
Supplemental Information

Current status: consumption of building materials and CO2 impact

Currently, the embodied CO_2 emissions of buildings contribute to 11% of total worldwide CO_2 emissions and will account for about half of the total carbon footprint of new construction between now and 2050.¹ Reducing embodied emissions is critical – not only for industrialized nations but also for other urbanizing countries – to achieve the Paris Agreement goals of limiting the global average temperature increase to 2 °C and pursuing efforts to limit it to under 1.5 °C.

China is the world's largest construction market, emitting about a quarter of the global building embodied CO_2 emissions.² The production of building materials was responsible for more than 80% of the embodied emissions in China's buildings sector, contributing to 17% of China's total CO_2 emissions and emitting 1,400 million tonnes (Mt) of CO_2 .

In 2015, the buildings sector consumed about 148 Mt of steel and 574 Mt of cement, accounting for about 18% and 24% of China's total steel and cement production consumed in buildings construction, respectively (Figure S). In addition, about 4 Mt of aluminum and 16 Mt of flat glass were also used in China's buildings sector, representing 14% and 40% of China's aluminum and flat glass production. It should be noted that in this analysis the buildings sector. The scope of this analysis does not include city infrastructure (e.g., roads and pavements), industrial warehouses and facilities, ports, or other types of construction. Considering the obvious difference in material intensity unit area and share of building structure, referring to the existing studies³⁻⁵, we divided all building into three categories: urban residential, rural residential, and public and commercial buildings. Urban residential and rural residential buildings are used to conduct residential energy-using activities. public and commercial building building buildings, education, and other commercial services.

Figure S1. Share of key building materials production for China's buildings sector, Figure S1 related to the Material production data in STAR Methods.

Source: this analysis.

Note: national materials production data are from the National Bureau of Statistics (NBS) of China ; building materials demand (steel, cement, aluminum, and glass) is estimated based on a building stock turnover model. The

buildings sector's material demand does not include products used within the buildings after the buildings are constructed.

Current status: building archetypes in China

China's buildings sector has multiple types of building archetypes, including concrete & brick structures, wooden structures, steel-based, and concrete & steel-based archetypes. However, compared to other industrialized countries such as the United States, Japan, Germany, and Australia, China's building sector is unique as it is dominated by concrete& steel structures, accounting for about 80% of all building structures (

Figure S). Wood and steel-based structures only represent less than 10%. In addition, buildings that are built with a combination of concrete and brick, brick and wood still exist in China, even if their quantities are few. This is quite different from other countries, where wood and steel structures are the main building structure types. This also indicates that China's buildings sector relies more significantly on energy and carbon-intensive materials (e.g., cement and steel), and potentially has a higher embodied carbon impact.



Figure S2. Typical types of building archetypes (left) and percentages of material contribution in the buildings sector by country (right), related to the building archetypes data in STAR Methods.

Source: this analysis.

Note: "Other" include building structures developed using concrete and brick, brick and wood.

Policy support

Strong policy support is critical for China to achieve carbon neutrality in building materials and construction. In Table S1, we outlined a number of policy strategies, policy areas, as well as specific policy levers that can be implemented by to promote low-carbon building materials and material efficiency practices.

We also identified a list of enabling institutions, ranging from central government agencies, influential think tanks, research institutes, industry associations to key stakeholders in the buildings and constructions sectors, such as designers, architects, engineers, and contractors that will play important roles in implementing these policy measures.

In addition, recognizing the largest mitigation potential is from material efficiency strategies, we recommend adopting policy measures to support them immediately, along with nearterm support on fuel switching and energy efficiency. Innovative policy support on research, development and deployment (RD&D) related to hydrogen and CCUS development and infrastructure planning is also essential, and need to be carried out in order to achieve deep mitigation in building materials sector.

Policy Strategies	Policy Areas	Timeframe	Policy Levers	Enabling Institutions
Deploy	Prefabrication, light-	Near-Term	 Codes for promoting use 	Develop standards on low-
commercialized	weight materials,	(Before 2030)	of low-carbon materials in	carbon materials
material efficiency	alternative materials		buildings	 China National Institute of
strategies	High-quality	Near-Term (Before 2030)	 Codes for promoting use 	Standardization
	production,		of material efficiency	 China Building Materials
	extending building		construction practices	Academy
	lifetime			 China Cement Association
	metime		materials	 China Iron and Steel
	Improve design and	Near-Term	 Labeling and certification 	Association
	construction of	(Before 2030)	of low-carbon products	
	buildings (e.g., green		 Government-level and 	Develop software tools to
	design)		corporate-level green	support designers,
			procurement programs	architects, and contractors
			 Carbon pricing 	to benchmark and choose
			 Develop professional 	low-carbon materials
			workforce on low-carbon	 Research institutes, think
			materials	tanks, universities, NGOs
Improve circular	Encourage	Near-Term	 Incentives on component 	 Industry associations and companies
economy systems	component reuse	(Before 2030)	reuse and recycle	

