 Chicago Reducing Lights Power Density 
in Classrooms only from 
21.52W/m² (2W/ft²) to 13W/m² 
(1.2W/ft²) 

The nominal value of the baseload for electrical plug was multiplied 
by ~1.83 between March 15th and April 8th (temporary NRE) 

PS_2 Miami Increasing Cooling Equipment 
Efficiency: Chiller COP from 
3.2 to 4.8 

In session schedules applied during Summer Vacation: July 13th to 
August 7th (temporary NRE) 

PS_3 San 
Francisco 

Increasing Cooling Equipment 
Efficiency: Chiller COP from 
3.2 to 4.8 

School days schedules applied during Summer Vacation: July 1th to 
August 11th (temporary NRE) 

PS_4 Phoenix Reducing Lights Power Density 
in Classrooms only from 
21.52W/m² (2W/ft²) to 13W/m² 
(1.2W/ft²) 

Cooling failure from June 12th to July 6th (temporary NRE) 

LO_1 Miami Increasing Cooling Equipment 
Efficiency: Chiller COP from 
5.2 to 7.8 

Change in occupancy period start and end time: from (8am-5pm) to 
(6am-6pm) between June 26th and July 31st (temporary NRE) 

LO_2 Chicago Reducing Lights Power Density 
in Classrooms only from 
16.89W/m² (1.6W/ft²) to 8W/m² 
(0.74W/ft²) 

Cooling failure from June 5th through August 9th (temporary NRE) 

LO_3 San 
Francisco 

Reducing Lights Power Density 
in Classrooms only from 
16.89W/m² (1.6W/ft²) to 8W/m² 
(0.74W/ft²) 

Two changes in occupant density. First between May 3rd and August 
29th (temporary NRE) the occupant density is multiplied by a factor 
of ~0.57. Then starting from August 30th (permanent NRE) the 
occupant density is again multiplied by a factor of ~0.64  

LO_4 Phoenix Increasing Cooling Equipment 
Efficiency: Chiller COP from 
5.2 to 7.8 

The nominal value of the baseload for electrical plug was multiplied 
by ~1.71 starting from June 11th (permanent NRE) 

 
 
 
Accuracy metrics 
 
The evaluation procedure was performed by applying the proposed algorithms on each 
combination of building, type of retrofit, and NRE. The accuracy of the NRE detection was 
assessed by calculating the percentage of identified change points that were true NREs (true 
positive, or “TP”), and what percentage were not true NREs (false positive, or “FP”). These two 
metrics are defined as: 
 

𝐶𝐶𝑇𝑇 = 100 ×  
∑ 𝐼𝐼�min

𝑗𝑗
��𝑁𝑁𝐶𝐶𝐸𝐸𝑖𝑖−𝛿𝛿𝑗𝑗�� ≤ 𝑡𝑡ℎ�𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁
  (7) 

 
𝐹𝐹𝑇𝑇 = 100 × �1 − 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁×𝐶𝐶𝑇𝑇

𝑛𝑛
�   (8) 

 
Where 𝑁𝑁𝐶𝐶𝑁𝑁𝑖𝑖 is the actual location of the ith NRE, 𝛿𝛿𝑗𝑗  is the location of the jth detected potential 
NRE using the proposed algorithms,  𝛽𝛽𝑁𝑁𝐶𝐶𝐸𝐸  is the actual number of locations (i.e., dates) where 
there is an NRE, 𝛽𝛽 is the number of potential NRE, and 𝑡𝑡ℎ is the threshold that defines an actual 
NRE as detected by the algorithm if the estimated position is within ±𝑡𝑡ℎ  number of days. In 
other words, if the closest detected potential NRE date to the ith actual NRE date is within a 
range of plus or minus 𝑡𝑡ℎ days, this NRE is considered as successfully detected. In this analysis 
𝑡𝑡ℎ = 2 was arbitrarily selected. Finally, 𝐼𝐼(𝑥𝑥) is the indicator function defined as 
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𝐼𝐼(𝑥𝑥) = �1 𝑑𝑑𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

