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Abstract

In recent years deep neural networks have been proposed as a lightweight data-driven
model to capture high-dimensional, nonlinear physical processes to predict building ther-
mal responses. However, the need of a large amount of data for the training process of
deep neural networks clashes with the potential limited data availability in most existing or
new buildings. Transfer learning aims to improve the performance of a target learner ex-
ploiting knowledge from related and similar environments. This study conducted a suite of
experiments that leveraged 250 data-driven models based on a synthetic dataset of a build-
ing archetype to study the influence of data availability, energy efficiency level, occupancy
and climate for the transfer process of thermal dynamics. The performance of the transfer
learning process was compared against a classical machine learning approach. The results
suggest that building thermal dynamics can be effectively transferred under the same cli-
matic conditions, increasing performance when dealing with different occupancy schedules,
efficiency levels and low data availability. Furthermore, the paper compares the performance
of both transfer learning and machine learning approaches in an online fashion, to support
the implementation in real-world deployment.

Keywords: Transfer Learning, Building Thermal Dynamics, Deep Neural Network,
Data-driven Models, Grid-interactive Buildings

1. Introduction

The current energy transition is deeply changing the way energy is used and generated.
The need of a further decarbonisation of the building sector [1] has fostered the use of dis-
tributed renewable energy resources. In this framework, Grid-interactive Efficient Buildings
(GEB) [2] play a key role in the energy transition, exploiting advanced control strategies,
identified as a way to increase energy savings up to 28% [3] while providing benefits for
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the electric grid [4]. However, the main bottleneck for their widespread implementation is
that these control strategies often rely on predictive-based optimization, which requires the
development of a fast and accurate building thermal dynamic model [5]. A thermal dynamic
model of a building (usually built at the resolution of a thermal zone or room/space) pre-
dicts how the indoor environmental conditions (e.g., indoor air temperature and humidity)
respond to the internal disturbances (e.g., heat gains from occupants, lighting and plug-in
equipment), external factors (e.g., outdoor air temperature, humidity, solar irradiance), and
HVAC operations (zone temperature setpoint, supplied cooling or heating energy). The ther-
mal dynamics of a building is governed by high-dimensional, nonlinear and discontinuous
dynamics, which require effort and expertise to be proper modeled [6].

In particular, three main techniques are used to model building thermal dynamics: white-
box modeling, gray-box modeling and black-box modeling. White-box models use physical
knowledge to describe building dynamics [5] and are based on the concept of heat transfer
and energy and mass conservation. The major barrier of white-box modeling is represented
by the time and effort necessary to define and collect reliable building features. The gray-
box category covers a wide range of models that exploit simplified physical relationships but
also require parameter estimation based on measured data. A typical concept in gray-box
modeling is the RC analogy that defines any model by its affinity with a resistor-capacitor
electrical circuit [7], and their challenge is related to a robust parameter estimation method.
Black-box models learn the building thermal dynamics directly from the measured historical
data, without making prior assumptions regarding any physical relationships [8]. The main
advantages of the black-box models are the lower development cost and the flexibility in
using any measured signal as an input or output, due to the absence of physics involved.
On the other hand, black-box models require a large amount of training data and are not
reliable outside the training range. Due to the higher complexity of white-box models and
the increasing adoption of sensing and metering in buildings that provide a growing amount
of building-related data, there is a rising trend towards the use of data-driven methods for
advanced control in buildings [9, 10].

1.1. Literature review

The present subsection introduces a literature review on the application of black-box
models for the building thermal dynamics prediction, highlighting common practices and
limitations while identifying innovative approaches in the field. Among the first applica-
tions, Ruano et al. [11] explored the use of a radial basis function neural network to predict
the indoor air temperature of a public building. Sun et al. [12] proposed a multiple linear
regression model to predict the supply temperature of a district heating network, adjusting
it according to actual indoor temperature deviation. Shi et al. [13] used a back-propagation
neural network to predict indoor relative humidity and air temperature with different fore-
casting horizon. Kusiak and Xu [14] proposed a dynamic neural network to relate HVAC
energy consumption with indoor temperature evolution, optimizing the control strategy of
the HVAC system with a data-driven approach. Similarly, nonlinear [15, 16] autoregressive
neural networks for the indoor temperature prediction were integrated with controllers to
optimize the HVAC systems. More recently, Huang et al. [17] implemented a predictive
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controller coupled with a neural network able to estimate the indoor air temperature of
a multi-zone building, to optimize the start and stop of an HVAC system, while Drgon̆a
et al. [10] exploited neural networks and regression trees to construct an approximate model
predictive controller.

