Effects of land-based wind turbine upsizing on community sound levels and power and energy density

LBNL Release Webinar
April 13, 2023

Please Note:
• All participants will be muted during the webinar
• Please submit questions via the Q&A window
• This webinar will be recorded

This analysis was funded by the Wind Energy Technologies Office of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Meet the authors

Ben Hoen*
Research Scientist

Ryan Darlow
Project Engineer

Ryan Haac
Acoustic Consultant

Joe Rand
Energy Policy Researcher

Ken Kaliski
Principal, Noise Control Engineer

* Corresponding author: 1 Cyclotron Drive, Berkeley, CA, 94720. bhoen@lbl.gov
Disclaimer
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

Copyright Notice
This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.
Agenda

• Background
• Data and Methodology
• Results
• Takeaways
Background

Source: Metaefficient, The Tallest Wind Turbines in the US Installed in Texas. 1/18/2008
Average U.S. Turbine Hub Height, Rated Capacity and Rotor Diameter Have Increased Considerably Over Time, Lowering Specific Power

Wind energy experts predict that additional scaling will occur in the future (see Wiser et al, 2021)

2006 levels
- cap: 1.6 MW
- rd: 78 m
- hh: 76 m
- sp: 334 W/m²

Total height in 2023:
- 167 m / 549 ft

- 3.5 MW
- 477 ft / 136 m
- 326 ft / 99 m
- 240 W/m²
Rated Rotor RPM Has Declined Over Time, As Tip Speeds Have Increased, While Wind Speed Has Remained Flat

- As rotors get longer, they must spin more slowly to keep tip speeds under control.
- Despite that, tip speeds have steadily increased.
- Tip speed is considered a key contributor to turbine sound emissions.
- Flat wind speed, coupled with lower specific power, has resulted in increased capacity factors.
Sources of Turbine Sound Are Varied (and Changing Over Time) And Aerodynamics Are A Key Contributor

- Largest contributors to sound are, in this order:

Figure 5. Components and Total Sound Power Level of a Wind Turbine

Accordingly, Sound Power Level Of Turbines Has Increased Over Time As Well

- Turbine “sound power level” represents the sound energy emitted by the wind turbine
- The average sound power level of turbines installed since 2013 has exceeded 106 dBA and reached >108 dBA in 2020.
This Increase Might Be Mitigated By Serrated Trailing Edge Treatments and Noise Reduced Operations

- **Serrated trailing edges (STE) (see example)**
 - reduces sound by ~ 1.5 dBA
 - Is becoming more common
 - 25% of installations in 2019 had STE, ~ 50% in 2021, and likely 100% in future

- **Noise reduced operation (NRO)** is when a turbine RPM is slowed, yet via blade angle, torque is increased, such that relatively similar power is generated despite slower RPM. With lower RPM, sound is reduced.
 - Because of the increase in torque, stress is added to turbine blade and towers and gearbox
 - Used only in specific situations for single or small sets of turbines (we are told)
Why Does Sound From Turbines Matter?

• It’s a wind project design constraint in most U.S. areas
• Sound is also heavily regulated outside the U.S.
• Turbine noise is one of the major impacts that people living near turbines experience
• Turbine sound power levels (or sound emissions) have been increasing over time
• Turbines, which need to be sited near transmission, will likely be placed in areas of higher populations densities over time

Source: Oerlemans (2007)
What Do These Changes Mean For An Average Community?

Louder Turbines
Larger Blades and
Higher Hubs
so, Larger Setbacks
but
Higher Nameplate Capacity
Higher Capacity Factor
Data and Methodology

Source: Nordex
Hypothetical Developments: Then, Now & Future

• **Purpose:** To better understand how turbine characteristic changes over time impact communities.

• **Approach:** Use two previously built sites, and “re-develop” them on the desktop using old (“then”), current (“now”), and future turbines from the same OEMs, using the same project design criteria.

• **Examine Changes in:**
 • Number of turbines
 • Project capacity
 • Annual energy output
 • Community sound levels (participants and non-participants)
 • Land use

“Will communities be better or worse off with future turbines?”
11 Different Turbines
3 OEMs

- **Then**: Most popular in U.S. for OEM in the last 10 years (2011-2020)
- **Now**: Most popular in the U.S. for OEM the last 2 years (2019-2020)
- **Now w STE**: Same as Now but with serrated trailing edges (STE) (*no STE SGRE Now model available*)
- **Future w STE**:
 - Appears in American Clean Power (ACP) Association “under development” dataset
 - Confirmed sales in the U.S.
 - ~200 meters in total height
 - Specific power < 300 W/m²
 - Rotor diameter ≤ 170 m
 - STE included standard
22 Total Projects: Each Of The 11 Turbines Are Used To Build Projects At Each of 2 Prototypical U.S. Sites

Site 1
370 receivers; 263 participant parcels covering 49 km² in total; mean parcel size 0.18 km²