0 𝑡𝑡𝑙𝑙𝑑𝑑𝑡𝑡
 

 
The accuracy of the NRE adjustment were evaluated using the absolute error (AE) of the 
estimated fractional savings, defined as 
 

𝐴𝐴𝑁𝑁 = �𝐹𝐹𝑆𝑆 − 𝐹𝐹𝑆𝑆�� (9) 

where 𝐹𝐹𝑆𝑆  is the actual fractional savings defined as 𝐹𝐹𝑆𝑆 =
𝐸𝐸𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑛𝑛𝑟𝑟𝑖𝑖𝑡𝑡
𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡 −𝐸𝐸𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑛𝑛𝑟𝑟𝑖𝑖𝑡𝑡

𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡

𝐸𝐸𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑛𝑛𝑟𝑟𝑖𝑖𝑡𝑡
𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡 , with the post 

period aggregated energy consumption 𝑁𝑁𝑛𝑛𝑐𝑐 𝑐𝑐𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡
𝑝𝑝𝑐𝑐𝑝𝑝𝑡𝑡  and 𝑁𝑁𝑐𝑐𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡

𝑝𝑝𝑐𝑐𝑝𝑝𝑡𝑡  are respectively corresponding 
to when no retrofit was applied  and when a retrofit was applied. 𝐹𝐹𝑆𝑆�  is the estimated fractional 

savings defined as 𝐹𝐹𝑆𝑆� =
𝐸𝐸�𝑏𝑏𝑏𝑏𝑝𝑝𝑟𝑟𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟
𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡 −𝐸𝐸𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑛𝑛𝑟𝑟𝑖𝑖𝑡𝑡

𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡

𝐸𝐸�𝑏𝑏𝑏𝑏𝑝𝑝𝑟𝑟𝑏𝑏𝑖𝑖𝑛𝑛𝑟𝑟
𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡 , with 𝑁𝑁�𝑏𝑏𝑑𝑑𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖𝑛𝑛𝑝𝑝

𝑝𝑝𝑐𝑐𝑝𝑝𝑡𝑡  is the post period aggregated energy 

consumption estimated using GBM baseline model. Note that 𝐹𝐹𝑆𝑆�  become adjusted fractional 
savings (𝐹𝐹𝑆𝑆�𝑑𝑑𝑑𝑑𝑗𝑗𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑) if 𝑁𝑁𝑐𝑐𝑝𝑝𝑡𝑡𝑐𝑐𝑐𝑐𝑟𝑟𝑖𝑖𝑡𝑡

𝑝𝑝𝑐𝑐𝑝𝑝𝑡𝑡  is adjusted using the proposed methodology. 

4. Results 
 
4.1 Results of NRE detection algorithm 
 
The accuracy of the proposed algorithm for detecting NRE (i.e., algorithm 1 involving CORT 
dissimilarity) is compared to algorithm 2 (i.e., involving the Euclidian dissimilarity) and 
algorithm 3. The metrics of the NRE detection accuracy (i.e., TP and FP) were computed across 
the full test dataset (i.e., eight scenarios) and are summarized in Table 2. In addition, Figures 2.1-
2.8 display the time series of the actual post period energy consumption time series at daily 
granularity and the corresponding dissimilarity time series (computed as described in algorithm 
1). In these plots the normal operation periods are depicted in blue, the NRE period in red (red 
points for short-term NREs) and in green (if two successive events are involved) and the NRE 
detected by Algorithm 1 are represented by vertical black lines. Note that the choice of 
representing the energy consumption time series at daily granularity was motivated by the fact 
that the NRE detection was performed at the daily level. The reader is reminded that 
determination of ‘actual’, ‘present’ and ‘absent’ is based on simulated scenarios.      
 