To evaluate the effectiveness of the different machine learning (ML) techniques and neural
network architecture, Wang et al. [18] applied 12 data-driven models with the aim of predict-
ing the heat load of a single building. Results showed Long Short Term Memory (LSTM)
and eXtreme Gradient Boosting (XGBoost) to be the best, respectively, for short-term load
prediction and long-term load prediction.

Recently, much interest has been devoted to the application of LSTM for short-term
load and thermal dynamic prediction. In [19] an LSTM neural-network was employed to
predict the indoor air temperature in a multi-zone building. Xu et al. [20] compared two
LSTM models to predict indoor temperature evolution one step ahead and multiple time
steps ahead, studying the advantages of using an error correction for multiple time steps
ahead. Ellis and Chinde [21] used an Encoder-Decoder LSTM to describe the dynamic of an
air-handling unit with variable air volume relating it to the indoor temperature evolution,
coupling the information with a model predictive controller (MPC) to reduce energy costs.
Fang et al. [22] proposed three LSTM-based sequences to sequence model architectures to
perform multi-step ahead indoor air temperature forecasting: an LSTM-Dense model, an
LSTM-LSTM model and an LSTM-dense-LSTM model, evaluating the performance under
different forecast horizons. The results and analyses showed that the LSTM-dense model
performs better for shorter forecast horizons, while the other two are more suitable for
longer forecast horizons. Lastly, Pinto et al. [23] proposed LSTM models to predict indoor
temperature evolution in multiple buildings, deploying one model per building and coupling
them with a deep reinforcement learning (DRL) controller to perform district demand side
management, speeding thermal dynamics simulation at the district level. Recently, a new
paradigm in neural network was introduced with physics-informed neural networks (PINNs)
[24]. These neural networks are trained to solve supervised learning tasks while respecting
any given laws of physics described by general nonlinear partial differential equations, com-
bining the advantages of white-box modeling with black-box modeling. However, despite
the interest in this field, only a few works explored PINNs in the domain of building en-
ergy control. Bünning et al. [25] compared physics-informed Autoregressive-Moving-Average
with Exogenous Inputs (ARMAX) models to Machine Learning models based on Random
Forests and Input Convex Neural Networks. In [26] a physics-informed neural network was
used to predict temperature evolution in a building, increasing the sample efficiency of neural
networks and performances for longer prediction horizons. The authors of [27] introduced
a physics-constrained recurrent neural network (RNN) to model the thermal dynamics of
buildings constraining the eigenvalues of the model, and using penalty methods to impose
physically meaningful boundary conditions to the learned dynamics. Di Natale et al. [28]
proposed a physics-informed NN that predicts indoor air temperature with respect to dif-
ferent control inputs, zone-zone, and outdoor-zone air temperature differences. However,
although Gokhale et al. [26] proved a greater sample efficiency of PINNs, they still need a
lot of data and physics knowledge. Furthermore, collecting and preparing a large amount
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of high quality data to train machine learning algorithms is time consuming and not always
feasible.

To address this gap, one key technique needed is the possibility to transfer machine
learning models from one building to another, a concept called transfer learning (TL) [29].
Pinto et al. [30] reviewed the application of transfer learning in smart buildings, highlighting
the role of transfer learning for building thermal dynamics models, the challenges and the
future directions. However, the application of TL for building thermal dynamics is still
in its infancy, so only a few studies have been conducted. Of those, none have thoroughly
analyzed under which circumstances transfer learning performs better than classical machine
learning, therefore, a thorough analysis is required. Hossain et al. [31] trained a Bayesian
neural network (BNN) to directly learn an RCmodel rather than estimating parameters. The
work proved that at least several weeks of data are necessary to obtain good performance for
classical ML models. The paper proposes a methodology to overcome extreme data scarcity
(one day of data) by identifying the best RC model based on historical consumption patterns
that outperforms time-series methods that were directly built using available data. Jiang
and Lee [32] pretrained an LSTM sequence-to-sequence model using a large amount of data
from source buildings to study building temperature evolution and used this knowledge
to fine-tune a model enhancing the performance of the target building, while [33] froze
neural network hidden layers to transfer the building thermal model. Similarly, Chen et al.
[34] applied transfer learning to predict not only internal temperature but also relative
humidity. Lastly, Grubinger et al. [35] presented an interesting approach of online transfer
learning, integrating the prediction with an MPC controller, paving the way for real-world
applications.

