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ABSTRACT

Measuring the thermal performance of walls in-situ poses twc separate problems: 1) how to meas—
ure time-varying surface temperatures and heat fluxes on both sidea of the test wall and 2) how
to reduce this data set into s mininal number of paraneters that effectively characterize the
wall. In this paper we present e methodology for interpreting field measursmente of wall per-
formance and describe an fnstrument developed for carrying out such measurements. The method is
a simplified dynamic model that uses a small number of simplified thermal parameters {STP) — &
steady-state conductance, a time constant and a few surface storage termsa — to describe the
termal performance of a wall. We demonstrate the ability of this model to simulate actual wall
performance by comparing model predictions with results generated from conventional response-
factor methods., The instrumsent developed for field measurements is the Envelope Thermal Test
Unit (ETTU), which conalsts of two four-foot by six-foot blankets placed on either gide of the
test wall that are used to both measure and control the surface heat fluxes and surface tempera-
tures of the wall. During a typical test, which lasts about 12 hours, one blanket {mposes a
apecified flux through one surface of the test wall while the resulting heat flux on the other

surface and the surface temperatures on both sides are measured. The model presented here can
be used for both laboratory and field measurements and may be applied to any component of the

building envelope.
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INTRODUCTION

The thermal performance of building walls, in situ, is largely unknown. Until now, most wall
performence messurements have been done in laboratories, typicslly by using large hot=boxes.
In-situ performance is considersbly more difficult to measure, for the experimenter usually has
little control over tempersture, solar radiation, or wind conditions. The task of accurately
messuring surface temperatures emd heat fluxes wver significant lengths of time ia not easy.
Furthermore, once measurements have been obtained snalysis of the data is not a trivial matter.
As illustrated by a review of measurement techniques snd wall performance models compiled by
I'.:n:':'ol.l.,l most existing wodels contain too many parmmeters to be suitable for direct analysia,

A simplified wodel of dynsmic thermal performance that allows the characteristics of & wall
to be quantified on the basis of measured surface temperatures and heat Fluxes has been
developed. The model uses a set of simplified thermal parameters (STPs) to characterize the
thermal performance of walls: from an arbitrary temperature history. In addition, the STPs can
be used to arrive at & physical interpretation of the behavior of a wall. This model is appli~
cable to apy sst of data. In this report, however, its applicaton to the snsiysis of date col-
lected by the Envelope Thermal Test Unit (ETTU), in demonstrated. Accordingly, laboratory meas-
urements using ETTU are included as part of the validation procedure.

BASIC HEAT-TRANSFER MODEL

Any model that purports to describe the transport of heat through walls must begin with the
basic principles of heat conduction through solids. Accordingly, the derivetion of s wall model
vill ba begun with the fundsmental equations of thermal conduction; the results will be special-
ized until the wmodel has been endowed with sufficient richness to describe actual walls.



Beat conduction scross soy homogeneous slab of building material cen be regarded 2s one-
dimensional if corner effects and thermal bridges caused by studs, cavities, and other inhomo-
geneities sre neglected, This com=on eeswmption, although not always reliasble, will be adopted
for this purpose.

The one~dimensional hest conduction equetion,
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where: T(x,t) is the temperature distribution in the slab {°C)

d is the thermal diffusivity (m 2/s)
x is the position in the wall (m) and
t is the tima (s)

governs heat transfer at any point of the wall at 2ny time,

Many numerical mathods exist for solving this equation for ectusl, multilayered walls; thesze
include a variety of respomse-factor methods?+3 and mechods based on frequency transforms, some-
times referred to as admittance methods.?™® Most numerical methods were developed for calculat=
ing heat flows snd/or temperatures at one or both surfsces of walls whose compositions are
known., The field messuresent of the thermal performance of & wall poses the opposite problem:
temperatures snd heat fluxes are measured, but thermal properties sre unknown.

In prizciple, one could simply take any existing numerical model and fit its parsmeters to
the massured datz. The values of the parsmeters yielding the best fit would then be the experi-
mentally determined thermal properties of the wall. Unfortunately, this approach usually fails
becsuse of the sxcessive number of parsseters (or degrees of freedom) in most numerical
methods.’ In addition, parsmeter values determined by experiment fit the data but are, of them-
selves, unphysical {(e.g., have the wrong sign, etc.). Notable exceptions are lumped-parameter
uodels with undetermined values for the resistors and capacitors of which they are composed.
Generally speaking, the order of these models is determined by the number of capacitors. For a
limited range of boundary conditions, first order models are often sufficient to wmodel heat
flows in wells send sntire buildings to sstisfsctory necuucy.s

‘The model presented hers is particularly suitsbie for the snalysis of messured hest flux and
temperature data. Like lumped-psrameter wmodels, it uses digital filters (see definitions
beiow), but it is not restricted to the class of filters that represent actual resistance-
capacitor networks. The following paragraphs summsrize the results derived in the appendix for
both homogeneous snd inhowogensous (i.e., the genersl case ) walls,

Homogeneous Wsalls

As ghown in the appendix, Eq 1 can be solved for s homogeneous wall (i.e., single layer), whose
thermsl properties are independent of temperature, in the feollowing' integral form:
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where: 2

il, J° are heat fluxes (W/m2) at surfsces 1 snd 2* of the homogeneous wall
!, T2 are temperstures (K) at wall surfaces } and 2

P!, P2 are the normelized temperature filters (K)

U is the conductance of the slab{W/m2-K)

n, is & summation limit large enmough to contain all the frequencies of interest

The "homogeneous™ heat fluxes are defined as:

3Me) = J(0,8) = = 1in UL Pr(x,2) (3.1)
=»0
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where: L is the thickness of the slab (m).