 
The results in Table 2 shows that algorithm 3 performed poorly in detection of actual NRE in 
majority of cases, except for PS_1 however for this configuration it had a very significant number 
of false positives (i.e., 28). Algorithm 2 performed significantly better than algorithm 3 for all the 
scenarios. In comparison to algorithm 1, algorithm 2 underperformed in 6 scenarios (i.e., PS_1, 
PS_3, PS_4, LO_1, LO_2 and LO_3), had similar results for LO_3 and had better results in term 
of detected FP for PS_2. Algorithm 1 performed quite well in term of detecting the actual NRE. 
For 5 out of 8 buildings configurations Algorithm 1 has detected all the actual NRE. Meanwhile 
for 3 out of 8 it has detected all except one, however for these 3 building combinations Figure 
2.1, 2.6 and 2.7 show that the algorithm has detected a change point relatively close to the NRE 
but not close enough to be defined as actual NRE, which is due to the restrictive threshold that we 
have arbitrarily defined in equation 7. Although these results are quite good it is important to note 
the relatively high number of false positive detected by the algorithm. With a high number of 
false positives the role of the M&V practitioner in verifying and validating the algorithm outputs 
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becomes increasingly important (although this ‘human in the loop’ step must be included 
regardless of algorithm performance, to ensure rigor, particularly for utility program M&V). Note 
that to assess some of the impact on the results of using a different value of the threshold th in in 
equation 7, additional results are shown in the appendix for th = 1 and th =3. 
 
Figures 2.1-2.8 show that the false positive are due to a significant variation in the dissimilarity 
time series which may be due to several reasons, e.g., the interim effect of the implemented 
retrofit, which generate a change in the energy consumption only during a specific period of the 
year (i.e., increase in cooling efficiency); a period where the baseline model has lower accuracy, 
this can increase the dissimilarity metric and such possibly make the change point algorithm 
detect a change in the statistical properties.  
 
 
 

Table 2- Accuracy metrics of the NRE detection for the eight tested scenarios. The numbers of true 
positives and false positives are shown in parentheses 

 
Building Number 

of 
actual 
NRE 

 

Algorithm 1 Algorithm 2 Algorithm 3 
Number  

of 
detected  

NRE 

True  
Positive 

False 
Positive 

Number  
of 

detected  
NRE 

True  
Positive 

False 
Positive 

Number  
of 

detected  
NRE 

True  
Positive 

False 
Positive Name Type Location 

PS_1 Primary 
Schools 

Chicago 4 8 75% (3) 63% (5) 7 50% (2) 72% (5) 32 100% (4)  88% (28) 

PS_2 Miami 4 7 100% (4) 43% (3) 5 100% (4) 20% (1) 1 0% (0) 100% (1) 

PS_3 San 
Francisco 

4 6 100% (4) 33% (2) 8 75% (3) 65% (5) 31 50% (2) 94% (29) 

PS_4 Phoenix 4 5 100% (4) 20% (1) 7 75% (3) 57% (4) 9 0% (0) 100% (9) 

LO_1 Large 
Offices 

Miami 4 6 100% (4) 33% (2) 8 75% (3) 63% (5) 2 0% (0) 100% (2) 

LO_2 Chicago 4 5 75% (3) 40% (2) 2 25% (1) 50% (1) 5 0% (0) 100% (5) 

LO_3 San 
Francisco 

4 5 75% (3) 40% (2) 6 50% (2) 67% (4) 1 25% (1) 0% (0) 

LO_4 Phoenix 3 9 100% (3) 67% (6) 9 100% (3) 67% (6) 7 33% (1) 86% (6) 
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Fig 2.1 Time series of actual energy consumption during the post-period (upper graphic) and time series of the dissimilarity 
metric (lower graphic) of the scenario for a primary school located in Chicago, with a reduction in lighting power density as 

the efficiency measure, and a change in the electrical baseload as NRE. Blue depicts periods of time in which NREs were 
absent; red indicates periods of time in which NREs were present. 