1.2. Research gaps and contributions

Despite the opportunity to overcome the data availability issue presented for the classical
ML problems, the literature review [30] highlighted the following research gaps:

1. It is still unclear how to identify the source building to perform effective transfer
learning.

2. Further studies are necessary to quantify the most important features of transfer learn-
ing for building dynamics.

3. Minimum data availability for an effective transfer and the time-horizon applications
have not been fully explored.

In this paper, a synthetic dataset was used to create multiple energy models of a single
building in different conditions, changing building features such as efficiency level, occupancy
and climate. The dataset was then used to train and compare machine learning and transfer
learning models. A machine learning model only leverages data available for the target
building, while the transfer learning model reuses knowledge from a source building to
reduce implementation costs, speed up the training and increase performance. The aim is
to assess their performance, isolating the contribution of specific features and studying the
effect of data availability on transfer learning performance. With this in mind, this study
aimed to address the literature gaps, with the following contributions:
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1. Isolating and evaluating the contribution of key features in determining machine learn-
ing and transfer learning effectiveness, using a synthetic building dataset gathered from
a detailed physics-based building energy model.

2. Performing a statistical investigation by developing approximately 250 models to assess
the feature importance and data availability impact.

3. Conducting a specific analysis of negative transfer to assess the limitations of transfer
learning for building thermal dynamics, to identify guidelines for future research.

4. Assessing the effectiveness of transfer learning in an online deployment setting, sup-
porting its real-world implementation

2. Methods

The following sections describe the methods used within the paper, starting with the
theoretical background of transfer learning, followed by a brief description of the neural
networks exploited during the analysis.

2.1. Transfer learning

The starting point for the definition of transfer learning is the description of the concepts
of “domain” and “task,” reported below according to Pan and Yang [29].

Definition 1. Domain: a domain D consists of two components: a feature space X and a
marginal probability distribution P (X), where X = {x1, . . . , xn} ∈ X .

For example, if the learning task is the building thermal dynamic prediction, modeled
as a regression problem, then X is the space of all influencing variables, (e.g., external
temperature, occupancy, HVAC load), while xi represents the ith influencing variables and
X a specific learning sample.

Definition 2. Task: a task consists of two components: a label space Y and an objective
predictive function f(·) (denoted by T = {Y, f(·)}), which is not observed but can be
learned from the training data, represented by a pair {xi, yi}, where xi ∈ X and yi ∈ Y .
The function f(·) is used to approximate the conditional probability P (y|x) and predict the
corresponding label of a new instance x.

Considering the same application of building thermal dynamic prediction, Y is a contin-
uous space with the possible values of the internal (indoor air) temperature.

Lastly, the transfer learning definition is provided. To ease the comprehension, the
definition only considers the case of one source domain DS and one target domain DT ,
since it represents the most common research problem. In particular, we denote the source
domain data as DS = {(xS1, yS1), . . . , (xSnS

, ySns)}, where xSi ∈ XS is the data instance
and ySi ∈ YS is the corresponding output. Similarly, the target domain data are denoted
as DT = {(xT1, yT1), . . . , (xTnT

, yTnT
)}, where xT i ∈ XT and yTi ∈ YT are the corresponding

outputs. In many cases, transfer learning provides advantages where 0 ≤ nT ≪ nS.
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Definition 3. Transfer Learning: Given a source domain DS and learning task TS, a target
domain DT , and a learning task TT , transfer learning aims to help improve the learning of
the target predictive function f(·) in DT using the knowledge in DS and TS, where DS ̸= DT ,
or TS ̸= TT .

Transfer learning can be classified according to label availability, domain and task simi-
larity and technique used to transfer the knowledge.

Looking at label availability, there are three main categories: inductive, transductive and
unsupervised transfer learning.

• In inductive transfer learning, both the source and target domains have labeled data,
yet the source and target tasks are different.

• In transductive transfer learning, the source and target tasks are the same, yet the
source and target domains are different. In this setting, the source domain has sufficient
labeled data while the target domain has none.