The temperature filters are defined as:
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where: ¥ is the time constant of the materisl (s) (see sppendix).

The terms Pii’z) are cslled filters, because they filter the past history of the tempera-

tures in such & menner sz to eliminate "fast”" frequency components and leave "slow" frequency
components unchanged. (Filters having this property are called "low-pass filters.") The separa-
tion between "fast" and "slow" is determined for each filter by the frequency component with
time constant ‘an. Note thet the first term in Eq 3 above iz the steady-state heat flux,
(UMAT). The second term represents & correction to the steady-state heat flux caused by thermal
storage (it disappears for massless walls as the time constant approaches zero),

Inhomogeneous Walls

Becauss real wails csn rarely be trested zs homogeneous, more complex models are necessary to
describe them. The clasmical spprosch is to break up the wall into howogeneous layers and to
apply the homogensous solution to each layer, being careful to match boundary conditions at each
interface. Unfortunately, this cannot be done in closed form for arbitrary layers (or for
wulti-dimensional walls, materisls with time-dependent properties, and nonlinear components) .
Therefore, sn empirical generalization of the homogeneous solution’s proposed; specifically, the
coafficiants in front of each filter are allowed to be free parameters (as opposed to being

* The surface heat fluxes have been defined as positive when they flow
into the wall,



fized as in the homogeneous case). This is equivelent to sdding to the homogeneous solution
terms that are proportional to the filters:
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vhere: &g, by ere dieeneionless surface storage parameters,

I'IIP is the "order” of the wodel
3(1,2) are the geosrsalized fluxzes.

The parsmaters a, and b, have been called surface storage parwseters, because they describe
the effective smount of thermal storsge that tekes place on each surface of the wall relative to
a homogenous wall. Since the golutions J are the howogensous solutions, the general solution
wust have all of the surfsce storzge factors equal to zero; that is, for e homogeneous wall,

a =wb =0 (6)
and the general solution becowes the selution for & homogensous wall.

io an sctual test wall, the further the test wall is from heing howogeneous, more the the

values for a;, b, will differ from zaro, An example is a two-layer wall cowposed of light, very
resistive material and amother massive, but very conductive, msterial, As will be seen in a
later ssction, these semi~empirical constants can be transforwed into the more fsmiliar response
fectors by spplying & set of algebraic relations.

This completes our set of Simplificd Thermel Parsmeters. There are two basic parameters (U
and ¥ ) and two additional ones for every sdditional order (i.e,, &, by}, making & total of
242n, STPs.

Discrete Time Intervals

The equations so far derived are strictly valid only for temperatures and heat fluxes that are
cootiouous fuoctions of time. In any practical spplication, however, daca will be obtained at
discrete time intervels. Let us sov transform these equations into discrete time~step equa~
tions:
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where: are the messured discrete hest fluzes at t=k™Ar (w/m?)

1{1'2)
ii(:l 2)  are the homogeneous discrete fluxes (W/w)

f.._-(,i,z) are the discrete filters(K) and
Ar is the time increment batween msasuremsats (s)
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The discrete homogeneous fluxes are as follows:
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In order to evaluate these digital filters, one wust meke sowe ssgumption about the behavior
of the temperature during the time intervals separsting measurements. A most reasonable essump-
tion is that the temperature is linear between measured points; then, the filters become,
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Digital filters of this type are conventionally called infinite impulse response filters and can
be represented by & recursive relation that sllows the current filter value to be calculated
from the curreat tempersturs and the previous value of the filter:

a2 , &~ F) (@12 - 112

(1,2) _
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Relation to Rasponse Factors

Many building simulation models calculate the dynsmic performance of walls with so—called
response factors. Response fmctors are x series of weighting factors that multiply past tem—
peraturas to obtain present hest fluxes:
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vhere: X5, Yj’ Z; ere response factor series (W/mZ-K),

Remember that both hest fluxes are positive when heat flows into the wall. Ia practice, the
summation stops long before j»m., Typically, 20 to 30 terms are sufficient, and several elegant
mathematical shortcuts are aveilable to further reduce the required number of terms.? Responae
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factors for lerge values of j have conetant common ratios:

Ij+1 . Yjﬂ. . zj-"l
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"R, for j»>>1 (12)

wvhere: R, is the common ratio (0 < Ro < 1)

To find expressions for the response factors as functions of the coefficients of the model,
one mey start by rewriting the digital filters:
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By inserting these exgressions into Eqs 7, imverting the order of summstiom over j eand n, and
collecting terms in T 1’2). one find the desired relations separately for j=0 and for j>0
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By using Bqs 14 with measured STPs, ons can calculate response factors determined by mess-
urement, as opposed to response factors determined by prediction, and use them in conventional
building simulation models. Even though a given set of STPs is sufficient to calculate a con-
sistent set of response factors, a given set of response factors asy not be converted easily




into STPs, ezcept for the U-value and the time constant:
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SAMPLE APPLICATION

To suxmarize and demonstrate the model presented asbove, it will be spplied to & wall whose ther—-
nal properties are known exactly. From these properties the flux for some suitable temperature
history will be calculated. {Thia is &n illustration only; if the composition of the wall to be
tested was known, its responee factors could be computed using conventional methods,) The
hypothetical wall consists of (from outside to inside) &n outdoor air film, 4 in. (102 mm) face
brick, 3/4 in. (19 mm) air space, 2 in. (51 mm) insulation [R=4 per inch, 5.7 1b/ft3 densityl],
3/8 in. (10 ==) gypsum board, 1/2 in. (13 mm) plaster, snd an inside air film.