 

 
Fig 2.2 Time series of actual energy consumption during the post-period (upper graphic) and time series of the dissimilarity 

metric (lower graphic) of the scenario for a primary school located in Miami, with an increase in the cooling equipment 
efficiency as the efficiency measure, and a change in the occupancy density as the NRE. Blue depicts periods of time in which 

NREs were absent; red indicates periods of time in which NREs were present. 
 

 
Fig 2.3 Time series of actual energy consumption during the post-period (upper graphic) and time series of the dissimilarity 

metric (lower graphic) of the scenario for a primary school located in San Francisco, with an increase in the cooling equipment 
efficiency as the efficiency measure, and a change in the occupancy density as the NRE. Blue depicts periods of time in which 

NREs were absent; red indicates periods of time in which NREs were present. 
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Fig 2.4 Time series of actual energy consumption during the post-period (upper graphic) and time series of the dissimilarity 
metric (lower graphic) of the scenario for a primary school located in Phoenix, with a reduction in lighting power density as 

the efficiency measure, and a cooling failure as the NRE. Blue depicts periods of time in which NREs were absent; red 
indicates periods of time in which NREs were present. 

 

  
Fig 2.5 Time series of actual energy consumption during the post-period (upper graphic) and time series of the dissimilarity 

metric (lower graphic) of the scenario for a large office located in Miami, with an increase in the cooling equipment efficiency 
as the efficiency measure, and a change in the occupancy start and end time as the NRE. Blue depicts periods of time in which 

NREs were absent; red indicates periods of time in which NREs were present. 
 
 

  
Fig 2.6 Time series of actual energy consumption during the post-period (upper graphic) and time series of the dissimilarity 
metric (lower graphic) of the scenario for a large office located in Chicago, with a reduction in lighting power density as the 
efficiency measure, and a cooling failure as the NRE. Blue depicts periods of time in which NREs were absent; red indicates 

periods of time in which NREs were present. 
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Fig 2.7 Time series of actual energy consumption during the post-period (upper graphic) and time series of the dissimilarity 

metric (lower graphic) of the scenario for a large office located in San Francisco, with a reduction in lighting power density as 
the efficiency measure, and changes in the occupancy density as the NRE. Blue depicts periods of time in which NREs were 

absent; red and green indicate periods of time in which NREs were present. 
 

 
Fig 2.8 Time series of actual energy consumption during the post-period (upper graphic) and time series of the dissimilarity 

metric (lower graphic) of the scenario for a large office located in Phoenix, with an increase in the cooling equipment efficiency 
as the efficiency measure, and a change in the electrical baseload as the NRE. Blue depicts periods of time in which NREs were 

absent; red indicates periods of time in which NREs were present. 
 

  



15 

4.2 Results of NRE adjustment methodology 
 
Table 3 summarize the results of the accuracy assessment of the proposed approach to adjust the 
NRE in the post period. The second column (i.e., Actual Fractional Savings) of the table shows 
the true fractional savings of the retrofit in the absence of any NREs (computed using simulated 
post-period time series data with no NRE and no retrofit, and subtracting consumption from a 
time series where the retrofit was implemented but not the NRE). The third column (Non-
adjusted) shows the estimated fractional savings and the corresponding absolute error (defined by 
equation 9). These estimated fractional savings (i.e., 𝑭𝑭𝑭𝑭� ) were computed using the predictions 
time series provided by the baseline model and the time series where the retrofit and the NRE 
were implemented (in this scenario the NRE is treated as part of the overall energy savings). In 
the fourth column (i.e., Adjusted) the adjusted fractional savings (i.e., 𝑭𝑭𝑭𝑭�𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂) were 
calculated using the method described in Section 3.2.  
 