Site 2
1312 receivers; 467 participant parcels covering 120 km² in total; mean parcel size 0.25 km²;

Legend
- Participating Parcels
- Non-Participating Parcels
- Receivers
All Projects Used The Same Design Assumptions And Noise Regulations Based On Those "Typical" in Several U.S. States

• Design “rules” and assumptions:
 • Total turbine height = hub height + ½ rotor diameter
 • Setbacks: Turbines have a minimum property and roadway setback distance of 1.3x total turbine height
 • Spacing: Turbines are spaced using an ellipse method with the primary axis (based on prevailing wind direction) of 8 rotor diameters (row-to-row) and a perpendicular secondary axis of 5 rotor diameters (side-to-side)

• Design noise regulations (for sound “pressure” levels on the ground):
 • Participating residences have a maximum sound of 50 dBA (L_{eq1h-max})
 • Non-participating residences have a maximum sound of 45 dBA (L_{eq1h-max})

• Design goal and considerations:
 • Optimize siting for annual project output (MWh/year), while respecting setback, spacing, and noise regulation restrictions.
 • Wind turbine availability not considered
 • Only energy production losses related to wake effects are considered (i.e., not grid availability, transmission losses, etc.)
From “Then” to “Future” Turbines, There Are Consistent Increases In Both Installed Capacity and Output, As Turbine Counts Dropped

From Then to Future:
- Turbine height increases by 80 meters
- 122 to 202 meters
- A 65% increase
From “Then” to “Future” Turbines, There Are Consistent Increases In Both Installed Capacity and Output, As Turbine Counts Dropped

Mostly because of this height increase:

- The number of turbines that can be sited decreases
- 222 to 89 turbines
- 60% decrease
From “Then” to “Future” Turbines, There Are Consistent Increases In Both Installed Capacity and Output, As Turbine Counts Dropped

The total project capacity:
- Initially drops, not able to overcome the increase in size and sound power level
- But eventually increases
- 395 to 438 MW
- 11% increase
From “Then” to “Future” Turbines, There Are Consistent Increases In Both Installed Capacity and Output, As Turbine Counts Dropped

Total project output:
• Increases by 59%
• Because of the lower specific power (higher capacity factor by ~4%) and higher nameplate capacity (by 11%)
• Higher capacity and output might lead in increased economic benefits
As The Projects Moved From “Then” to “Future” Turbines, We See A Consistent Drop In Estimated Sound Levels At Homes

- On average receivers (i.e., home locations) experience lower sound levels as turbines scale
- Lower levels are apparent for both participating and non-participating receivers
With Fewer Turbines, Fewer Host Parcels Are Needed. Parcel Sizes Increase Too, Potentially Favoring Landowners With Larger Holdings
With Fewer Turbines, Fewer Host Parcels Are Needed. Parcel Sizes Increase Too, Potentially Favoring Landowners With Larger Holdings

- The number of host parcels decreases by almost 50% for Future projects.
With Fewer Turbines, Fewer Host Parcels Are Needed. Parcel Sizes Increase Too, Potentially Favoring Landowners With Larger Holdings

- The number of host parcels decreases by almost 50% for Future projects.
- As well average parcel size increases 12% to accommodate the larger turbines.
- This change might favor landowners with larger holdings and discriminate against those (and areas with) with smaller parcel, creating greater disparity between those receiving larger benefits.
Takeaways

Source: https://en.wikipedia.org/wiki/Twin_Groves_Wind_Farm
Takeaways

• Significant turbine scaling is occurring with no sign of abating
• Despite decreasing RPMs we see a steady increase in tip speeds and turbine sound power levels.
• The increase in sound levels and tip speeds might indicate that communities hosting modern turbines will experience higher levels of turbine audibility than communities that are hosting older turbines
• But increased turbine heights and sound levels increase setbacks
• Our analysis finds that modern turbines to be deployed in the next 3-5 years will, potentially, significantly decrease the sounds levels communities experience, while simultaneously increasing installed capacity and annual energy output
• Increases in capacity and output will likely lead to increased tax benefits in the community
• But, the concentration of fewer turbines, on fewer (and larger) parcels might create disparities between those receiving and those not receiving substantial benefits unless addressed
• And, of course, larger turbines likely mean greater turbine visibility in the community, including the enhanced ability to see the turbines from further away
Thank You! Questions?

Contacts
Ben Hoen – bhoen@lbl.gov

For more information
Visit the project landing page: https://emp.lbl.gov/publications/effects-land-based-wind-turbine
Download publications from the Electricity Markets & Policy: https://emp.lbl.gov/publications
Sign up for our email list: https://emp.lbl.gov/mailing-list
Follow the Electricity Markets & Policy on Twitter: @BerkeleyLabEMP

Acknowledgements
This work was funded by the U.S. Department of Energy Wind Energy Technologies Office, under Contract No. DE-AC02-05CH11231.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.