A temperature history has been generated, comsisting of g white-noise spectrum added to some
low frequencies, &8 shown in the top half of Fig. 1. Using the response-~facter method, the heat
fluxes at both pides of the wal! hsve been calculated gs & function of time. This “synthetic"
datz set for & wall iz gusranteed to behave exactly as heat-conduction theory predicts (as
opposed to an actual wall, in which air leakage, coovection in cavities, temperature dependence,
and lateral heat flow mey significantly alter performance)., Applying the model to this syn-
thetic data set, one obtains the parameters shown below:

Utw/a®-K] tihr) a by ay by
0.61 4.11 8.44 -0.48 -2.3 1.45

The U-value can be compared to the calculated valus of U=.60 and the time constant to iwm4 .22 as
calculated from the cosson ratio of the wall’p response fsctoras.

Since this is & hypothetical wall, one can compare the response factors used in generating
the data to the response factora derived from the model. The table below gives a representative
sampling of the response factors; the left—-hand set is calculated using conventional methods
based on layer-by-layer thermal properties; the right-haad set is derived from the STPas
extracted from hest fluxes and teapsratures of the hypothetical wall.

TABLE 1
Sample Response Factors for Hypothetical Wall

Delay Calculated[W/m2~K] Predicted [W/mZ=K]

{hrs.) X Y 4 X Y z
1 -.122 .0007 -.0%6 -.102 -,0001 -.082
2 ~,081 .0032 -.043 -.077 L0022 =-.027
3 =-.063 .0042 -.020 ~.064 .0041 -.012
5 -.039 .0036 -.004 -.041 .0039 -.003
10 =011 .0012 =.000 -.012 .0013 -.001

Delay=0 is the current point,
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At first sight, the degree of correspondence between the two sets sppesrs modest; however,
vhen comparing sets of response factors, bear in wind that two term~by-term expansions of sets
of responee factors cen look quite different yet produce very gimilar fluxes for a giveo tem-
perature history = beceuse of the redundancy inherent in the large nuwaber of terms involved,

The wide range of effectively similar response factors cam be understood by considering the
number of free parsmeters inherent in s response=factor sapproach. It is not uncommon to keep
100 sets of response fectors for a wall, giving & total of 300 free parameters; by comparisom,
the STP epproach alweys uses fewer than 10 free parsmeters. Thus, there is quite a bit of
interdependency in the responge~factor spproach; that is, for eny arbitrary degree of gccuracy,
there sre many sllowsble combinastions of response factors that will describe the seme wall.

Poseibly the most important fact resulting from this illustration is the kind of tracking
displayed in Pig. 1, During nine hours in the early part of the test, temperature differences
end heat fluxee ware relatively large and glowly varying. At the outset and during the second
helf of the test,

the opposite is true: fluctuatious of temperstures snd hest fluxes dominate, while their sver—
ages are comparstively smsil, In other words, the persmeters of this sodel can be used to
predict the thermsl performance of walle ever 2z wide frequescy band., This characteristic is
importsnt if the same model iz to be used to calculate the effects of outdoor tewperature, solar
radistion, &nd indoor furnace pulses.

Obtaining Model Parameters from Heat Flux and Temperature Dats

So far, & wodel whose parmmetsrs (betwsen four and eight, depending on the wall) sre determined
from wessured histories of surfsce temperatures and heat fluxes has been presented. In princi~
ple, the parsmeters are obtained by fitting model Eq 7 to the actual dats. For exsmple, an ini-
tisl guess of the wall parsmeters could be used to compute heat fluxes from the measured tem-
persture data. The error of this guess could be quantified by BRMS deviation between cowputed
#nd msasured heat fluxes. The best—fitting valuee of the wall parsmeters would then be found by
progressively varying the initisl gussses uatil the sesllest BMS deviation of hest flux was
found.

Unfortunately, this procedure can only yield physicslly weaningful values if the measured
time series points are mutually independent (i.e., if « wessurement of hest flux snd temperature
at one tise i indepsndent of the sssie weasurement st previous rimes). Since this independence
does uot exist in this application, the model psrsmeters must be fitted in the frequency domain
rather than in the time dowmain. Frequeocy components of time histories of hest flux end tem~
perature sre linsarly independent and vwery quickly calculated using Past Fourier Tranaform
methoda. Since these fitting methods are asowevhat peripheral to the wmodel itself, their
description has bsen relegated to the sppendix.

HODEL INTERPRETATIOR

The ability of & wodel to reproduce measured data ie only one fsacet of its usefulness — the
other is the ability to effect s physical interpretation of its parsmeters. The most important
persmeter of any wall is its steady-state U value, and, not surprisingly, the most important STP
for common use is U. The next most important parsmeter of & wall is the time constant. The
time constaut, T, is & messure of how long it takes for a heat pulse on one side of the wall to
be felt on the other side of the wall; it is related to the U~value and the thermal mass of the

antire wall.



