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Abstract 

Prior research has shown peak load reduction estimates from residential event-driven demand response 
programs (e.g., Critical Peak Pricing) using X of the highest Y days with a weather adjustment method 
are the best performing within the class of currently used baseline methods.  However, they are still 
biased relative to estimates produced from randomized control trials (RCTs), the unbiased “gold 
standard” evaluation method.  In this paper we identify underlying factors that cause some of the bias 
found in one commonly used baseline method. Rather than simply quantifying bias, this deeper 
understanding can be used to develop more accurate methods that are not subject to these underlying 
factors of bias. Previous studies have compared various baseline methods relative to each other; 
however, because all baseline methods are biased, it is impossible to determine the true bias that exists 
in them. We have access to a unique RCT dataset: the Sacramento Municipal Utility District’s (SMUD) 
consumer behavior study on critical peak pricing.  Our analysis of the 23 event days over two summers 
allows us to identify the true bias on peak load reduction estimates by using the RCT estimates as the 
unbiased gold standard against which we compare the estimates from the baseline methods. We found 
that spillover of energy reductions, from hours targeted by a program onto other hours, is one 
underlying factor that is a major cause of bias in baseline methods.  We discuss alternative baseline 
methods that may not be subject to this same bias.  

Keywords: Baseline prediction; Demand response; Critical peak pricing; Peak demand savings; 
Experimental design; randomized control trials 

  



1. Introduction 
The implementation of demand response (DR) opportunities (i.e., time-based rates and incentive-based 
programs) for residential and small commercial electricity customers is rapidly expanding due in large 
part to recent broad-based deployment of Advanced Metering Infrastructure (AMI) [1]. With the ability 
to now more granularly measure and/or control residential customers’ load and peak demand, states 
are beginning to commit to a broader array and greater penetration of time-based rates and incentive-
based programs.  

Many of these DR opportunities are event-driven. For example, Critical Peak Pricing (CPP) programs 
charge higher rates during event periods on a limited number of days per year in order to induce peak 
demand reductions [2, 3]. Therefore the need to produce accurate and unbiased estimates of the peak 
load reductions during events caused by these programs will be increasingly important for program cost-
effectiveness evaluations, dependability and reliability assessments for resource adequacy credit, load 
and/or peak demand forecasting, and customer settlement. 

Currently, a number of different approaches exist to estimate the peak load reduction provided by time-
based rates or incentive-based programs that are event-driven, the most widely used are baseline 
methods [4, 5]. They generally differ along the following lines: 

• Estimation methods (e.g., average, matching and regression); 
• Timeframes (e.g., from same/previous day to previous year); 
• Data selection rules (e.g., proximity to event, similarity of load, similarity of weather, highest or 

middle x of y); and 
• Sensitivity to external factors (e.g., heat, humidity). 

Many incentive-based programs that are directly marketed to residential and small commercial 
customers use a few days of usage prior to an event to create a simple baseline that is easy to describe 
to potential participants. At the other end of the spectrum of baseline methods, a few ISO/RTOs employ 
very sophisticated statistical analysis techniques which tend to attract much larger customers (e.g., 
industrial process plants).   

Considering that these various baseline methods are all employed to ultimately quantify participants’ 
contribution to resource adequacy or some other bulk power system service as well as for performance 
payment purposes, their accuracy is of critical importance.  

A number of analyses have been previously undertaken to examine the accuracy of different baseline 
methods for estimating peak load reductions [4-11]. The most comprehensive of these compared the 
consistency and accuracy of several commonly applied baseline methods using a number of different 
metrics applied against interval meter data of a large sample of commercial and industrial participants 
and non-participants in the PJM footprint [4] and alternatively of residential participants in San Diego 
Gas & Electric’s critical peak rebate (CPR) program [5]. One key result from both of these analyses was 
that weather can be a significant source of bias in baseline methods. As such, baseline methods that 
included an adjustment for weather on the day of the event performed better than methods that did 
not. Among the class of commonly applied baseline methods, the ones found to be the best performing 
averaged the load for customers across the highest 3 or 4 out of the prior 5 non-event weekdays and 
included an adjustment for weather on the event day.   



These previous studies compared various baseline methods relative to each other. Subsequent research 
compared the best performing 4-in-5 day baseline method with weather adjustments (which we will 
refer to hereafter as the “4-in-5” method) to an entirely different class of methods for determining 
estimates of load impacts: randomized controlled trials (RCTs), the “gold standard” evaluation method 
[10].1 Correctly designed and implemented RCTs result in a completely unbiased estimate of load 
reduction.  By leveraging the power of experimental design employed in a U.S. Department of Energy 
(DOE) Smart Grid Investment Grant (SGIG) funded consumer behavior study of time-based rates, peak 
load reduction estimates using the 4-in-5 method were found to be significantly different (i.e., biased) 
relative to estimates produced from RCTs. However, that research did not identify the causes of this 
bias.  

This paper presents an expansion of this prior research [10] by examining the underlying factors that 
cause some of the bias found in the 4-in-5 baseline method, in order to identify alternative methods 
that may not be subject to this same bias (previous studies simply quantified the bias).  To this end, our 
research seeks to address three main questions: 

1. Can we identify the magnitude of the bias in the 4-in-5 method? 
2. Beyond weather, can we identify additional factors that cause bias in the 4-in-5 method?  
3. Are there alternative baseline methods that are designed to avoid factors that cause bias? 

To answer these questions, we analyze data collected as part of the SGIG consumer behavior studies of 
time-based rates.  Specifically, this analysis examines the above research questions in the context of a 
CPP program with higher prices during peak hours on 23 event days over two summers in the 
Sacramento Municipal Utility District’s (SMUD) consumer behavior study, which utilized a randomized 
control trial experimental design [8].2 We use peak load reduction estimates from the RCT as the 
unbiased gold standard against which we compare the estimates from the 4-in-5 method as well as 
alternative methods.  

 

2. Methodology 

2.1. Definition of the 4-in-5 Baseline Method 
The 4-in-5 baseline method is defined as follows; for each participating customer and each event:3 

• Take the hourly interval meter data for the most recent five calendar days preceding an event, 
excluding weekends, holidays, days where a prior event was called, and those with other 
exclusion criteria; 

• Identify the four pre-event days with the highest average daily electricity usage; 

                                                             
1	Baylis	et	al.	[10]	built	upon	the	pioneering	work	by	LaLonde	[12]	comparing	RCTs	to	other	program	evaluation	methods.	

2	Clearly,	CPP	does	not	use	a	baseline	for	customer	settlement	like	is	applied	in	CPR	programs.		However,	any	event-
driven	DR	opportunity,	either	rate	or	program,	can	be	used	to	derive	an	estimate	of	the	load	reductions	during	events	via	
common	baseline	methods	used	in	incentive-based	programs	like	CPR.			

3	For	more	details	on	the	4-in-5	baseline	method,	see	Error!	Reference	source	not	found.B.	



• Define three “baseline calculation periods,” which are the average hourly electricity usage 
(kWh/h) during each of the following periods: (1) pre-peak hours on the event day; (2) peak 
hours on the four pre-event days; and (3) pre-peak hours on the four pre-event days; 

• Take an average of the hourly electricity usage during the peak hours on the four pre-event days 
to create an unadjusted baseline; 

• To account for the fact that there may be higher overall usage during event days, measure the 
difference in usage between pre-peak hours on the event day relative to the pre-peak hours on 
the four pre-event days, and add this to the unadjusted baseline in order to create an adjusted 
baseline. 