• In unsupervised transfer learning the settings are similar to that in inductive learning,
i.e., the source and target domains are the same with different but related tasks.
However, there are no labeled data in both domains, and the aim is to explore the
intrinsic data characteristics in different domains.

Moving to the domain and task similarity, there are mainly two cases: i.e., heterogeneous
and homogeneous transfer learning. In the space classification, if the feature space and
the label space of both source and target domain are the same, the scenario is classified as
homogeneous transfer learning. Otherwise, if they have a different feature space or label
space, the scenario is classified as heterogeneous transfer learning. Lastly, transfer learn-
ing can also be categorized based on the strategy adopted to share the knowledge, i.e.,
data instance-based, model parameter-based, feature representation-based, and relational
knowledge-based strategies; the classification based on the strategy adopted hereafter will
be defined as solution classification.

• The instance-based TL exploits data from a source domain in a target domain. The
reasoning behind this is that a subset of data from the source domain can be used to
improve the task in the target domain. To incorporate source domain data into the tar-
get task training process, one common practice is to use re-weighting and importance
sampling techniques. These techniques are typically used when the data variables are
the same across different domains, and they increase the amount of data available for
training without substantially changing the algorithm itself.

• The feature representation-based TL extracts and exploits features to map instances
from the source and target domains to improve training on the target task. A popular
approach is to identify a latent feature space from the source domain, based on which
the marginal distributions between two domains are minimized.
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• Relational knowledge-based TL is generally used with multi-relational datasets. The
underlying assumption is that some relationship among the data in the source and
target domains are similar. Thus, the knowledge to be transferred is the relationship
among the data.

• The model parameter-based TL assumes that the source tasks and the target tasks
share some parameters or prior distributions of the hyper-parameters of the models
(e.g., neural networks). The latter is based on the assumption that models devel-
oped for similar tasks will have similar model parameters or hyper-parameters. The
knowledge gained from the source task is transferred to another task as shared model
weights in this case. The recent success of deep learning has spawned a new type
of transfer learning — network-based transfer learning [36] — which belongs to the
parameter-based transfer learning category and can be further classified based on the
strategy used to share model parameters:

– The first way is to use the pretrained model for feature extraction. In this case,
the weights of some layers are fixed, except for the input/output layer, which
are domain dependent and need to be fine-tuned using target data. The main
advantage is represented by the reduced amount of data needed to train the
model, as well as the possibility to exploit data from different domains.

– The second way is to use the pretrained model for weight initialization and fine-
tuning. In such a case, the weights of the pretrained model are used for initial-
ization purposes only and can be adjusted through a fine-tuning process.

Figure 1 displays the two strategies adopted to perform parameter-based TL, henceforth
called feature-extraction and weight-initialization. Considering that in this work different
neural networks share the same feature and label space, a homogeneous inductive problem
using model parameter-based TL was explored.

2.2. Deep Neural networks

The study employed both the Multi-Layer Perceptron (MLP) and Long Short-Term
Memory networks (LSTM). An MLP consists of at least three layers of nodes: an input
layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron
that uses a nonlinear activation function. MLP utilizes a supervised learning technique
called backpropagation for training. However, classical MLPs are finite response systems
that are unable to capture long-term temporal dependencies. On the other hand, LSTM are
a special kind of recurrent neural network, capable of learning long-term dependencies [37].
This property of LSTMs is due to a particular gating mechanism and to the presence of two
states:

• Hidden state: responsible for maintaining the short-term memory

• Cell state: responsible for maintaining the long-term memory

7



Figure 1: Parameter-based transfer learning further classified in feature-extraction (top) and weight-
initialization (bottom)

Figure 2: A schematic representation of a Long-Short Term Memory neural network

The scheme of the LSTM cell is shown in Figure 2:
The main feature of LSTMs is the cell state, which is responsible for maintaining long-

term dependencies: information is removed or added to the cell state by means of three
gates. The forget gate decides what information has to be deleted from the cell state, the
update gate decides which information is going to be stored in the cell state, and the output
gate is used to compute the output of the LSTM cell.
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3. Case study

The selected case study is an archetype building energy model developed from the U.S.
Department of Energy (DOE). The model is a medium-sized office building with three floors
and a total floor area of 4,890 square meters [38]. The building consists of 12 space types:
open and enclosed office rooms, conference room, classroom, dining area, lobby, corridor,
stair, storage, restroom, plenum and mechanical room. A schematic representation of a floor
is shown in Figure 3.