Recall that for the estimated fractional savings the 𝑭𝑭𝑭𝑭�𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 values that are the closest to the 
actual FS are desired (i.e., lower AE value). From Table 3 one can see that the adjusted estimates 
of the fractional savings are very close to the actual values, which means that for this test dataset 
the proposed NRE adjustment methodology successfully reduced the error introduced by the 
NRE. For all the building configurations the AE of the adjusted FS estimates were smaller or 
equal than 0.7%, while for the non-adjusted estimates the AE span from 1% to 11.9%. Figures 
3.1-3.8 are the graphical representation of the adjustment of the NRE periods during the post 
period. In each plot a zoom around the NRE period is depicted, i.e., the left graphics show the 
two NRE that correspond to the two US federal holidays that occurs in January 16th and February 
20th (i.e., Birthday of Martin Luther King Jr. and Washington’s birthday). The right graphics 
show a zoom around the NRE periods that correspond to the NRE introduced in the EnergyPlus 
model and which are described in Table 1. In red are represented the values of the energy 
consumption before the NRE adjustment and in blue the 𝑭𝑭𝑭𝑭�𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 values generated for the 
NRE periods. It is important to note that the two holidays were adjusted in this analysis because 
they are considered as proxies for short-term NREs. This is not to suggest that holidays, as a 
general rule, merit savings adjustments. An appropriate strategy to address holidays is to 
explicitly include them as independent variables in the baseline model. 
 
 

Table 3- Accuracy metrics of the NRE adjustment for the eight tested building configurations 
 

Building Actual 
Fractional 

Savings 

Non-adjusted Adjusted 
Name Type Location Estimated 

Fractional 
Savings 

Absolute 
Error 

Estimated 
Fractional 

Savings 

Absolute 
Error 

PS_1 Primary 
School 

Chicago 15.3% 14.3% 1% 15.2% 0.1% 
PS_2 Miami 8.6% 4.9% 3.7% 8.3% 0.6% 
PS_3 San 

Francisco 
1.6% -1.1% 2.7% 1.1% 0.5% 

PS_4 Phoenix 13.7% 16.6% 2.9% 13.1% 0.6% 
LO_1 Large 

Office 
Miami 7.8% 6.5% 1.3% 7.3% 0.5% 

LO_2 Chicago 10.5% 11.9% 1.4% 10.6% 0.1% 
LO_3 San 

Francisco 
10.8% 22.7% 11.9% 10.2% 0.6% 

LO_4 Phoenix 5.1% -3.8% 8.9% 5.8% 0.7% 
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Fig 3.1 Plots of post period data of the scenario for a primary school located in Chicago, with a reduction on lighting power 

density as the retrofit, and a change in the electrical baseload as NRE. Left graphic shows two holidays in January/February, 
and right graphic shows subsequent NRE periods in each data set.  Actual consumption data is shown in red, and algorithm-

adjusted values are shown in blue. 
 
 

 
Fig 3.2 Plots of post period data of the scenario for a primary school located in Miami, with an increase in the cooling 

equipment efficiency as the retrofit and a change in the occupancy density as the NRE. Left graphic shows two holidays in 
January/February, and right graphic shows subsequent NRE periods in each data set.  Actual consumption data is shown in 

red, and algorithm-adjusted values are shown in blue. 
 
 

 
Fig 3.3 Plots of post period data of the scenario for a primary school located in San Francisco, with an increase in the cooling 

equipment efficiency as the retrofit and a change in the occupancy density as the NRE. Left graphic shows two holidays in 
January/February, and right graphic shows subsequent NRE periods in each data set.  Actual consumption data is shown in 

red, and algorithm-adjusted values are shown in blue. 
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Fig 3.4 Plots of post period data of the scenario for a primary school located in Phoenix, with a reduction on lighting power 

density as the retrofit and a cooling failure as the NRE. Left graphic shows two holidays in January/February, and right 
graphic shows subsequent NRE periods in each data set.  Actual consumption data is shown in red, and algorithm-adjusted 

values are shown in blue. 
 