This definition leads to the specification that follows in Eq. 1 and Eq. 2 for estimating the peak load 
reduction generated by the 4-in-5 baseline method. In these equations, the input variables represent 
average hourly usage during certain times. EventPeak is usage during the hours targeted for load 
reduction – peak hours on the event day. The other three variables are during the three baseline 
calculation periods: EventPrePeak is usage during pre-peak hours on the event day; BaselinePeak is 
usage during peak hours on the four pre-event baseline days; and BaselinePrePeak is usage during pre-
peak hours on the four pre-event baseline days. For each customer i and event e:  

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒() = 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑒𝑎𝑘() + (𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑒𝑃𝑒𝑎𝑘() − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑟𝑒𝑃𝑒𝑎𝑘()) (Eq. 1) 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑃𝑒𝑎𝑘	𝐿𝑜𝑎𝑑	𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛() = 	𝐸𝑣𝑒𝑛𝑡𝑃𝑒𝑎𝑘() − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒() (Eq. 2) 

2.2. Method for Calculating Total Bias 
As previously noted, prior research tested the accuracy of this particular baseline method when applied 
to customers who were exposed to a critical peak pricing rate implemented as part of a randomized 
controlled trial [10]. First an estimate of the total program impact on peak load reduction from the 4-in-
5 method was derived for each event by averaging the customer level estimate across all participants. 
Then the bias for each event was calculated by comparing those impact estimates from the 4-in-5 
method against those produced by the RCT.  

Our research builds directly off of this prior research [10]. We examine two CPP rate opportunities 
implemented as RCTs: one used a default enrollment approach (i.e., customers are automatically put on 
the rate but allowed to opt-out); and one used a voluntary enrollment approach (i.e., customers must 
opt-in to the rate). We use peak load reduction estimates from the RCT as the unbiased gold standard 
against which we compare the estimates from the 4-in-5 method to calculate bias for each event. We 
will hereafter refer to this as the “total bias” for each event because we later identify a specific type of 
bias that may contribute to the total bias. Note that we are comparing the total or specific bias for each 
event on average across all participants; it is impossible to develop an unbiased estimate of the bias for 
each individual participant using an RCT as designed in SMUD’s consumer behavior study. 

2.3. Weather and Spillover Biases and their Effects on the 4-in-5 Method 
One well known and intuitive source of bias in baseline methods is weather [4, 6, 7]: if events are called 
on the hottest days, a baseline built on the days prior to the event will likely have lower usage and 
therefore will underestimate the energy reduction on the event day. An adjustment can be applied to a 
baseline to help improve accuracy and thus remove some of the total bias associated with baselines that 



do not have a weather adjustment [4, 6, 7].  However, as shown in [10], even with such weather 
adjustments applied to the 4-in-5 baseline, other forms of bias must still exist.  

In this paper, our hypothesis is that in addition to the bias caused by weather, spillover drives some of 
the total bias. In this context, spillover refers to the phenomenon that occurs when a program is 
designed to target energy reduction during specific hours or for specific energy behaviors, but 
customers respond to the program during other hours or for other energy behaviors in addition to those 
targeted by the program.4 For time-based rates and incentive-based programs, this means that while the 
program may cause a customer to reduce their usage during the target hours, it also may cause the 
customer to reduce usage during other non-targeted hours. Specifically, in the context of using the 4-in-
5 baseline method to calculate peak load reductions during CPP events, customers may reduce their 
usage not only during the targeted peak hours on event days, but also during the three baseline 
calculation periods defined in Section 2.1:  (1) pre-peak hours on the event day; (2) peak hours on the 
four pre-event days; and (3) pre-peak hours on the four pre-event days. 

If spillover exists, it has implications for the accuracy of baseline methods that rely on usage during time 
periods affected by spillover (see Figure 1). For the 4-in-5 baseline method, spillover onto any of the 
three baseline calculation periods would cause a systematic bias5 (i.e., the bias is consistently positive or 
negative); specifically, it would cause the 4-in-5 baseline method to underestimate the peak load 
estimates during the majority of events. To see why, consider that the true baseline represents how 
much energy a customer would use in the absence of the program.6 The 4-in-5 method assumes that the 
program only affects usage during the targeted peak hours, and creates the baseline with usage during 
other hours (the three baseline calculation periods). When spillover occurs, program participants lower 
usage not only during the targeted peak hours, but also during any of the three baseline calculation 
periods. This in turn would cause the 4-in-5 baseline to be lower than the true baseline. Then, when the 
peak load reduction is estimated by comparing the baseline to the actual usage during the peak hours 
on the event day, the estimated reduction would appear to be less than it actually is; that is, the 4-in-5 
method would underestimate the true peak load reduction. 

                                                             
4	Another	meaning	of	spillover	is	reduction	in	usage	outside	of	the	participant	population	in	the	CPP	rate	(e.g.,	customers	
on	the	CPP	rate	talk	to	their	neighbors	about	the	importance	of	reducing	usage	during	peak	hours	who	then	do	so	without	
the	economic	incentives	of	being	on	the	CPP	rate).	

5	Bias	measures	the	directional	difference	between	the	expected	value	of	the	estimates	and	the	truth,	while	precision	
measures	variations	of	estimates	within	themselves.	We	use	overall	accuracy	to	encompass	both	bias	and	precision	(e.g.,	
the	root	mean	squared	error	(RMSE)	as	a	measure	of	accuracy	incorporates	both	deviation	from	the	truth	and	variance).	

6	In	this	paper,	we	focus	on	evaluation	of	the	impact	of	a	program	on	peak	load	reduction	relative	to	the	counterfactual	in	
which	the	program	is	absent.	Note	that	this	is	different	from	a	day-	or	week-ahead	forecast	of	the	impact	of	calling	an	
event	on	one	specific	day	given	that	the	program	is	already	in	place.	



 

Figure 1. How Spillover affects the 4-in-5 Baseline and Peak Load Reduction Estimates 

2.4. Theoretical Background on the Nature of Spillover 
Our hypothesis that spillover is causing some of the total bias in the 4-in-5 method after adjusting for 
weather is rooted in theories from the Behavioral Sciences. Traditional economic theory predicts that 
customers would provide peak load reduction only during the higher priced hours (i.e., during peak 
hours on event days), and would increase usage during the lower priced hours (i.e., load shifting to off-
peak hours and to non-event days). However, several theories from Behavioral Economics and 
Psychology, described in more detail below, suggest why this may be incorrect.  

Limited attention: people have many small and/or large decisions to make every day. These decisions 
require mental energy and attention to think through and implement. People may choose to limit their 
attention to energy use decisions, so as not to use up precious mental energy (see, for example [13-15]). 
In this case, a change in energy behavior that only requires a one-time decision may be the best use of 
this limited attention. In the application of event-driven time-based rates or incentive-based programs, a 
customer may decide to respond by making a one-time decision to re-program their air conditioner 
thermostat to a higher temperature during peak hours of every day (or every week day), so that they 
don’t have to think about making any incremental changes on the day an event is called. This means 
that the peak load would be reduced during peak hours on every day, not only during event days (i.e., 
spillover).  