Figure 3: A schematic representation of medium office geometry and thermal zones for a single floor

The synthetic dataset includes simulations for the selected building model in different
climates for multiple years, efficiency levels and occupancy patterns. The dataset includes
three energy efficiency levels, obtained by changing building envelope properties, and the effi-
ciencies of lighting, miscellaneous electric loads (MELs) , and HVAC systems. Furthermore,
three sets of schedules for zone-level occupancy, lighting, MELs, and thermostat setpoint,
reflecting realistic building operations from stochastic occupancy simulations, were used [39].
The resulting configuration are reported in Table 1.

Table 1: Parameters and modified features used for the design of experiment

Parameter Cases Features involved

Efficiency Low, Standard, High
Building envelope properties, efficiency of lighting,

MELs and HVAC systems
Climate 1A,3C,5A Outdoor air temperature, solar radiation

Occupancy 1,2,3 Schedule of occupancy, MELs, lighting, setpoints

To study the contribution of different weather conditions on model performance, three
typical climate zones were selected: Miami (1A, hot and humid), San Francisco (3C, mod-
erate/mild), and Chicago (5A, cold winter and hot summer). A synthetic dataset [40] was
used with twofold advantages: (i) it can reflect the effects of different influencing variables
on building operation, and (ii) it isolates the contribution of specific features on machine
learning and transfer learning model accuracy.
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Figure 4: Distribution of the outdoor air temperature for each month and climate considered during the
analysis

Figure 4 shows the outdoor air temperature distributions for the three climates selected.
The selected climatic zones exhibit very different temperature patterns, with Climate 1A
being cooling dominant, Climate 5A being heating dominant, and Climate 3C representing
a mild climate. For each combination between efficiency level, occupancy and climate, up to
two years of meteorological data were used for training and testing purposes. The simulations
yielded time-series data that included whole-building and end-use energy metering, indoor
and outdoor environmental parameters, and system and component variables (e.g., zone
thermostat setpoints, VAV terminal supply air temperature). For a detailed description of
how the synthetic dataset was obtained, refer to Li et al. [40].

4. Methodology

This section reports the methodological framework adopted, as shown in Figure 5. The
methodology unfolds in four main steps, described below.

4.1. Source building selection

The first step consists in the identification of the “source building,” used as a starting
point for transfer learning. As pointed out in the previous section, the dataset analyzed
refers to a medium-sized office building simulated in 3 climates, 3 energy efficiency levels, 3
stochastic occupancy schedules, for a total of 27 EnergyPlus models. The source building
was conceived with a standard energy efficiency, the occupancy profile 1 (according to Table
1) and was simulated in Climate 3C. The climate and the energy efficiency level were chosen
to represent an intermediate condition between the other two options, with the aim to
further evaluate the potential of applying transfer learning. The dataset has a 10-minute
granularity, with information related to whole building variables as well as zone variables.

10



Figure 5: Methodological framework

4.2. Machine learning model optimization

The second step includes the model development, the selection of the architecture and
the optimization of the related hyperparameters. The models aimed to predict the tem-
perature evolution of a single zone (mid-office) one-hour ahead (six time-steps), exploiting
information of the specific zone. This was necessary due to the impossibility of aggregat-
ing data at a higher level, since different zones may have different setpoints and occupancy
schedules. The selected inputs for the machine learning models were the zone heating and
cooling temperature setpoints, the outdoor air temperature, the previous internal (zone
air) temperature, solar radiation, and information about hour, day and month. Figure 6
shows the input parameter together with the sliding window approach used to perform the
predictions.

The architectures selected were MLP and LSTM. The developed models used 48 time-
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Figure 6: Input of the neural networks and sliding window approach

Table 2: Neural network hyperparameter optimization process

MLP Range Optimum LSTM Range Optimum

# Neurons layer 1 [50-200] 100 # LSTM layer [3-7] 3
# Neurons layer 2 [50-150] 70 # Neurons per layer [70-300] 175
# Neurons layer 3 [20-90] 70 Epochs [80-120] 90
# Neurons layer 4 [10-70] 10 Learning rate [7-8.5*10−3] 7.7*10−3