The time conatant of a wall serves as s yerdstick when oae spesks of quickly or siowly vary=-
ing temperatures: quickly varying temperstures complete ons Eycle in leas than one-fifth of a
time constant, while slowly varying temperstures take several time constants to complete one
cycle. For aslowly varying temperatures the thermal properties of the wall can be adequately
spproximated by & steady-stste snalyeis,

The remaining STPs are the surfece storage factors; these factors can be used to qualita-
tively estimate the varistion of the wall surface from perfect homogeneity. That is, if the
storage fsctor for one side of a wall is much larger than zero, that surface has more mass than
does the wall as a whole; conversely, a negative storsge factor means that there is more resis-
tence {less mass} on that surface,

This effect is spparent in the hypothetical wall used to illustrate the model. On the out-
side face of that wsll (eide 1 in Fig. 1) is & four in, (102 em) layer of face brick; eince thia
layer comprises the bulk of the thermal wass, we expect the first surface storage factors to be
pogitive on side one end negative on side 2., This is, in fect, the case: 2;8.44 and by=-,48,

ENVELOPE THERMAL TEST UNIT

To measure time histories of temperature and heat flux of actusl building walls, a portable
apparatus has been developed, the envelope thermal test unit (ETTU). The design of this device
has been described in an earlier article.l® ETTU differs from & standard guarded hot-box in two
respects: (1)} it is portable and thus can be used for on=asite testing of actual building walls;
{2) it measures the wall temperature response to known heat flows, as opposed to measuring hest
flows in response to given temperstures. The physical arrangement of ETTU is shown schemati-
cally in Fig. 2. Two identical "blanketa" sre placed in close thermal contact with the wall to
be tested. Each blanket comsists of a pair of 1.2 m by 1.8 m (4 ft.X 6 ft.) electric heaters
separated by a low thermal mass insulating layer. The heater in contact with the wall is called
the '"primary,” the other ia the "secondary.” Embedded in each hester layer is an array of tem—
perature sensors. The blankets cover the wall section under teat and are slightly flexible, so
that they can be made to conform to winor irregularities in the wall surfaces. Although we
recognize the problem of very uneven outer surfaces (e.g., shinglea), the current version of
ETTU does not attempt to address them; future versiona of ETTU will consider these problems.

ETTU can be operated in two wmodes: in the first mode, the heat flux through one surface of
the test wall can be apecified accurately and a stesdy-state temperature difference can be
created across the test wall. In this mode, the two blankets of ETTU play active and passive
roles in the "active" blanket, heat flux is provided to the primary heater sccording to a user—
selected, time~depsudent function that covers the required frequency spectrum. At the pame
time, the secondary heater is used as & guard, with a control strategy that winimizes the tem—
perature difference {(and thus the heet loss) across the active blanket. The electrical power
dissipated by each heater is controlled by adjusting the current flowing through the heater.

The psssive blanket on the opposite side of the wall is used as a large-area heat~flux sen-
sor: its hestera are not enmergized, but the difference between primary and secondary tempera-
tures, in conjunction with the blanket thermal properties, is used to measure the heat flow of
the wall on the passive side.

In the sacond mode of operation, the secondary heaters are unused and both primary heaters
are independently driven. In this symmetric wmode, there is little or no steady-state tempera-
ture difference between the two wall surfaces and, therefore, little information about the
steady—state conductance; but, unlike the previous mode, a great deal of information is avail-
able abeut the transient thermal properties.

-g—



A microprocessor-based data acquisition system is used to drive ETTU. It drives the surface
heaters, records all primary and secondary temperstures, and perfores the necessary on-line
heat=flux cmputatims.“ To eliminate the effects of lateral heat transfer, analysis is res-
tricted to the central region of the blanket; in effect, the outer region of the blanket is used
as & guard. Fig. 3 shows the temperature sensor array on each lsyer, with the central region
delineated, .

MODEL VALIDATION

In order to validate the wall model presented earlier, one should be able to (1) adequately
predict the fluxes from messured temperstures and (2} derive physically correct thermal wall
parameters. Furthermore, the mesasured temperstures and fluxzes must have enough different fre-
quencies to insure that the process of fitting the data and finding the thermal parsmeters will
be valid for eny temperature history., For this resson, the best driving strategies should con-
tain all frequency components typically encountered (i.e,, a "white-noise" spectrum).

To test ETTU and to validste the model, a section of 2 wall wae built in the authors’
laboratory. The wall (from side one towards side two) was made of (3/4 in. (19 mm)) plywood, (2
in, (51 mw)) high~density rigid bosrd insulstion, and (1/2 in. (13 wa))} gypsum board. The driv-
ing heet fluxes used by ETTU for this wall consisted of three sections of twelve hours duration
eich. The first sad third sections were symmetric vhite uoise, snd the siddle section was white
noise with a DC offset. As csn be seen from the charging behavior of the messured temperatures
and fluxes (Pig. 4), the first several hours of data sre dominated by the initisl conditions;
because this werm—up _gf_fect iz undegirsble in this frequency-based fitting procedure, the first
ten hours of data in the analysis, were eliminated reducing the date to 26 hours. A third-order
model (eight wall parameters) was used to process the data. The resulting STPs are shown below:

UIW/m?=K} +{hr) a by 1, by ay by
0.64 1.69 2.06 0.26 ~2.99 -7.49 7.58 ~22.67

The U~value shown is to be compared with the U=value of 0.60 calculated from thermal properties
data listed in the ASHRAE Handbook~~1977 of fundamentals volume. The coaparison between the
measured and pradictad heat fluxes is e¢howa in Figs. 5 and-6, Notice, again, the comparatively
good tracking ability both for the relatively stesdy period in the left half and for the highly
variable periods at the beginning and end.