Habit formation: people are typically creatures of habit, with some set routines that do not change day-
to-day (see, for example [16-18]). A household’s evening routine may include a series of tasks that occur 
in the same order every day. For example: get home from work, make dinner, start the dishwasher, put 
the kids to bed, watch TV, go to sleep. Although this may be automatic and hard to change, a household 



might decide to make a conscious effort to form a new habitual routine. In our case, in response to 
participating in an event-driven time-based rate or incentive-based program, a customer may make an 
effort to change their habits in order to avoid more electric-intensive activities during peak hours. For 
example, the customer could change their routine to start the dishwasher only after peak hours (e.g., 
after watching TV rather than immediately after dinner). This would mean that peak load is reduced 
during peak hours on every day, not only on event days (i.e., spillover). 

Risk aversion: people are typically risk averse (see, for example [19-23]). They do not like situations in 
which there is any risk of something bad happening, even if the possible gain is larger than the possible 
loss (for example, most people would not take a 50/50 bet of either winning $102 or losing $100, even 
though the possible gain of $102 is larger than the possible loss of $100). In the context of event-driven 
time-based rates or incentive-based programs, if a customer is worried that there is some risk they will 
not receive the event day notification (or will receive it but won’t be home in time), it may seem safer to 
increase the programmed AC temperature on all days and incur slight discomfort even on non-event 
days, rather than risking a higher bill because they failed to respond to an event.  These actions would 
again reduce the energy and demand that may have been used during non-event peak hours absent the 
program (i.e., spillover). 

2.5. Quantifying the Bias from Spillover 
To examine our hypothesis, we estimate spillover to determine if it exists and then quantify how it 
contributes to total bias in the 4-in-5 peak load reduction estimates for our CPP program. As shown in 
Eq. 3, we estimate spillover by determining the impact of the CPP rate using the control group from the 
RCT during the three baseline calculation periods (discussed in Section 2.1): (1) pre-peak hours on the 
event day (SpilloverEventPrePeak); (2) peak hours on baseline days (SpilloverBaselinePeak); and (3) pre-
peak hours on baseline days (SpilloverBaselinePrepeak). 

In order to quantify how spillover contributes to total bias, we estimate the “bias from spillover.” We do 
this by calculating how spillover during the three baseline calculation periods affects the 4-in-5 baseline, 
and therefore biases the peak load reduction estimates. First we create a spillover-adjusted baseline 
that eliminates the effect of spillover for each of these periods. For each customer i and event e, where 
the Spillover variables are the estimated impacts of the CPP rate on usage during the three baseline 
calculation periods: 

𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟	𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒() = (Eq. 3) 

 

 

(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑒𝑎𝑘() − 𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑒𝑎𝑘()) 

+(𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑒𝑃𝑒𝑎𝑘() − 𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑒𝑃𝑒𝑎𝑘()) 

−(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑟𝑒𝑃𝑒𝑎𝑘() − 𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑟𝑒𝑃𝑒𝑎𝑘()) 

Comparing this spillover adjusted baseline to the baseline in Eq. 1 results in the bias from spillover, or 
the total amount that spillover affects the 4-in-5 estimates of peak load reduction:  

𝐵𝑖𝑎𝑠	𝑓𝑟𝑜𝑚	𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟()
= 𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑒𝑎𝑘() + 𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝐸𝑣𝑒𝑛𝑡𝑃𝑟𝑒𝑃𝑒𝑎𝑘()
− 𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑟𝑒𝑃𝑒𝑎𝑘() 

(Eq. 4) 

 



2.6. Alternative Baseline Methods 
If spillover causes some of the total bias in the 4-in-5 method, a method that uses baseline calculation 
periods from before the program implementation (rather than during) may not be affected by spillover, 
and thus may be less biased.7 Of course, these methods may suffer from other shortcomings; one 
example is that as customers remain on a time-based rate or incentive-based program for a longer 
amount of time, the pre-program baseline may become less relevant, and so a method that uses this 
technique may become less accurate over time. 

We identified one such technique that derived a baseline using only pre-program time periods 
(hereafter referred to as LTAP method) [24]. The LTAP method is a simple linear regression baseline 
method. For each event, a baseline is created by taking a pre-program day with similar temperature, and 
then modified based on the difference in temperature between the event day and the pre-program day, 
as well as the relationship between temperature and usage (this relationship is estimated using a linear 
regression; more details are provided in Appendix B). We use the LTAP method to produce peak load 
reduction estimates, and then calculate its total bias using the method described in Section 2.2. Note 
that we only examine one alternative baseline method that is not affected by spillover; there may be 
many others. 

2.7. Comparing Different Methods 
In order to compare our two baseline methods, we calculate the root mean squared error (RMSE) of the 
estimates from the 4-in-5 method and the LTAP method relative to the estimates from the RCT method 
in order to have a quantitative measure of the overall accuracy (i.e., bias and precision) of these 
methods across all events. We compare the RMSE metric of the LTAP method to that of the 4-in-5 
method. Within each method, we also compare the RMSE of estimates for the default enrollment 
approach to that of the voluntary enrollment approach. 

3. SMUD’s Consumer Behavior Study  
The randomized design of SMUD’s consumer behavior study provides a unique opportunity to examine 
the total bias and proportion of the bias resulting from spillover of the 4-in-5 baseline method. SMUD 
conducted one of the largest and most extensive consumer behavior studies under the SGIG program 
[25].8 Like most of the other consumer behavior studies implemented under the SGIG program, SMUD’s 
study utilized a true experimental design (i.e., randomized control trial and randomized encouragement 
design) in order to more credibly and precisely estimate the load response to these various rates [8].  

One of the study’s main goals was to better understand how the enrollment approach (voluntary vs. 
default) affected participation rates, drop-out rates, and electricity demand impacts in response to 
different time-based rate designs in effect during the summer months (June through September) of 
2012 and 2013. These included:  

(1) A two-period TOU rate with a three-hour (4-7 p.m.) peak period;  

                                                             
7	Although	even	in	this	case	there	may	be	spillover;	customers	may	learn	that	the	program	is	going	to	go	into	effect	and	
modify	their	behavior	before	it	begins.	

8	For	more	details	on	SMUD’s	consumer	behavior	study,	see	Appendix	A.	



(2) CPP overlaid on SMUD’s standard inclining block rate; and  
(3) CPP overlaid on the study’s TOU rate.  

The study’s design is summarized in Figure 2 and the rates are presented in Table 1. The CPP rate was 
designed and implemented with 12 critical events called each year between the hours of 4 PM and 7 PM 
(i.e., 48 hours in total) on summer weekdays, excluding holidays. For the purposes of this analysis, only 
the customers included in the CPP overlaid on the underlying inclining block rate, including both 
enrollment approaches (i.e., voluntary, default) and technology treatments (i.e., with or without the 
presence of an in-home display (IHD) offer) were analyzed and discussed. Specifically, the four 
randomized groups we examine are: (1) voluntary CPP with IHD, (2) voluntary CPP with no IHD, (3) 
default CPP with IHD, and (4) a control group on SMUD’s standard inclining block rate.  

 

 

Note:	Those	treatment	arms	depicted	in	gray	were	not	analyzed	here,	while	those	with	black	text	were	included	in	this	study.	

