Distribution Data for FIDVR & Load Modeling

Kyle Thomas ET Operations Engineering Dominion Virginia Power

September 30, 2015

Initial Motivation

2011 Timeframe

– NERC TPL-001

 Addition of dynamic load model requirement in planning studies expected/planned

Initial Simulation Observations

- Simulations using composite load model with best guess load composition parameters show widespread FIDVR on Transmission system
- Actual Transmission level monitoring shows little to no widespread FIDVR

– Goal:

- Improve distribution level monitoring capability
- Use captured data to understand phenomena & model parameters
- Use improved model parameters to perform better informed studies

Distribution Data Gap – Capture Duration

SCADA						
^						
Transmission	DFRs, Digital Relays (Large deployment)			PMUs (Large deployment)		
Distribution Substations	Digital Relays, PQ Meters (Small deployment)					
Distribution Circuits	Digital Rec (Small deploy	losers ment)				
Customer	Revenue & A Meters	A <i>MI</i>				
Snaps	shot n	1 <i>S</i>	SE	PC	Cont	l inuous

Distribution Data Gap – Monitoring Resolution

Initial Field Installations

2012-2014

Portable Digital Fault Recorders (DFRs)

- 3 Portable DFRs purchased
- Placed in distribution substations throughout our system
- Can monitor 3-phase voltages and 3phase currents at two distribution feeders
- High resolution oscillography
- Continuous RMS
- Synchrophasors
- Local storage and communications

Initial Field Installations

2012-2014

Initial Field Installations

2012-2014

- High quality data captured over 3 summers

- Moved the Portable DFRs around every summer
- Devices never failed
- Communications had high uptime, local storage a perfect backup

Excellent service to customers

- No significant events captured!
 - Very few events occurred at all
 - The couple of events occurred at very end of the circuits

Distribution PQ Meter Data

2013 and on

 Power Quality meters installed on low-side of Distribution Transformers

- Primary purpose for helping with customer service issues
- PQ data automatically collected via network and dial-up
- Historical data going back to 2005

Example 2 – August 2006 6pm

- Did not find any FIDVR events in the PQ meter network since the 2006-2008 timeframe
 - Problem solved?

- Past: Magnitude trigger with duration setting

- Can capture longer term dynamics following faults
- Current: Trigger on V < 0.9 pu, stop capture upon recovery back to 0.9 pu
 - Very useful for fault analysis, but not for longer dynamics such as A/C motor stalling

Latest Field Installations

Summer 2015

- 10 PQube devices from Joe Eto & Richard Bravo
- Installed on pad mount transformers around our territory
- Selected circuits with portable DFRs and/or digital relays on distribution feeder
- Data being collected at this time

Latest Field Installations

Summer 2015

Going Forward

Standardization = Proliferation

Transmission PMUs as % of Total Capital Expenditure =< 0.1%

- \$1M/yr expected on PDC infrastructure & architecture
- Distribution Substation Hurdles
 - Use 300-series SEL relays (387/351) w/o PMU capability
 - Use Power Quality meters (SEL 734/735) w/o PMU capability
 - Adding PMU functionality to these devices will proliferate PMU technology into Distribution
- Fix/standardize meter and relay settings
- Automate data/file collection
- Distributed Generation increasing need/push for high resolution data on distribution (ex: PMUs)