Cne~sided Model

The model development and validation has conceatrated on so=-called "two~sided" walls-that is,
walls for which the heat flux is messured on both sides. In many experiments and for many
applications, heat flux dats is neither recorded nor required for both sides of the wall. (Nor-
mally, the "outside™ flux is the ons missing.)

If the measurement is single-sided, only the storage factors for the messured side can be
determined. The two most important parameters (U and ¥), however, will still be determined by
the same procedure — albeit with less accurscy than for & two-sided wall. Accordingly, there

will be n +2 3TPs in a one-sided snalysis.
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As en exsmple,. consider the data set shown in fig., 7. The measurements were made by a
cement associastion’s in Skokie, IL., using their dynemic hot=box.l? The walls consisted of 13 mm
exterior stucce, hollow-core comcrete block, 19 mm furring strips, and 13 mm foil-backed Eypsum
board. The Simplified Thermel Parsmeters for this block wall are:

U["/ﬂz‘xl i'[hr] &) lz
i.50 2.72 6.54 =25.09

The U-value determined by the model is to be compared with the U-value of 1,2 W/m2-X reported by
the lsboratory.

As shown in Fig. 7, the correspondence between predicted and measured heat fluxes is quite
good using & second-order fit (n‘-2). The discrepancy between the U~value celculated from the
data using the model and the other may be due to the fxct that the measured fluxes used in the
model calculation cmme from a fluxmeter attached directly to the surface of the test wall; the
iab data use an overall hot—box heat balance to calculate heat flow through the wall.

SUMMARY

This analytic technique, in conjunction with ETTU, can be used to evaluate the dynamic thermal
charscteristics of walls in=situ. Clearly, the applicability of the model is not restricted to
field measurements, nor is the data acquisition system restricted to ETTU. Data measured using
heat=flowmeter arrays or hot-boxes (both portable and laboratory-based) can be readily analyzed
to derive the STPs of & wall, or even of & roof or a floor section.

In the future, ETTC will be used on a representative ssmple of walls to compile a catzlog of
STPa that can be compsred to their theoretically calculated counterparts. In addition, field
wessurements will be continued in order to shed some light on the effect of different kinds of
insulation retrofits aud the age of the wall on its thermal performance, since either may cause
messured and theoretical performance to differ markedly.- BSuch measurements sheuld shed sowe
light on the effectiveness of different kinds of insulation retrofits snd on the sffect of age
on walls,

-11-



APPERDIX

Theoretical Derivatioms

HOMOGENEQUS HALLS

In deriving the equations used for snalyzing the thermal performance of walls, the diffusion
equation will be presented that describes the thermal transport of energy through meterial — in
this csse a homogeneous eglab (i.e., a wall slab made up of a single layer of a particular
material):

dT(x,t) ,  d°Tlx,t)
) -« 410 (D

vwhere: T is the temperature as a function of time and position [9C)
x,t sre the spatisl end temporal coordinates, pespectively
d is the thermal diffusivity {mZ/a]

In general, diffusivity can be a function of temperature, positiom, end time; for this
application it is asswmed to be constant. Purthermore, only a rectangular slab with one—
dimensional hest flow will be considered. Carslaw and Jaeger !3 show the salution of this boun-
dsry value problem in terms of the temperature:

T(x,t)"l'o(x) + (A2)
£t 2 £’ 2
@ - t
: Ate 7 sin(27%) Fet [rlcm-(-n“ 20" | g
n=] 0
vhere: L is the thicknesa of the slab {m]
7!, T2are the temperatures at the two surfaces [X]
+ ia the fundemental time conatant [a]

'ro(;) is celculated from initial conditions below [K]

T = L 7 (A3.1)
dn
o -Ea
'I‘n(x) = % nE!. e n'.n(P{l) {T(;’,o) .1“(5'_'?_.) dz’ (A3.2)

The initiel condition of the temperature can be removed by including the past history of the
surface temperatures (i.e,, extend the integral to mious infinity). This allows a minor sim-
plification of the expression above:

-12-~




T({x,t) =

(AL)
D n .. ,uFx m.-tT.nz [ 1 . | . ] )
nil = ’“‘('f.") or e T (t=t*)=(=I}" T -(t-t ) | ae

This expression allows the temperature to be calcuylated at any position and at any time from
the past history of the surfsce temperatures. The goal, however, is to calculate the heat flux,
which is related to the gradisnt of the tempersture, at the two surfaces:

3x,e) = - g1 2D (A5)

vhere: J is the heat flux [vatts/m?)
U is the conductance [watts/m®-K]

Because the evaluation of the gradient contsins sn infinite sum, one cennot take the derivative
before summing. Thus, cme cennot, in complete generality, simplify the problem any further; one
can, however, introduce a ressonable, simplifying assumption that will allow the derivation to
be continued,

The infinite sum indicated in the above equations is & sum over time constants, (¥/a) that
begin at the fundsmental time conatamt + (i.e., n=l), and approach zero as the summation index
(o) gets larger. To be perfectly genersl «ll of these time constants must be included in the
analysis, but — a5 in any real experiment — there will be some minimum time constant below
which a1l time constants are no longer important;” this minimum time constant implies & finite
maximum limit to the summstion, n,:

o
n
o"'!'*

(A6)

where: n, is the meximm limit of the summation
T, is the winimwm time constant [s)