 

 
Fig 3.5 Plots of post period data of the scenario for a large office located in Miami, with an increase in the cooling equipment 

efficiency as the retrofit and a change in the occupancy start and end time as the NRE. Left graphic shows two holidays in 
January/February, and right graphic shows subsequent NRE periods in each data set.  Actual consumption data is shown in 

red, and algorithm-adjusted values are shown in blue. 
 
 

 

 
Fig 3.6 Plots of post period data of the scenario for a large office located in Chicago, with a reduction on lighting power density 

as the retrofit and a cooling failure as the NRE. Left graphic shows two holidays in January/February, and right graphic 
shows subsequent NRE periods in each data set.  Actual consumption data is shown in red, and algorithm-adjusted values are 

shown in blue. 
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Fig 3.7 Plots of post period data of the scenario for a large office located in San Francisco, with a reduction on lighting power 

density as the retrofit and changes in the occupancy density as the NRE. Left graphic shows two holidays in 
January/February, and right graphic shows subsequent NRE periods in each data set.  Actual consumption data is shown in 

red, and algorithm-adjusted values are shown in blue. 
 
 

 
Fig 3.8 Plots of post period data of the scenario for a large office located in Phoenix, with an increase in the cooling equipment 

efficiency as the retrofit and a change in the electrical baseload as the NRE. Left graphic shows two holidays in 
January/February, and right graphic shows subsequent NRE periods in each data set.  Actual consumption data is shown in 

red, and algorithm-adjusted values are shown in blue. 

 
5. Discussion 
 
The results showed that the performance of the detection portion of the algorithm was quite 
strong, both in an absolute sense, and versus the two other tested algorithms. The true positive 
rate ranged from 75%-100%. Given that the threshold used in the true positive metric was set 
relatively conservative at +/- 2 days, it is possible that the true positive rate could be further 
increased, however this would come with a tradeoff for what is practical for real-world 
implementation. Given the relatively limited number of test cases, it is difficult to draw 
conclusions as to the nature and type of events that were not detected by the algorithm, however 
this could be explored in future work.   
 
The false positive NRE detection rate was lower than that of the benchmarks in the majority of 
test cases, however, with a range of 20-70% is likely higher than ideal. The improved 
performance versus the benchmarks is due to the use of the CORT dissimilarity metric. 
 
The relatively high true positive rate and higher than ideal false positive rate might suggest that 
there may be room to ‘tune’ the algorithm so that a high true positive rate is maintained while 
also improving the false positive rate. Significant effort was indeed spent tuning, and the results 
shown are the best that could be achieved in the scope of this effort. The challenge associated 
with false positives is rooted in the inherent variability in building energy consumption – it is 
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very difficult to differentiate between a non-routine change and the normal behavior of the 
building.  
 
Savings M&V for incentive-based utility efficiency programs present a high bar for rigor as 
compared to other M&V applications; in that context it might be acceptable to trade a relatively 
higher false positive rate for a higher true positive rate. This consideration speaks to the concept 
of streamlining versus full automation. It is important to emphasize that the goal of advanced 
M&V or M&V 2.0 is not full automation, but rather to leverage higher resolution data and 
automated computation to arrive at more timely, accurate results [15]. Thus, current research 
focuses on analysis methods paired with process guidance for professional practitioners, 
maintaining a ‘human in the loop’.  
 
The design for human in the loop workflows relates to interpretation of the results for the 
adjustment portion of the algorithm. Once a potential event is detected, the practitioner must 
verify whether the event was or was not non-routine, using either their knowledge of the project 
or building, confirmation with site points of contact, or other methods. This verification may also 
support the practitioner to isolate the true (as opposed to algorithm estimated) dates of occurrence 
of the event. The adjustment results that were presented showed 0.7% error or less in the final 
energy savings estimates, versus ground truth, once adjustments were made to account for the 
non-routine events. This represents a best-case scenario for which the event dates are known with 
certainty. In real-world application, there will likely be some uncertainty in isolating precise dates 
of event occurrence. In addition, it likely that adjustments for events of longer duration will incur 
more error. This is because the statistical models used to make the adjustment must be 
constructed from a more constrained set of data, while also predicting longer periods of 
consumption.  
 