Epochs [80-200] 120 Batch size [800-1000] 900
Learning rate [7-8.5*10−3] 7.57*10−3 Optimizer Adam
Batch size [800-1000] 900
Optimizer Adam
MAPE 1.096 0.535

steps (8 hours) as a lookback period to predict the next 6 time-steps (1 hour). Each architec-
ture was characterised by specific hyperparameters, therefore an optimization process was
carried out using the Optuna [41] framework. The tool allows the optimal hyperparameter
combination to be searched by performing an automatic grid-search. The work performed
the grid-search using five values in the specified interval shown in Table 2 with a uniform
distribution. The dataset included two years of data: one used for training and validation
and the other one used for testing. Table 2 illustrates the hyperparameters subject to the
grid-search optimization with their optimized values, as well as the value of the mean abso-
lute percentage error (MAPE) evaluated in the testing period. Table 2 highlights the higher
accuracy of the LSTM architecture, which was then selected to perform the experiments.
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4.3. Design of ML and TL configurations

The third step compares classical ML with two TL techniques to predict indoor air tem-
perature evolution. A classical machine learning approach used the optimal hyperparameter
identified in step 2 to train LSTM models on data available for the target building. The
performance of the LSTM model was then compared with that resulting from the models
trained using two transfer learning methods: weight-initialization and feature extraction. In
weight-initialization, the whole network is fine-tuned using the data available in the target
building and a lower learning rate with respect to the one used to train the source network,
while in the feature extraction, the LSTM layers are frozen and only the last dense layer
is fine-tuned. For both weight-initialization and feature-extraction, a learning rate equal to
2 ∗ 10−3 was used to train the LSTM for 80 epochs.

Moreover, this step aims to analyse the impact of data availability on model performance.
To this purpose, three cases were considered regarding the data availability for the target
building: (i) 1 week of data, (ii) 1 month of data, and (iii) 1 year of data. The cases of
one week and one month of data were used to represent a data-scarcity context and had
the main purpose of highlighting in which conditions TL performs better than ML and the
minimum amount of data necessary to develop an effective ML model. On the other hand,
an ideal case that considered one year of data available in the target building was used to
assess the generalizability of TL over ML, to assess if TL can provide additional advantages
even in the presence of an extensive amount of data for the target building.

4.4. Design of experiments

The fourth step deals with the design of the scenarios resulting from the combination of
the different features for the target building as reported in Section 3. Machine learning and
the two transfer learning strategies were implemented to consider the combination of three
climates, three energy efficiency levels, three occupancy patterns and three data availability
periods. This led to 243 different models, including the one related to the source model
used for transfer learning. These simulations were used to perform a statistical investigation
on the most important features for the application of TL for building thermal dynamic
models. All the information on the data, the code and the results produced by the statistical
investigation are open-source and available at the following link: https://github.com/
baeda-polito/Transfer learning building dynamics.

4.5. Assessment of TL performance

Lastly, model performance is compared using several metrics. In particular, model abso-
lute performance was compared using metrics such as MAE , MAPE, and MSE, the defini-
tion of which is provided below. Relative performance was quantified using the asymptotic
performance and jumpstart.

MAE =
1

n

n∑
i=1

|ŷi − yi| (1)
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MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (2)

MSE =
1

n

n∑
i=1

|ŷi − yi|2 (3)

Figure 7: Common measures used to quantify the performance of transfer learning

Figure 7 displays three common measures used to assess the learning improvement. The
first metric is jumpstart, which describes the increase in the initial performance achievable
in the target task using the transferred knowledge, before any further learning. The second
metric is the time to threshold, which is used to assess the amount of time the model takes
to achieve certain performance in the target task given the transferred knowledge, compared
to the amount of time necessary to learn it from scratch. The last metric is asymptotic
performance level, which quantifies the ultimate performance level of the agent in the target
task when transferred from the source. Regardless of the specific ML task, jumpstart and
asymptotic performances for the regression problem are evaluated using MAE, MAPE and
MSE. However, in this paper the metric time to threshold was not analysed due to the
necessity to quantify a specific threshold (e.g., MAE = 0.5 °C), which may or may not ever
be reached by machine learning models.