While it is true that for sufficiently large u, each integral becomes negligible, those terms
csonot be ignored given that there are an infinite number of them. However, because the tem-
perature vill not have changed appreciably until the exponentisl has become negligible, one can
trest the temparature as being conscant for those terms:

£ 2 £ 2
o - @ ~-Fo
FoF fld e g = Fe (2 () ge (A7.1)
0 ]
- nlz T(x,t) for n >> n_ (A7.2)

The infinite cum can be broken up into two parts at n,; leaving the firat o, terms unchanged and

* The presence of a maximum frequency cowponent (as is always the case
far discrete data) isplies 2 minimum time constant in the analysis.
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substituting the relation sbove for sll other terms:

o, ® _Tf_“z
T(x,t) = 5 2% sin(2®) e [rl(n-:') - =1)® T2(e=t") ] de* (a8)
n=l o
* 2 . .oiix 1 o
+ 3 == sin{==) T {t) = (=1) Tz(l:)
n-no'bl fn L [ ]

The second sum can be simplified by using the following two trigomometric series:

o . :
s anmd.Z.-2 (A9.1)
n=l
@ .
3 (=1 sn::nﬁ - _,_g (A9.2)
=l
Therefore,
@ n '
P e pin(AfX) w1 - X~ 3 g%; sin(27%) (A10.1)
o=+l n=i
@ . n
T (=12 gin(W) oo X o P (-1)7 L gin(2NE) Al0.2
n"no+1 o R L n=} i 3 ¢ ’

These two identities can be used to eliminsete all summation terms above the cutoff:

(]
T(x,2) = Ti(2) - i (rie) - 2e) ) + 31 sin(2f) 2L (A11)

P

o = fgal
Ie (r(e-t) = (=122 (e-")] de” = [THe) ~ (D)2 (e-e' N
o

Since this form of the equation does mot contain any infinite sums, one can differentiate
this expression and evaluate the derivatives at the two limits without having to explicitly
evaluate the suss.

7 Jl(t) = J(0,t) = -~ 1is U L VI(x,t) (A12.1)
=0

22 (r)m - J(L,t) = lin-g L VI{x,t) (A12.2)
x—»L

where: J!, J2 are the fluxes into surfeces | and 2
'1‘1, T? era the tgmperatures on surfaces 1 and 2

Note thet in the definition of these two terms the surface fluxes have been defined as positive
if they flow into the wall, Thus, the two surface fluxes may be exprsssed in tezrms of the his-
tory of the surface temperatures and the thermal parsmeters:
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%

e =v they ~1%() Y+ 20 5 ¥}

2e) - (-1)® Fi(e)

n=1 (A13.1)
B,
Ty = u (12 ~1iee) Y e 2w 3 F:(t) - (=1)" Fi(t) (413.2)
nw]
vhere: Fl, F? are the normalized temperature filters [K]
2 o ~-%;ﬂ2
r{li2(e) = ¥re D2 (e)a 1D (eeer) ) aee (A14)

The Fe are called filters because they are equivalent to low-paes filter functions of time con~
stant /o for the past history of the temperature. Note that the first term in each of the two
equations gbove is the stesdy-state heat flux, (USAT)., The second term represents- corrections
to the steady-state heat flux srising from thermal storage — for wassless walls, it disappears.

S8ince no upper limits were put on the value of n, in the preceding discussion, one can allow
n, to become arbitzarily large 3o &s to increase the precision of this epproximation; in the
limit of o «» o, the expressions becose snslytically exsct. However, for most walls n,<5 is
usually sufficient for spproximet.ng thermsl performsnce under zctual conditions.

FREQUENCY REPRESENTATION

All of the formulsae derived sbove describe the thermal flux in terms of the change over time
of the aurface temperatures., For some purposes (such as predicting fluxes from temperature his-
tories) this is the ideal representation, but for other purposea (such ss calculating thermal
parszeters from a set of fluxes and temperatures), an snalysis in the frequency domain is better
suited, which can be done by Fourier-transforming Eq 13 relating temperature to flux:

n .
Q
o = vt - 12w )+ 20 3 LW - (-D® Fl(w) (A15.1)
n=1
L™
HORDESORE JOBRE I3 {ORREILE (A15.2)
o=l
vhere: w ios the angular frequency [rad/s)

J{w) is the smplitude of the flux st that frequency
P(w) is the smplitude of the filter at thst frequency
T(w) is the smplitude of the temperature at that frequency

The frequancy components sre relsted to their temporal counterparts .as follows:

m ‘
J(I,z)(") - J- elth(I;Z)(t) dt (Al6.1)
i ¢ ]
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(L)) ;: eivtr(1,2)¢e) gr (A16.2)

T(l’z)(v) . ? ei'"t'r(l’z)(t) at {A16.3)
=0

where: i = er

The equation for the filters cso be simplified by using the defining relation for the filtera:

£’ 2
2o =~ : L4 @ 3
r{1:2 -[x-“?{ e T4 “'] O R (ar2)

The second term can be recognized as the Fourier trsnsform of the temperature and the first term
can be reduced by simple integration.

il of =2 | (L2 (A28)
n- - iwt

Thus, in the frequency domein, these filters sre simply proportionsl to the temperatures,

greatly fxciliteting the determipetion of t.