Figure 2. SMUD’s Consumer Behavior Study Experimental Design 

 

Table 1. SMUD’s CBS Summer 2012 Rate Design (¢/kWh)9 

Period 
CPP in ¢/kWh       
(Treatment) 

Inclining Block in 
¢/kWh (Control) 

Non Critical Peak Base (< 700 kWh) 8.51 9.38 

Non Critical Peak Base-Plus (> 700 kWh) 16.65 17.65 

Critical Peak 75.0 N/A 

                                                             
9	Table	1	shows	the	rates	charged	to	SMUD’s	general	population	of	customers	on	the	CPP	treatment	rates.	SMUD	also	
included	customers	enrolled	in	the	low-income	rate,	referred	to	as	Energy	Assistance	Program	(EAPR).	These	customers	
faced	a	lower	fixed	charge	than	non-EAPR	customers,	and	were	given	a	discount	of	35%	applied	to	electricity	use	charges	
for	base	use,	and	a	discount	of	30%	applied	to	non-base	use	up	to	600kWh,	above	which	no	discount	was	applied.	This	
same	discount	structure	applied	to	both	time-based	treatment	rates	and	inclining	block	standard	rates.	
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IHD

TOU-CPP
IHD

TOU
IHD
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4. Results 
4.1. Total Bias Calculations for the 4-in-5 Method 

As described previously, the total bias associated with the 4-in-5 method is the difference between the 
peak load reduction estimates generated using the RCT and those generated using the 4-in-5 baseline. 
Our results show that for the CPP program we are examining, the 4-in-5 method is systematically biased 
(i.e., consistently over- or under-estimates the reduction), as seen in Figure 3. For both voluntary and 
default enrollment approaches, total bias appears to exist in almost every event, almost always 
underestimates the peak load reduction, and is of a meaningful magnitude. Most of these estimates of 
bias are statistically significant (see Appendix B for the full regression results). For the default enrollment 
approach, the total estimated bias ranges between -0.20kWh and 0.51kWh per hour across different 
events, with an average estimated bias of 0.21kWh per hour across all events. For the voluntary 
enrollment approach, the total estimated bias ranges between -0.10kWh and 0.56kWh across different 
events, with an average estimated bias of 0.33kWh across all events. The 4-in-5 method overestimates 
the peak load reduction in only two out of 23 events for the default enrollment, and only one event for 
the voluntary enrollment, with the vast majority of cases resulting in an underestimate. The 
underestimate is substantial: on average, the 4-in-5 method produces savings estimates that are 39% 
and 46% of the unbiased RCT estimates for the default and voluntary enrollment approaches, 
respectively. The RMSE overall accuracy metric is 0.27 for the default enrollment approach, and 0.35 for 
the voluntary enrollment approach; by this metric, the 4-in-5 method is slightly more accurate for the 
default approach.  

One interesting finding is that for both the default enrollment and voluntary enrollment, the bias 
appears to be lower for a handful of specific events (i.e., 7, 13, and 20). There are many possibilities for 
why this may be the case. For example, it may be that those events had variable weather patterns that 
were dissimilar to the hours and/or days ahead of the event used to calculate the baseline, so that 
weather was not fully controlled for and therefore the estimates were more biased on those days. It 
may also be that the baseline method is more biased during certain days of the week and less on others, 
or that the baseline may not be as accurate for an event that is closer to another event.. To unpack this, 
we would need more observations of events so that we could perform a regression that tests the effects 
of these potential factors (as well as others) on the bias of each event. 



 

 
Notes: Y axis shows kWh/h on average across all participants for each event.  

Figure 3. Total Bias in Peak Load Reduction Estimates for the 4-in-5 Baseline Method  

4.2. Quantification of the Bias from Spillover 
Our results in Section 4.1 are consistent with our theory that spillover is causing systematic bias: the 
peak load estimates from the 4-in-5 baseline method tend to underestimate the reductions relative to 
the RCT estimates. We now directly test this hypothesis by estimating spillover and quantifying the 
proportion of the estimated total bias that is due to spillover.  



Our results are shown in Figure 4. For each graph, the top portion shows the estimated bias due to 
spillover. For reference, the top portion also includes the results from Section 4.1 on the total bias of the 
4-in-5 method. The bottom portion depicts the percent of the total bias that can be explained by the 
spillover.10  

We find evidence of spillover onto non-event days: the spillover estimates are statistically significant 
during peak hours on the pre-event days used as a baseline calculation period.11 However, during pre-
peak hours on event days and on pre-event days, spillover is not statistically significant but is still non-
zero.12 Despite the lack of statistical significance for bias estimates in two of the three time periods, 
these estimates still represent our best guess for the size of the actual spillover. We therefore use all of 
three estimates when we combine the spillover during each of these three periods in order to calculate 
the proportion of total bias due to spillover.   

There are a few interesting observations to draw from our results. 

First, as shown in the top part of the figures, bias from spillover appears to exist during every event. For 
the default enrollment approach, the estimated bias from spillover ranges between 0.04kWh and 
0.17kWh per hour across events, with an average bias from spillover of 0.12kWh per hour. For the 
voluntary enrollment approach, the estimated bias from spillover ranges between 0.15kWh and 
0.36kWh per hour across events, with an average bias from spillover of 0.26kWh per hour.  

Second, although spillover contributes to the total bias in 4-in-5 estimates, it clearly is not the only 
factor causing bias; the bias from spillover cannot explain the full amount of the total bias in the 4-in-5 
estimates. For the default enrollment approach, the portion of total bias explained by spillover ranges 
between 21% and 83% across all events, with an average of 47%. For the voluntary enrollment 
approach, the portion of total bias explained by spillover ranges between 36% and 97% across all events, 
with an average of 65%. In addition, there are events for which the total bias goes in the opposite 
direction of the bias from spillover; the bias from spillover is always positive, but the total bias is 
negative for a few events. This means that for those events, although spillover is pulling the total bias in 
one direction, there are additional factors that are pulling the total bias in the other direction. Future 
research could examine and identify other sources of specific bias to determine if together with spillover 
they fully explain the total bias. 

Third, the estimated bias from spillover is greater for the voluntary versus the default enrollment 
approach: 0.26kWh versus 0.12kWh. This is consistent with the conjecture made in Section 2.4 that 
customers who take action to opt-in to a voluntary rate may be more engaged, interested, and 
knowledgeable about their own energy choices than those who are placed on the rate by default. These 
voluntary participants may therefore be more motivated and willing to change their energy behavior 
both during the event and during non-event hours. This would lead to greater bias from spillover in 
savings estimate using the 4-in-5 method for the voluntary enrollment approach.  

                                                             
10	Negative	percentages	are	excluded.	

11	See	Appendix	B	for	details	on	estimates.	

12	This	may	be	because	the	effect	is	smaller	during	off-peak	hours,	and	our	sample	size	is	not	large	enough	to	detect	an	
effect.	



The bias from spillover also accounts for a greater portion of the total bias in the voluntary versus the 
default enrollment approach: 81% of the total bias is explained by the spillover for voluntary versus 58% 
for default.13 This means that a greater portion of the total bias is left unaccounted for in the default 
enrollment approach. 

 

 

                                                             
13	This	is	not	an	obvious	finding;	although	it	might	be	expected	that	the	peak	load	reduction,	spillover,	and	bias	is	larger	
for	the	voluntary	rate	than	the	default	rate,	one	might	expect	these	to	scale	proportionally,	so	that	while	more	spillover	
causes	more	bias,	the	spillover	contributes	the	same	percentage	to	the	bias.	However,	such	is	not	the	case.	



Note: Y axis of top graph shows kWh/h on average across all participants for each event.  