4.6. Comparison in an online fashion

To further demonstrate the effectiveness of transfer learning in an online fashion, this
study compared an online machine learning approach (updating the weights of the neural
network as new data become available) with an online transfer learning deployment strategy.
Online transfer learning leverages one year of source data and updates the model in an online
fashion each week as new data become available, performing a fine-tuning of the model. The
comparison is helpful since real-world application often works with online data and building
thermal dynamic models are used as a part of a model predictive control implementation,
thus requiring it to be robust and fast.
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5. Results

This section describes and analyses the results obtained from the proposed design of
experiments. Section 5.1 describes the results obtained from both ML and TL models,
analysing the performance distribution and identifying the factors that most influence model
performance. Furthermore, statistical analysis was performed to compare absolute and rel-
ative performance of the proposed approaches with respect to the different features. Section
5.2 focuses on negative transfer, describing the boundary conditions in which it occurs and
assessing benefits and limitations. Lastly, Section 5.3 describes computational advantages
related to the application of TL, analysing jumpstart and training asymptotic performance.

5.1. Machine learning and transfer learning performance

Figure 8 shows the average performance over the entire design of experiments of ML
and TL models using one month of data to assess the previously introduced metrics (MAE,
MSE, MAPE) over all the six time-steps. As can be seen, the ML algorithm error is almost
constant over the time-steps, while both transfer learning techniques show a lower error for
the first prediction time-step, reaching about the same accuracy at the last time-step (one
hour). On average, both feature extraction and weight initialization techniques perform
better than machine learning. The analysis of MAE, expressed in °C shows that for the first
time-step the two TL techniques have a value of 0.17 °C smaller compared to standard ML,
achieving a performance improvement of 50%. Similar considerations can be made for the
other two metrics, that show substantial improvement with respect to ML performance for
the first time-step and a better average performance.

Figure 8: Performance of the different techniques over the control horizon

For the sake of simplicity, the following analysis considers only the average performance
of the mean absolute error over the entire prediction horizon, since it can be interpreted
easily.

The first step aimed to assess the effectiveness of transfer learning between different
zones of the building. To prove the effectiveness of TL in different zones, two target zones
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Figure 9: Performance of the different techniques over different zones

(highlighted in red in Figure 9a) were selected: a conference room on the second floor and an
enclosed office on the second floor. The rationale behind zone selection was to test the neural
networks with different orientation, area and floor. The conference room on the second floor
(MID 2) was selected to test the influence of a different exposure on the model (changing
it from east to west), while the enclosed office on the second floor (BOT 2) was selected
to test both a different area and a different exposure. Once the zones were identified, the
analysis was performed, considering different data availability (from one week to one year).
Then several tests were performed that considered different data availability and compared
the results of ML and TL models analysing the mean absolute error. Figure 9b shows
that despite the different characteristics, TL was able to obtain better performance than
standard ML independently from the data availability. Indeed, the ML model performance
was heavily influenced by the amount of training data for the target building, while the TL
model presented robust results over different data availability. After having assessed the
ability of TL in different thermal zones, to isolate the effect of other variables, the following
analysis was performed using the same thermal zone as a source.

Then, to analyse the average performance of the three techniques on the whole design of
the experiments, mean absolute error was used to aggregate results over different climate,
data availability, efficiency and occupancy profiles. As a result, Figure 10 shows the average
MAE distribution for the three proposed approaches over all the simulations performed. The
analysis of the distributions showed that ML trained over a period of one year in Climate
5A had in many cases unacceptable errors. A specific analysis will be conducted later to
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understand the main factors related to the lower ML model performance. Furthermore,
Figure 10a highlights the larger error distribution of the ML technique, which reaches values
of more than 1 °C, while the TL maximum errors are below 0.7 °C. To better understand
how the ML error is distributed, details for different data availability are shown in Figure
10b. The figure displays how one year of data led the ML model to a large error distribution,
while one month of data showed the best performance, with an average error of 0.35 °C. As
a result, the focus was shifted toward a one month training period. Figure 10c compares the
error for each technique, assessing a slight performance improvement for both TL techniques
over ML, with no particular differences between feature extraction and weight initialization.

Figure 10: MAE distribution over different periods and techniques

To further study the effectiveness of transfer learning, average MAE distributions were
divided in three ranges: low error (MAE < 0.4 °C), medium error (0.4 °C< MAE < 0.7 °C),
and high error (MAE > 0.7°C).

Figure 11 shows the error distribution by technique over all the influencing factors using a
categorical plot. The ML technique is the only one with a high error, which mainly occurred
with one week and one year of data. Furthermore, it shows how high errors are predominant
in Climate 5A but are evenly distributed over the efficiency levels and occupancy runs. On
the other hand, both feature extraction and weight initialization showed better performance;
almost evenly distributed over different data availability, with lower error for Climate 3C,
the same climate as that of the source building.