In eny frequency analysis of & system there & set of transfer fumctions relate each of the
inputs (T! snd 72) to esch of the outputs (J! and J2) and completely specify the system:

o = alintie) - 826012 w) (Al9.1)

2w = BT () = BT (W) (A19.2)

vhere: Hl is the transfer function for side 1
B2 ie the transfer function for side 2
H? is the transfer function scross the well

These tranefer fuections cen be found from the Fourier inversion:

n
[+ ] .
Bo(.) ag+20 3 (~1)" —= vl (A20.1)

=i n? - iwk

n
[+] 4
aiw) =0+ 20 5 — iV (A20.2)

n=]l u
o

A2(w) =0 + 20 3
n=] n

- iwE (A20.3)
7.t

letting a,~+m and performing the infinite sum ic closed form:
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B0 w g YT
sinh(\=TwE ) (a21.1)

U = C
A" =g " =1 (A21.2)
tanh(\l -iwt )

INHOMCGENEQUS WALLS

Thus far, the calculations have been for one-dimensional homogeneous wallas; however, because few
Teal wallas cau be described as homogenous, the wodel must be corrected accordingly. This has
been done by applying correction terms to the lowest order filters of the homogeneous model,
There is no a priori resson for this generalizstion to be ‘exact, and yet it works sufficiently

well to use it as an approximate description of real walls:

ﬂm
sty e sle) + 20 a p:(t) (A22.1)
n=]

n

|
) = 52y + 20 5 b #ir) (A22.2)
- ne] BB

vhere: Jl, J2 are preaicted inhomogeneous fluxes (W/m2) at surfaces ! and 2
il, _{2 are homogenous (uncorrected) fluxea (W/m?) at surfaces 1 and 2
oy, is the number of correction factors

The howogeneous fluxes, il, iz, are defined by Eq. Al5., Note that henceforth the notation X

_indicates that & quantity is from the homogeneous solution, rather than the general solution,

In terme of the transfer functions,

E0(vw) = BO(w) (A23.1)
" .
Biw) = 8l(w) ¢ 20 5 o= dNE (A23.2)
=l % < jv
2 2 " i
B(w) = 8%(w) + 20 § b iwt (A23.3)

ool "ot - jwr

vhere: Hi(w) are the howogenous transfer functions
H{w} ere the corrected tranefer functions

Again, the homogeneous transfer functioms, go, g.l, Ez, are defined by Eq, A2l, The correction

teras can be interprated as surface storage factors that indicate the relative smount of storage
that occurs on the surfaces of the wall compared to the interior.
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The number of inhomogeneous terms can be estimated from the tiee constaut and some knowledge
of the highest frequency of interest {i.e., the highest frequency one is interested ia duplicat-
ing accurately or, equivslently, the highest frequeaucy expected in the dats):

LI 2U-u T (A24)

vhere: Yoax is the maximm frequency of interest

COMBINING LAYERS

Transfer functions of a wany-layered wall can be calculated from the transfer functioms of its
" individual layers by conceptually using the flux out of one layer as the flux into the next
layer. Mathematically, this cheining pProcess is s matrix multiplication of the e&ppropriate com-
binarions of the transfer functions. The genergl relstions for caslculsting the combined
tranefer function from twe individual tranefer functions is given below,

n' E.l
6 o
B o (A25.1)
[-] | | 2 + R 1

H'o
B =8, - H, 57 {A25.2)

- H"o
Ez-nz-no—ﬁvz (A25.3)

vhere: H are the combinad transfer functions
|: are the first layer transfer functions

H°®  are the sacond layer transfer functions

Note that H'l and H"z represent the exposed surfaces, while E'z and H"l represent the surfaces
internsl to the combined wall.

This coubinstorial rule cen be used in two ways. It cen be used to calculate the exact
tranefer function when the true thermal proparties of all the component layers are knowm, and it
can bs used to calculate the spproximate thermal properties when two composite walls are being
combined,

ACKNOWLEDGEMENT

The work described in this report was funded by the Assistant Secretary for Conservation and
Renewable Energy, Office of Buildings and Community Systems, Buildings Dvision of the U.S.
Department of Energy under Contract No. W=7405-ENG-48,

-18=




REFERENCES

— i it et
1. ar:roll W L., "'l'herwal Perfomance of Bystems and Buildings: An Annotated Bxblmgraph;,\\
Lawvrence Berkeley Laboratory Report, LBL 8925, Apr. 1979, A

O(J)ﬁ' Stephenson, D.G, and Mitalas, G.P. "Cooling Load Celculations by Thermal Response Factor
Method," ASHRAE Transactions, 73(1) 1967.

o e e o e T,

3. Eusuda, T., "Thermal Responne Pactors for Multi-layer Structures of Various Heat Counduc~—
tion Systems," ASHRAE Transactions, 75(1) 1969,
4, Devies, M.G. "The Thermal Adwmittance of Layemd Hnl.l.a," Buxldmg_ Science 8(3) 1973, D

b

5. Qipes, L.A., "Hatrs.x Analyn.a of Heszt Transfer Prnblems," J. Franklin Inst:tute, 263, i )
1957 /

52/(/‘6. Bonderegger, R.C., "Harmonic Anelysis of Building Thermal Response Applied to the Optimal
Location of Insulation Within the Walls," Energy & Buildings, 3, 1977.