Figure 4. Bias from Spillover and Portion of Total Bias Explained by Spillover  

4.3. Total Bias Calculations of Alternative Baseline Methods 
We have shown that spillover causes part of the total bias in the 4-in-5 method. We now turn to 
estimating load impacts from a method that is hypothesized to have less susceptibility to bias coming 
from spillover: the LTAP method (this method calculates a baseline using only pre-program time periods 
and is therefore not as affected by spillover, as discussed in Section 2.6).  

Figure 5 shows the bias estimates from the LTAP method compared to bias estimates from the 4-in-5 
method. First, we use the RMSE metric to examine the overall accuracy of each method. Using this 
metric, the LTAP method appears to be more accurate for the voluntary enrollment approach, but not 
the default approach. For the default enrollment approach, the RMSE is 0.27 for both the 4-in-5 and 
LTAP; by this accuracy metric, both methods perform the same. For the voluntary enrollment approach, 
the RMSE is 0.35 for 4-in-5 and 0.28 for LTAP; by this metric LTAP does better (i.e., is more accurate 
overall).14 

Next we examine the systematic bias (i.e., whether the estimate consistently over- or under-estimates 
the peak load reductions). The LTAP appears to be systematically biased, but less so than the 4-in-5 
method. For the default approach, the 4-in-5 method underestimates the peak load reductions in 91% 
of the events, while the LTAP underestimates only 70% of the time; for the voluntary approach, the 4-in-
5 method underestimates the peak load reductions in 96% of the events, while the LTAP underestimates 
only 74% of the time. Because the LTAP is less systematically biased, it has a lower estimated total bias 
when averaged across all events: for the default enrollment approach, the average estimated total bias 
is 0.09kWh for the LTAP versus 0.21kWh for 4-in-5; for the voluntary enrollment approach, the average 
estimated total bias is 0.10kWh for the LTAP versus 0.33kWh for 4-in-5.  

                                                             
14	Another	observation	is	that	the	LTAP	method	appears	to	perform	worse	in	the	last	few	events.	Although	we	cannot	
draw	any	conclusions	from	so	few	data	points,	one	possible	explanation	is	that	because	the	LTAP	method	is	based	on	
usage	from	before	the	rate	begins,	it	becomes	less	accurate	over	time	(as	previously	discussed).	



 
Notes:  Y axis shows kWh/h on average across all participants for each event. Differences between the LTAP and the 4-in-5 method 
are not statistically significant. 

Figure 5. Total Bias in Peak Load Reduction Estimates for the LTAP and 4-in-5 Methods  

5. Discussion & Conclusion 
As the penetration of time-based rates and incentive-based programs expand, the need to produce 
accurate and unbiased estimates of the peak load reductions resulting from these programs will be 
increasingly important. Previous research has shown that estimates generated from 4-in-5 baseline 
methods, identified as the best performing baseline method [4, 5], are biased [10]. In this paper, we 
quantify this bias for a CPP program leveraging its RCT experimental design and look deeper into the 
cause and implications of this bias.  

Our results show that there is spillover of electricity reduction from the higher priced hours targeted by 
the program onto other time periods. We show that this spillover can explain some, but not all, of the 
bias in the 4-in-5 method. Because the hours not targeted by the program have slightly lower rates, this 
means that customers actually reduced their usage during lower priced hours, contrary to what 



traditional economic theory would predict. This suggests that elements from Behavioral Economics and 
Psychology, such as limited attention, habit formation, and risk aversion, may help explain a customer’s 
decision making process. Further research could examine whether and how much each of these, or 
other behavioral factors, are responsible for spillover. 

Research is currently underway to develop new baseline methods that are less biased and more 
accurate. We examined one such method, a novel baseline method called LTAP. Although this method is 
not affected by bias due to spillover, and did perform just as well or better than the 4-in-5 method with 
respect to a metric of overall accuracy (i.e., RMSE), its estimates were still somewhat inaccurate.  

Researchers should continue to develop new evaluation methods which are less biased than existing 
methods, given the myriad of challenges the electric industry has faced in implementing gold standard 
RCT experimental designs. One potential improvement is using more complex analytical techniques in 
baseline methods, which have historically been very simplistic. Recent research in other fields has 
demonstrated the value of using sophisticated machine learning algorithms and advanced econometrics 
techniques. These include: boosting, classification, and regression tree algorithms, such as random 
forests, which can be used to estimate a more accurate propensity score for an econometrics matching 
method; incorporating algorithms such as LASSO, boosting, and regression trees can improve the 
accuracy of estimates; using a machine learning bayesian structural time series can produce a more 
accurate prediction of the energy usage of a household in the absence of the treatment for use as a 
control group, and finally an advanced econometric method called regression discontinuity has been 
found to perform better than traditional matching methods (for discussions on using these methods, see 
[12, 26-32]).15  Future research could quantify the reduction in bias due to the application of these 
cutting edge analytical techniques in demand response program evaluations. 

From a policy standpoint, our findings also have broader implications for demand side management 
portfolio planning. The reduction in electricity consumption during hours not targeted by the DR 
opportunity (i.e., spillover) suggests that this form of event-driven DR could contribute to overall energy 
savings goals (e.g., energy efficiency portfolio standards). If utilities take a more holistic approach to 
DSM portfolio planning, such goals could likely be realized at lower cost.16  

Understanding the cause of the spillover also has important implications for the optimal design and 
implementation of DR programs. For example, if spillover is caused by customers reacting to an event-
driven DR program by re-programming their thermostats during all weekdays, then there will be 
reductions in peak demand during non-event days as well as event days. However, if an event-driven DR 

                                                             
15	One	should	not	blindly	pursue	greater	complexity,	presuming	it	always	results	in	greater	accuracy.	For	example,	
overfitting	an	econometric	model	so	that	it	appears	to	be	accurate	given	past	data	but	actually	fails	at	predicting	the	
future	is	just	as	big	of	a	problem	as	applying	a	methodology	that	both	inaccurately	explains	past	data	and	poorly	predicts	
the	future.	Recently,	data	scientists	have	begun	to	develop	machine	learning	techniques	to	deal	with	this	issue	(e.g.,	
dividing	the	data	into	separate	sets	for	the	purpose	of	training,	testing,	and	validation	[28]).		Being	aware	of	the	both	the	
challenges	introduced	by	greater	complexity	as	well	as	the	potential	approaches	for	mitigating	those	challenges	should	
help	our	industry	move	forward	with	better	and	more	accurate	baselines.	

16	Some	utilities,	including	PG&E	[33]	are	currently	working	on	integrating	the	DR	and	EE	benefits	of	Behavioral	Demand	
Response	Programs.	



program uses automated controls that respond exclusively to events, this automation may improve 
response during events but decrease peak reductions on non-event days.  

In addition, DR opportunities may currently be undervalued when assessing their cost effectiveness. 
Typically the only benefit taken into account for DR programs like these are the reduction in demand 
during specific targeted hours, rather than including the benefit of overall energy savings outside of 
those targeted hours [8]. Future research should explore potential synergies of DR opportunities with 
other DSM programs to ascertain if policies should be modified to promote a more integrated approach 
to demand side management. 
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Appendix A: Background on SMUD’s SGIG Consumer Behavior Study 
Sacramento Municipal Utility District (SMUD) is a summer peaking municipal electric utility with 
~625,000 customers in its ~900 square mile service territory that covers much of the Sacramento, CA 
metropolitan area. SMUD’s SGIG project (SmartSacramento) includes a consumer behavior study that 
evaluates customer acceptance and response to enabling technology combined with various time-based 
rates under different recruitment methods. The utility is targeting AMI-enabled residential customers 
across the entire service territory to participate in the study. 