Table S1. Policy Strategies,	areas, and leve	rs to support green	building materials in
China			

Accelerate the	Increase scrap collection and recycling Reduce coal use,	Near-Term (Before 2030) Near-Term	Standards on low-carbon materials Government-level and corporate-level green procurement programs Stringent standards on	Develop labeling and certification for low- carbon materials •Ministry of Industry and Information Technology
transition away from coal and promote alternative sources	increase electrification, increase the use of renewable energy Encourage alternative fuels, such as Municipal Solid Wastes	(Before 2030) Near-Term (Before 2030)	 cement energy and carbon intensity Incentives on using wastes (e.g., Municipal Solid Wastes) Incentives on using renewables (e.g., differential pricing) Investment in RD&D on 	 Ministry of Housing and Urban-Rural Development China Academy of Building Research Industry associations and companies Develop/revise building codes to encourage use of law eacher materials
	Invest in RD&D, testing, piloting, and scaling-up of green hydrogen (H ₂) and renewable heat	Mid-Long Term (After 2030)	green H ₂ and renewable heat •Develop pilots and demonstration projects •Carbon pricing	 low-carbon materials Ministry of Housing and Urban-Rural Development China Academy of Building Research
Strengthen energy efficiency and improve capacity on carbon management	Deploy commercialized energy efficiency technologies in cross- cutting systems (pumps, fans, motors, process heating systems, boilers, heat exchangers, steam systems, etc.)	Near-Term (Before 2030)	 Energy efficiency benchmarking Energy assessments Green financing Energy management system implementation Promoting digitalization Promoting low-carbon technologies Develop professional workforce on energy 	Develop incentive policies and programs to promote the use of low-carbon materials •Government procurement agencies •Ministry of Finance •Local governments
	Establish energy management systems and digital platforms Improve capacity building on carbon inventory, carbon	Near-Term (Before 2030) Near-Term (Before 2030)	 efficiency and carbon management 	

	tracking, and carbon management		
Research and development on carbon capture, utilization, and storage	Life-cycle and resource assessment of carbon removal Financing mechanisms of carbon removal technologies and practices	Mid-Long Term (After 2030) Mid-Long Term (After 2030)	 Investment in RD&D on carbon removal technologies and practices Develop financing mechanisms for carbon removal technologies Standards and policy framework on carbon monitoring and reporting
	Carbon storage (regional storage potential, storage integrity, and monitoring)	Mid-Long Term (After 2030)	 Infrastructure planning for H₂ production, transportation, and carbon transport and storage

References

- World Green Building Council. Bringing Embodied Carbon Upfront. (2019). <u>https://worldgbc.org/article/bringing-embodied-carbon-upfront/</u>. World Green Building Council.
- Zhu, W., Feng, W., Li, X., and Zhang, Z. (2020). Analysis of the embodied carbon dioxide in the building sector: A case of China. *Journal of Cleaner Production* 269, 122438. <u>https://doi.org/10.1016/j.jclepro.2020.122438</u>
- Xing, R., Hanaoka, T., and Masui, T. (2021). "Deep Decarbonization Pathways in the Building Sector: China's NDC and the Paris Agreement." Environmental Research Letters 16 (4): 044054. <u>https://doi.org/10.1088/1748-9326/abe008</u>.
- You, K., Ren, H., Cai, W., Huang, R., and Li, Y. (2023). "Modeling Carbon Emission Trend in China's Building Sector to Year 2060." Resources, Conservation and Recycling 188 (January): 106679. https://doi.org/10.1016/j.resconrec.2022.106679.
- Zhang, Y., Hu, S., Guo, F., Mastrucci, A., Zhang, S., Yang, Z., and Yan, D. (2022). "Assessing the Potential of Decarbonizing China's Building Construction by 2060 and Synergy with Industry Sector." Journal of Cleaner Production 359 (July): 132086. <u>https://doi.org/10.1016/j.jclepro.2022.132086</u>