NS e

7. Fusuda, T., “Calculstion of Building Thermal Response Fectors a&s Wiener Filter Coeffi~-
ciepts,“ NBS Building Science Series 39, 1971.

8. Sonderegger, R.C., "Dynamic Models of House Heating Bssed on Equzvnlenl: 'fhemul Parsme-
ters,” Princeton University, Canter fo: Envxromenl:nl Studies, Beport No. 57, 1977,

9. RAE Tr

Peavy, B.A., "A Note on Responae Fectors snd Conduction Trnnsfer Fun:txonl,“ ASHRAE Tran- ‘”"-“'j
ssctiona, B4(1), 1978.

10. Condom, P.E., Carroll, W.L., snd Sonderegger, R.C., "A Rew Measurement Strategy for im

aitu Testing of Wall Thermal Performance,” Proceedings of the ASHRAE/ORNL DOE Conference

W on Thermal Performance of the Bxterior Envelopes of Buildings, ASHRAE, New York, 198};
Lawrence Berkeley Laboratory Report, LBL-8822, June 80,

i1, Smith, B.V, and Condon, P.E., “The LBL-EPB Data Acquiaition System: 1Its Description and v
Construction,” Lawrence Berkeley Laboratory Report, LBL 11739, Oct 80. ¢

e s e m g,

12. Fiorato, A.X., "Heat 'l‘rnnnxfcr Characteristics of H’nll- under Dynsmic Temperature Condi-
tions,"” Research and Developmant Bulletin RD75M, Portland Cement Association, Skokie,
1991_.

- LY - - \\
1( Cu'llw. H.8. and Jaeger, J.C., Conduction of Heat in Sohda, Oxford Press, 92-109 1959. oy

Ru mwc;e,y ¢ Jw %peww “ealey hton of Jraqumzs
N bwqu Ey o matny method: Sowe Pwhcucw
" Cases“ Bua\:)mi Seende 3(9)) {qb9

=19~



_OZ_

~

[

]

[}

L

3

i

L 15 T e e -

6 »

2‘ 18 + Temperature 1 T

i! 5 . . e F . — " Temparaiurn 2
4uﬂhr~ 4!'\r- Bhr- 12.hr‘ 1 E‘hr‘ Zﬁ_hr 24.»5'“" 23}11" 32}‘\!‘* 36hr
e+
28 T

Flux [W/eqml
=

3

-24 + i

-3@ t ]

-48 + + t
Measured 1 ceceee Predicted 1 — ___ Measured 2 . Pradictad 2

Figure 1. Measured and predicted data for illustrative wall.




Envelope thermal
- test unit
(in cross-section)

~—— Primary heater & sensors
—Guard insulation

~—Secondary heater & sensors

Outside Inside

Outside blanket
similar to
inside blanket =~

XBL791-60A

Figure 2. Schematic of Envelope Thermal Test Unit (cross section).

-21-



*dBli® Iosu2s vanjeiadme] NLLd *€ =2andtg

SIOoTUOR JBjUBD 0O

sioeuee obpo :x

¥ ¥ - H
() [ Lj

- t
o 0 [
9 0 . ? ¥ ¥ L
L L] 9

. |
¢ ¢ $ )

-29-



£
2 L 4 " 2 L —d . i
$ $ ¥ [7e] ¥ T ™ T 1 ¥
3 llirlw »w .

Tempercture 1

gy Ty
e LTI e LTI

o,
-y,
L
—ene
Rt L LT TTNPPPPRN

perature 2

creseneeenns 1M

Foe, E— oy
= e L
2R TR,
'l YT ¥ -+
-........ T
XN e

o XRT

visivhreree

Sa

=
<

[J]1 ®-njpueduw

fwbe,/ny xn14

-23-

cereeeennen. Measured 2

1

Maasuraed

Figure 4. Measured heat flux and temperature data for laboratory wall



_17Z_.

5@

-
[
a
8
{
5
&
]
§
o 35T
£ -
. ..‘.'-'... ek Y TN ) CHC YR YL P L L
= k= 1".] -+ + — s
ahr 3hr Ehe Shr
40 H H ;
3@ +

Flux [W/eqml

Figure 5. Measured and predicted dat:

: ‘g': Temparature 1 ]
----------------- X ) crasreriees T.mpnrqture e
i 15hr 18hr 21hr 24hr  27hr

K D RV Prediocted 1

ide 1 of laboratory wall.




_SZ_

m

[

Lud

[} T

L

J

4’ -

0

L

8 L

2. g s Temparcture 1

*! 2 : - e J—— : , e Tempu?akurc 2
4aﬂhr Shr 6hr Ghr 12her 15Shr 18hr 21hr 24hr 27hr

Flux [W/eqml

Figure 6.

Maceurad 2 ... Predioted 2

Measured and predicted data for side 2 of laboratory wall.



9]
EB L ._..o" E‘ -

o : .

& 18T o +

] R i H H

L E 3 :

] g+ 3 1l

%‘ ... i . Temparature 1

|.! . ---...,,,,,,....1.. . : X e o PRI eu:upnruhue-a 2.
5 Al 24hr 48hr 72hr g6k 128 144hr 188hr
") + ' } + : '

Flux [W/sqml.

Meaeured 1 ... Praediocted 1

Figure 7. Measured and predicted data for cement association laboratory wall.




This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.




TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

——