This study focuses on evaluating the timing and magnitude of changes in residential customers’ peak 
demand patterns due to exposure to varying combinations of enabling technology, different recruitment 
methods (i.e., opt-in vs. opt-out), and several time-based rates. SMUD is also interested in learning 
about customer acceptance of the different time-based rates under the alternative recruitment 
methods. 

Rate treatments include the implementation of three time-based rate programs in effect from June 
through September: a two-period TOU rate that includes a three-hour on-peak period (4 - 7 p.m.) each 
non-holiday weekday; a CPP overlaid on their underlying tiered rate; and a TOU with CPP overlay (TOU 
w/CPP) (see Table A-1). Customers participating in any CPP rate treatments receive day-ahead notice of 
critical peak events, called when wholesale market prices are expected to be very high and/or when 
system emergency conditions are anticipated to arise. CPP participants will be exposed to 12 critical 
peak events during each year of the study.  

Control/information technology treatments include the deployment of IHDs. SMUD is offering IHDs to all 
opt-out customers in any given treatment group and to more than half of the opt-in customers in the 



treatment group. All participating customers receive web portal access, customer support and a variety 
of education materials.  

Table A-1. SMUD CBS Rate Design (¢/kWh) 

Period CPP TOU TOU-CPP 
Base (< 700 kWh) 8.51   
Base (> 700 kWh) 16.65   
Off-Peak (< 700 kWh)  8.46 7.21 
Off-Peak (>700 kWh)  16.60 14.11 
Peak  27.00 27.00 
Critical Peak 75.00  75.00 

 

Due to the variety of treatments, the study includes three different experimental designs: randomized 
controlled trial (RCT) with delayed treatment for the control group, randomized encouragement design 
(RED) and within-subjects design (see Figure A-1).  

In all three cases, AMI-enabled residential customers in SMUD’s service territory are initially screened 
for eligibility and then randomly assigned to one of the seven treatments or the RED control group.  

For the two treatments that are included in the RCT “Recruit and Delay” study design, customers receive 
an invitation to opt in to the study where participating customers receive an offer for a specific 
treatment. Upon agreeing to join the study, customers are told if they are to begin receiving the rate in 
the first year of the study (i.e., June 2012) or in the summer after the study is complete (i.e., June 2014). 

For two of the three treatments that are included in the RED, customers are told that they have been 
assigned to a specific identified treatment but have the ability to opt out of this offer. Those who do not 
opt out receive the indicated treatment for the duration of the study. Those who opt out are 
nonetheless included in the study’s evaluation effort but do not receive the indicated treatment. For 
one of the three RED treatments, customers receive an invitation to opt in to the study where 
participating customers receive a specific treatment. Customers that opt in are then assigned to receive 
the treatment in year 1 of the study (i.e., 2012). 

For the two treatments that are included in the within-subject design, customers are told they have 
been assigned to either the Block w/CPP treatment or the TOU w/CPP treatment with technology.17  In 
the former case, customers only have the ability to opt in to this specific treatment. In the latter case, 
customers only have the ability to opt out of this specific treatment. 

 

                                                             
17	The	within-subjects	method	was	designed	to	use	no	explicit	control	group;	instead	it	estimates	the	effects	of	the	
treatment	for	each	participant	individually,	using	observed	electricity	consumption	behavior	both	before	and	after	
becoming	a	participant	in	the	study	as	well	as	on	critical	peak	event	and	non-event	days.	However,	the	control	group	
selected	for	the	RED	design	may	be	used	as	a	control	group.	



 

Figure A-1. SMUD Recruitment Process  

 

Appendix B: Data Analysis Methods and Results 

Peak Load Reduction Estimates and Bias Calculations 

RCT Method 

Table B-1 shows the results of the peak load reduction estimates and the calculated bias for the RCT 
method. The average peak period load impacts estimates for the two treatment groups (Default and 
Voluntary) were estimated using a difference-in-differences (DID) instrumental variables (IV) regression 
using Two-Stage Least Squares (2SLS). While whether or not a household actually experiences the study 
TOU electricity rates is not random (because of self-selection in or out of treatment), the assignment to 
a treatment group is random. We can therefore use assignment to treatment (or “encouragement” as 



it’s known in the literature) as an instrument for actual treatment (i.e., exposure to the treatment time-
of-use rate).  

A separate regression is run for each treatment group (Default or Voluntary). We instrument for Tit with 
randomized assignment (or encouragement) to treatment indicator Ait.  

  (Eq. B-1) 

Tit is an indicator variable is equal to one starting on June 1st, 2012 if household i was actually enrolled 
in treatment and remained in the treatment group at time t, zero otherwise. Ait is an indicator variable 
equal to one starting on June 1st, 2012 if household I was encouraged to be in one of the treatment 

groups (random assignment to treatment), zero otherwise. The predicted values are then used in Eq. 
B-2.  

The estimating equation we use to derive the estimates in Table B-1 is as follows: 

𝑦(C = 𝛽𝑇F(C + 𝛾( + 𝜏C + 𝜀(C  (Eq. B-2) 

The variable yit is hourly electricity consumption for household i in hour t;  are the predicted values 

generated from the regression shown in equation (1);  is a household fixed effect;18  is an hour of 

sample fixed effect19; and is the error term assumed to be distributed IID normal across households. 
In order to account for serial correlation across time observations within households, we clustered the 
standard errors of the estimates at the household level. The data used are peak hour consumption (4 
pm to 7 pm) on non-holiday weekdays in both treatment summers (2012 and 2013) and in the pre-
treatment summer (2011). Households in both the treatment groups and the control group are 

included. Coefficient captures the average hourly treatment effect per household.  

4-in-5 Method 

Table B-1 also shows the results of the peak load reduction estimates and the calculated bias for the 4-
in-5 method. The estimates are calculated as described in Section 2.2, and the total bias associated with 
the 4-in-5 method is the difference between the peak load reduction estimates generated using the RCT 
and those generated using the 4-in-5 baseline. 

Linear Relation Between Temperature and Aggregated Power (LTAP) 

Table B-1 also shows the results of the peak load reduction estimates and the calculated bias for the 
LTAP method. LTAP, as described in Kim et al [24], is a white-box model which assumes a linear 
relationship between the aggregate household electricity usage and the outdoor temperature, as shown 
in Figure B-1. Intuitively, when the outdoor temperature increases, the indoor temperature also 
increases after a delay due to insulation. When the temperature exceeds a threshold, the households 

                                                             
18	In	the	tables	that	follow	which	show	the	output	from	the	econometric	analysis,	the	row	titled	“Household	Fixed	Effects”	
with	a	value	of	“Yes”	indicates	when	these	household-level	fixed	effects	were	applied.	

19	In	the	tables	that	follow	which	show	the	output	from	the	econometric	analysis,	the	row	titled	“Hour	of	Sample	Fixed	
Effects”	with	a	value	of	“Yes”	indicates	when	these	hour	of	sample	fixed	effects	were	applied.	
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turn on their air-conditioners. The variable electricity usage (v0) is defined as the usage minus the base 
load (b0) from electrical appliances that require constant electricity usage (e.g., refrigerators and water 
pumps). The higher indoor temperature causes the air-conditioners to consume more energy to remove 
the heat. Therefore, the variable electricity usage has a strong linear relationship with the outdoor 
temperature, while the base load is constant. 