More generally, in real-world efficiency projects, the practitioner must confront the question of 
whether a detected NRE merits an adjustment to the savings calculation. Two examples presented 
in this work illustrate some of the nuance involved. A short-duration building shut-down (e.g., 
holiday) that was not expected given the independent variables used to train the model, but that 
nonetheless represents standard operation of the building would not be a candidates for 
adjustment, as if it did not occur. Similarly, a school that is assumed to shut-down during 
summer, yet regularly operates for a portion of the summer is not operating ‘non-routinely’ and 
would not require an adjustment. While these examples relate to assessment of anomalous 
behavior versus behavior that fits an expected or modeled pattern, the industry is also grappling 
with questions surrounding materiality. That is, what is the threshold at which an adjustment 
should be made, or is likely to improve the savings estimate, given that the adjustments 
calculation itself will also carry some uncertainty.  
 
Independent of these nuances in savings estimation, change detection has additional relevance to 
ensuring persistence in efficient operations. The methods used in this work are equally applicable 
to, and can be extended to automated energy and equipment fault detection, where it is also 
necessary to identify deviation from the norm. 
 
 

6. Conclusions and Future Work 
A methodology for NRE detection and adjustment based on data driven methods was introduced 
and applied on a simulated dataset generated with EnergyPlus. The results of this study show that 
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the proposed approach holds promise for helping M&V practitioners to streamline the process of 
detecting NREs and adjusting the corresponding energy consumption to improve the accuracy of 
the meter-based savings estimates. There are many opportunities for future research, beginning 
with testing and validation against a larger set of simulated scenarios, and testing against data 
from real buildings and projects. Further work is needed to explore the impact on algorithm 
performance of parameters such as NRE duration, magnitude and type, and building type. Use by 
practitioners will provide valuable insights as to the practical viability of the approach, and 
suitability of the current balance between true and false positive rates.  
 
Beyond expanded testing there is opportunity to augment the methodology to estimate the 
uncertainty on the adjustment, and to improve it for use with long-duration NREs. At a more 
general level, there is value in additional research to characterize how frequently NREs arise in 
efficiency projects of various types, the magnitude of their impact on savings results.  
 
Finally, we recognize that meter-based savings analyses are often delivered as one of many 
capabilities in commercial energy analytics tools that are used to identify operational efficiency 
measures. As such, there is also clear value in future work to explore how the change detection 
techniques developed in this work would also be applied to energy anomaly and equipment faults 
detection. 
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Appendix: 
 

In order to assess the impact of varying the threshold th in Equation 7 on the results of the NRE 
detection algorithms, the accuracy metrics were recalculated using two different values for th 
(i.e., th=3 and th=1). Table A.1 and Table A.2 summarize the results for threshold th=3 and th=1 
respectively. In comparison to the results with th=2, there was no improvement in the results for 
algorithm 1 when th=3 was used. For algorithm 2 and algorithm 3 the results were improved for 
two scenarios (scenarios PS_3 and LO_1 for algorithm 2; scenarios PS_4 and LO_4 for algorithm 
3).  With th=1 the results of algorithm 1 were the most impacted in comparison to the two other 
algorithms. In three out of eight test scenarios (scenarios PS_1, PS_2 and PS_3) the NRE 
detection accuracy decreased. For algorithm 2 and algorithm 3 the accuracy deteriorated for one 
test scenario each (i.e., PS_2 for algorithm 2 and PS_1 for algorithm 3). For both values of th 
(i.e., th=1 and th=3) the algorithm 1 outperformed the two others in the majority of test 
scenarios.     