 

 
Note: Linear dependence between outdoor average temperature and variable electricity usage (R=0.95). Source: Kim et al. [24]. 

Figure B-1. Linear Regression of Two Piecewise Linear Spline Function. 

For the analysis presented in Section 2.6, LTAP first performs a linear regression over the aggregate 
customer usage data. The computed regression coefficients are then used for predicting the aggregate 
daily usage (a1) for each customer based on their total daily usage on the reference day (the day with the 
closest temperature in year T-1) (a0). 

                                   (Eq. B-3) 

To predict the hourly usages (h1), we assume the household’s daily profile remains the same during the 
study period. We scale the variable load hourly usage based on the predicted and reference day total 
usage as follows:  

                              (Eq. B-4) 

LTAP baseline model relies on two key assumptions: the aggregate daily usage depends linearly on 
outdoor temperature, and each household’s usage profile stays the same across the three years of this 
study. Both of these assumptions could be violated when the household changes in some way, such as 
adding new electrical appliances, changing the number of occupants, adding new insulation and so on. 
The impact of these factors needs to be studied with more relevant data. 



From our current study, we see that LTAP has many advantages over existing time-series predictions 
models, which often require past prediction of nearby dates.  For example, when predicting usage for 
July 6th in year T+1, the model requires the usages of a few days before, such as those on July 5th and 
June 29th in year T+1.  Since usage values from July 5th and June 29th in year T+1 have to be predicted 
first before used, there is a strong possibility the prediction errors would accumulate over time, which 
can make long-term predictions highly unreliable.  LTAP mitigates this effect by using the historical 
usage on the reference day without any intermediate prediction steps. Therefore, LTAP has a greater 
potential for making long-term, stable prediction, which is useful for planning and building infrastructure 
to support the power demand in a local region.  

The total bias associated with the LTAP method is the difference between the peak load reduction 
estimates generated using the RCT and those generated using the LTAP. 

Table B-1. Peak Load Reduction Estimates for RCT, 4-in-5 Method, and LTAP Method, and Bias of the 4-
in-5 Method and LTAP Method 

Default CPP        

Event RCT std 
error 

4-in-5 std 
error 

LTAP std 
error 

Total 
Bias of 
4-in-5 

Total 
Bias of 
LTAP 

1 0.363 0.056 0.048 0.052 0.131 0.072 0.315 0.232 
2 0.404 0.061 0.380 0.055 0.111 0.073 0.024 0.293 
3 0.287 0.057 0.093 0.047 -0.164 0.070 0.194 0.451 
4 0.287 0.055 0.049 0.050 0.096 0.065 0.238 0.190 
5 0.345 0.057 0.161 0.054 0.193 0.072 0.183 0.152 
6 0.357 0.060 0.353 0.055 0.124 0.075 0.004 0.233 
7 0.272 0.053 0.473 0.052 0.493 0.065 -0.201 -0.222 
8 0.334 0.052 0.268 0.051 0.192 0.069 0.066 0.143 
9 0.261 0.051 0.037 0.040 0.384 0.060 0.223 -0.124 
10 0.218 0.053 -0.016 0.048 0.176 0.061 0.235 0.042 
11 0.207 0.052 0.013 0.045 0.181 0.064 0.194 0.026 
12 0.413 0.068 0.031 0.056 0.155 0.083 0.382 0.258 
13 0.418 0.064 0.462 0.050 0.164 0.080 -0.044 0.254 
14 0.469 0.072 0.092 0.058 -0.043 0.081 0.377 0.512 
15 0.325 0.061 -0.039 0.054 0.253 0.069 0.364 0.072 
16 0.384 0.064 0.007 0.045 -0.052 0.066 0.376 0.436 
17 0.572 0.069 0.063 0.055 0.531 0.080 0.509 0.041 
18 0.337 0.059 0.139 0.038 0.633 0.062 0.198 -0.296 
19 0.421 0.064 -0.071 0.053 0.156 0.069 0.492 0.265 
20 0.382 0.059 0.350 0.040 0.494 0.064 0.033 -0.112 
21 0.360 0.062 0.059 0.040 0.390 0.060 0.301 -0.030 
22 0.277 0.063 0.076 0.032 0.553 0.055 0.201 -0.276 
23 0.152 0.064 0.031 0.027 0.676 0.056 0.122 -0.523 

 



Voluntary CPP        

Event RCT std 
error 

4-in-5 std 
error 

LTAP std 
error 

Total 
Bias of 
4-in-5 

Total 
Bias of 
LTAP 

1 0.867 0.076 0.422 0.040 0.638 0.052 0.445 0.229 
2 1.040 0.086 0.694 0.043 0.743 0.054 0.346 0.296 
3 0.629 0.077 0.367 0.038 0.351 0.051 0.261 0.277 
4 0.719 0.074 0.336 0.034 0.543 0.047 0.383 0.176 
5 0.871 0.081 0.520 0.040 0.745 0.052 0.351 0.125 
6 0.930 0.086 0.596 0.043 0.645 0.053 0.334 0.285 
7 0.731 0.073 0.742 0.039 0.869 0.052 -0.011 -0.138 
8 0.677 0.076 0.513 0.039 0.602 0.049 0.163 0.075 
9 0.507 0.075 0.179 0.029 0.569 0.041 0.328 -0.062 
10 0.473 0.074 0.178 0.032 0.469 0.043 0.295 0.004 
11 0.436 0.076 0.110 0.031 0.293 0.044 0.326 0.143 
12 0.644 0.100 0.295 0.043 0.616 0.059 0.349 0.027 
13 0.921 0.096 0.670 0.043 0.741 0.062 0.250 0.180 
14 0.896 0.107 0.336 0.045 0.437 0.062 0.559 0.459 
15 0.663 0.091 0.111 0.039 0.521 0.051 0.552 0.142 
16 0.537 0.089 0.170 0.036 0.078 0.046 0.367 0.459 
17 0.692 0.096 0.226 0.044 0.649 0.055 0.466 0.043 
18 0.488 0.095 0.236 0.028 0.687 0.043 0.252 -0.198 
19 0.730 0.090 0.202 0.038 0.435 0.050 0.529 0.295 
20 0.560 0.085 0.467 0.030 0.495 0.042 0.094 0.065 
21 0.365 0.093 0.052 0.028 0.429 0.041 0.312 -0.064 
22 0.369 0.100 0.065 0.023 0.515 0.037 0.304 -0.146 
23 0.282 0.114 -0.002 0.019 0.692 0.039 0.284 -0.410 

Note: Standard errors in italics. 

 

Estimating Spillover 
Table B-2 shows our results for estimates of spillover for both the voluntary and default CPP rate.  
Spillover is estimated in the same way as the peak load reductions are estimated for the RCT method 
defined earlier in Appendix B, except that instead of using the peak hour electricity consumption on 
event days, we estimate the load reduction during the three baseline calculation periods (discussed in 
Section 2.1): (1) pre-peak hours on the event day; (2) peak hours on baseline days; and (3) pre-peak 
hours on baseline days.  