 
Table A.1- Accuracy of NRE detection for the eight tested scenarios using th=3 in Equation 7. The 

numbers of true positives and false positives are shown in parentheses 
 

Building Number 
of 

actual 
NRE 

 

Algorithm 1 Algorithm 2 Algorithm 3 
Number  

of 
detected  

NRE 

True  
Positive 

False 
Positive 

Number  
of 

detected  
NRE 

True  
Positive 

False 
Positive 

Number  
of 

detected  
NRE 

True  
Positive 

False 
Positive Name Type Location 

PS_1 Primary 
Schools 

Chicago 4 8 75% (3) 63% (5) 7 50% (2) 72% (5) 32 100% (4)  88% (28) 

PS_2 Miami 4 7 100% (4) 43% (3) 5 100% (4) 20% (1) 1 0% (0) 100% (1) 

PS_3 San 
Francisco 

4 6 100% (4) 33% (2) 8 100% (4) 50% (4) 31 50% (2) 94% (29) 

PS_4 Phoenix 4 5 100% (4) 20% (1) 7 75% (3) 57% (4) 9 25% (1) 89% (8) 

LO_1 Large 
Offices 

Miami 4 6 100% (4) 33% (2) 8 100% (4) 50% (4) 2 0% (0) 100% (2) 

LO_2 Chicago 4 5 75% (3) 40% (2) 2 25% (1) 50% (1) 5 0% (0) 100% (5) 

LO_3 San 
Francisco 

4 5 75% (3) 40% (2) 6 50% (2) 67% (4) 1 25% (1) 0% (0) 

LO_4 Phoenix 3 9 100% (3) 67% (6) 9 100% (3) 67% (6) 7 66% (2) 66% (5) 

 
Table A.2- Accuracy of NRE detection for the eight tested scenarios using th=1 in Equation 7. The 

numbers of true positives and false positives are shown in parentheses  
 

Building Numb
er 
of 

actual 
NRE 

 

Algorithm 1 Algorithm 2 Algorithm 3 
Numb

er  
of 

detect
ed  

NRE 

True  
Positi

ve 

False 
Positi

ve 

Numb
er  
of 

detect
ed  

NRE 

True  
Positi

ve 

False 
Positi

ve 

Numb
er  
of 

detect
ed  

NRE 

True  
Positi

ve 

False 
Positi

ve 
Na
me 

Type Locati
on 

PS_
1 

Prima
ry 

Scho
ols 

Chicag
o 

4 8 50% 
(2) 

75% 
(6) 

7 50% 
(2) 

72% 
(5) 

32 50% 
(2)  

94% 
(30) 

PS_
2 

Miami 4 7 25% 
(1) 

85% 
(6) 

5 50% 
(2) 

20% 
(3) 

1 0% (0) 100% 
(1) 

PS_
3 

San 
Francis

co 

4 6 75% 
(3) 

50% 
(3) 

8 75% 
(3) 

63% 
(5) 

31 50% 
(2) 

94% 
(29) 

PS_
4 

Phoeni
x 

4 5 100% 
(4) 

20% 
(1) 

7 75% 
(3) 

57% 
(4) 

9 0% (0) 100% 
(9) 

LO_
1 

Large 
Offic

Miami 4 6 75% 
(3) 

50% 
(3) 

8 75% 
(3) 

63% 
(5) 

2 0% (0) 100% 
(2) 
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LO_
2 

es Chicag
o 

4 5 75% 
(3) 

40% 
(2) 

2 25% 
(1) 

50% 
(1) 

5 0% (0) 100% 
(5) 

LO_
3 

San 
Francis

co 

4 5 75% 
(3) 

40% 
(2) 

6 50% 
(2) 

67% 
(4) 

1 25% 
(1) 

0% (0) 

LO_
4 

Phoeni
x 

3 9 100% 
(3) 

67% 
(6) 

9 100% 
(3) 

67% 
(6) 

7 33% 
(1) 

85% 
(6) 
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