 

 

 



Table B-2. Estimates of Spillover 

Default CPP  
    

Event Pre-peak 
on Event 
Day 

std error Peak on 4 
Baseline 
Days 

std error Pre-peak 
on 4 
Baseline 
Days 

std error 

1 0.033672 0.042018 0.146214 0.044096 0.072093 0.031294 
2 -0.00776 0.047336 0.14467 0.044096 0.071218 0.031294 
3 -0.0162 0.0421 0.143604 0.044095 0.070445 0.031293 
4 0.094833 0.038535 0.141677 0.044096 0.069757 0.031294 
5 0.079323 0.043351 0.141677 0.044096 0.069757 0.031294 
6 -0.02979 0.04803 0.141677 0.044096 0.069757 0.031294 
7 0.026604 0.042526 0.141329 0.044095 0.069289 0.031294 
8 0.043156 0.040119 0.141329 0.044095 0.069289 0.031294 
9 0.037492 0.03606 0.149287 0.044095 0.073377 0.031294 
10 -0.02076 0.039487 0.149287 0.044095 0.073377 0.031294 
11 0.037981 0.037806 0.149287 0.044095 0.073377 0.031294 
12 0.0921 0.057073 0.149322 0.044096 0.072952 0.031295 
13 -0.00589 0.062555 0.148704 0.044096 0.072461 0.031295 
14 0.063611 0.061471 0.148704 0.044096 0.072461 0.031295 
15 0.062383 0.048749 0.149585 0.044097 0.073272 0.031296 
16 0.098345 0.047079 0.14964 0.044098 0.073183 0.031296 
17 0.032663 0.053902 0.149406 0.044098 0.073068 0.031296 
18 0.075307 0.047177 0.149656 0.044098 0.073195 0.031296 
19 0.040037 0.051146 0.149656 0.044098 0.073195 0.031296 
20 0.094324 0.046677 0.149656 0.044098 0.073195 0.031296 
21 0.062431 0.045019 0.149985 0.044098 0.07334 0.031297 
22 0.074516 0.04804 0.150176 0.044098 0.07344 0.031297 
23 0.070702 0.046799 0.150276 0.044098 0.073529 0.0313 

 

Voluntary CPP 
     

Event Pre-peak 
on Event 
Day 

std error Peak on 4 
Baseline 
Days 

std error Pre-peak 
on 4 
Baseline 
Days 

std error 

1 0.134158 0.064043 0.176702 0.041426 0.046441 0.036183 
2 0.214715 0.074901 0.172021 0.040759 0.051181 0.035269 
3 0.034575 0.063566 0.214227 0.041343 0.05388 0.035645 
4 0.128164 0.062818 0.146898 0.042217 -0.01254 0.03578 
5 0.111345 0.069381 0.146946 0.042217 -0.0125 0.035781 
6 0.127892 0.074275 0.146956 0.042217 -0.01246 0.035781 
7 0.128428 0.067336 0.141927 0.042439 -0.00448 0.035813 
8 0.15737 0.063129 0.141817 0.04244 -0.00457 0.035813 



9 0.098356 0.062172 0.176392 0.045818 0.106355 0.040666 
10 0.07614 0.061404 0.176306 0.045816 0.106343 0.040666 
11 0.146282 0.065142 0.176342 0.045816 0.106352 0.040666 
12 0.065146 0.094225 0.22134 0.053364 0.07783 0.044966 
13 0.103142 0.10074 0.253097 0.051009 0.053687 0.043245 
14 0.109463 0.096634 0.253412 0.051006 0.053893 0.043245 
15 0.15733 0.077519 0.206065 0.05183 0.092684 0.046299 
16 0.067053 0.076289 0.23054 0.051652 0.063966 0.043681 
17 0.015589 0.085869 0.209381 0.050227 0.056247 0.041429 
18 0.104298 0.072886 0.209114 0.052666 0.056312 0.042351 
19 0.111275 0.080648 0.208769 0.052664 0.056109 0.042352 
20 0.204919 0.076656 0.208948 0.052663 0.05623 0.04235 
21 0.199939 0.082709 0.226079 0.057189 0.087935 0.044842 
22 0.139831 0.091734 0.250886 0.062124 0.11713 0.049002 
23 0.166574 0.087081 0.323639 0.072752 0.144512 0.063097 

Note: Standard errors in italics. 

Estimating Bias from Spillover 
Table B-3 shows our results for calculations of bias from spillover and the portion of total 4-in-5 bias 
explained by spillover for both the voluntary and default CPP rate. 

In order to quantify how spillover contributes to total bias, we define a “bias from spillover” that 
calculates how spillover during the three baseline calculation periods affects the 4-in-5 baseline, and 
therefore biases the peak load reduction estimates. Bias from spillover is calculated as described in 
Section 2.5. 

Table B-3. Calculations of Bias from Spillover and the Portion of Total 4-in-5 Bias Explained by Spillover 

Default CPP    
Event Total 

Bias of 
4-in-5 

Bias as 
% of 
Savings 

Bias 
from 
Spillover  

Portion of Total 
Bias Explained 
by Spillover  

1 0.31474 13% 0.107793 0.34 
2 0.023779 94% 0.065696 

 

3 0.19359 32% 0.056962 0.29 
4 0.237835 17% 0.166754 0.70 
5 0.18306 47% 0.151243 0.83 
6 0.004146 99% 0.042133 

 

7 -0.20118 174% 0.098643 
 

8 0.065743 80% 0.115196 
 

9 0.223365 14% 0.113401 0.51 
10 0.234589 -8% 0.055152 0.24 
11 0.194278 6% 0.11389 0.59 
12 0.38168 7% 0.16847 0.44 
13 -0.04422 111% 0.070356 

 

14 0.377213 20% 0.139854 0.37 



15 0.364462 -12% 0.138696 0.38 
16 0.376443 2% 0.174802 0.46 
17 0.509039 11% 0.109001 0.21 
18 0.197819 41% 0.151769 0.77 
19 0.492464 -17% 0.116498 0.24 
20 0.032631 91% 0.170786 

 

21 0.300939 16% 0.139076 0.46 
22 0.20095 27% 0.151252 0.75 
23 0.121871 20% 0.147449 

 

 

Voluntary CPP    
Event Bias of 

4-in-5adj 
Bias as 
% of 
Savings 

Bias 
from 
Spillover  

Portion of Total 
Bias Explained 
by Spillover 

1 0.444635 49% 0.26442 0.59 
2 0.345601 67% 0.335556 0.97 
3 0.261286 58% 0.194922 0.75 
4 0.382545 47% 0.287599 0.75 
5 0.350741 60% 0.270787 0.77 
6 0.333788 64% 0.287307 0.86 
7 -0.01102 102% 0.274839 

 

8 0.163447 76% 0.30376 
 

9 0.327924 35% 0.168393 0.51 
10 0.294681 38% 0.146102 0.50 
11 0.326117 25% 0.216272 0.66 
12 0.348997 46% 0.208655 0.60 
13 0.250263 73% 0.302552 

 

14 0.559442 38% 0.308982 0.55 
15 0.551929 17% 0.270711 0.49 
16 0.366811 32% 0.233627 0.64 
17 0.46599 33% 0.168722 0.36 
18 0.251812 48% 0.257099 

 

19 0.528527 28% 0.263935 0.50 
20 0.093608 83% 0.357638 

 

21 0.31235 14% 0.338083 
 

22 0.303874 18% 0.273587 0.90 
23 0.284333 -1% 0.345701 
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