Due to the co-occurrence of different features on the model (e.g, different climate, occu-
pancy and efficiency levels), a specific analysis was performed by changing only one feature
at a time, with the goal of isolating their effect on model performance. Figure 12 shows
the MAE for different techniques for several cases. Furthermore, it shows how by chang-
ing only the efficiency level (same climate and same occupancy profile), transfer learning
outperforms machine learning for every data availability, while negative transfer can occur
when buildings across different climates are analysed, with very different results according to
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Figure 11: Methodological framework

data availability. Looking at results with various occupancy profiles, a narrow performance
improvement can be seen, with a negligible case of negative transfer learning, since both ML
and TL techniques have an average error below 0.2 °C and very similar performance.

Therefore, to assess the influence of climate and data availability on model performance,
a specific analysis was conducted, as shown in Figure 13. In particular, Figure 13a shows
the distribution of the mean absolute error for one week, one month and one year of data
availability over the three different climates. For the sake of clarity, the error bar related
to one year and Climate 5A, which exceeded 1.5 °C, has not been shown, while its lower
outliers have been included in the figure. Note that often an MAE of 0.5 °C is seen as
threshold for the deployment of a model that predicts the internal air temperature. As a
result, the figure highlights the inadequacy of ML models to be deployed for the specific
combination of climate and time horizon. With increasing data availability, the median
value of the ML models decreases. In general, TL approaches are more robust compared
to ML approaches. Furthermore, the analysis showed how almost every TL model had an
error below 0.5 °C, while ML often exceeded this threshold. Figure 13b uses the asymptotic
performance improvement to compare the simulation point by point. It can be seen how,
on average, the best performance improvements are achieved in Climate 3C (i.e, the climate
selected for the source building). Note that performance improvements for climate 5A are
highly influenced by the poor performance of ML models, increasing the advantages of using
TL. The main reason may be related to the high temperature variation of Climate 5A, which
makes it hard for the model to generalize over the entire year. However, Figure 13b also
highlights the presence of negative transfer, especially with one month of data, a period in
which ML already has good performance. As a result, a further analysis was conducted to
identify the main driver of negative TL.

18



Figure 12: Performance comparison with isolated effects of features

5.2. Negative transfer learning

Figure 14 shows the asymptotic performance of all the simulations, highlighting three
particular areas: negative transfer learning, neutral transfer and effective transfer. Negative
transfer occurs when the MAE is greater than 0.05 °C compared to ML models, neutral
transfer is when it is smaller than 0.1 °C, and effective transfer reduces the MAE at least
0.1°C. As can be seen, about 20% of cases have negative transfer, 20% have neutral transfer
and 60% of cases show effective transfer. Figure 14b displays a detail of negative transfer,
using different shapes and colors to highlight data availability and climate. The figure
highlights how negative transfer occurred only 4 times out of 52 simulations, when one week
of data was used (turquoise color), suggesting an effectiveness of TL in over 90% of the cases
when one week of data is considered. It also can be noticed how negative transfer occurred
only four times out of 52 simulations (diamond shape), with a performance increase in about
90% of the cases when the target building had the same climate as the source building.
The figure shows that the highest amount of negative TL happened with one month of
data availability, identifying this amount of data as enough to obtain a good ML model
performance.

Lastly, to provide a comparison of the model performance with effective and negative
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Figure 13: Methodological framework

transfer, Figure 15 displays temperature evolution for the first predicted time-step over a
random day for real values using ML and TL models. The figure on the left highlights how
in this case ML was not able to properly describe the building dynamics, while both TL
techniques follow the trend of the real value (green). On the other hand, the right figure
shows a case of a negative TL, in which the performance of TL was still able to capture the
building dynamic but perform worse than the classical ML approach.

5.3. Jumpstart performance

Figure 16 shows jumpstart performance with different data availability. As shown, the
highest jumpstart occurred for one month and one week, reducing the MAE of the first epoch
about 8°C. Despite this reduction, the final performance during training was comparable to
an ML model. Moreover, the figure shows how the performance of transfer learning is almost
constant, thus highlighting the possibility of great computational cost reduction when using
transfer learning. Transfer learning also provided a computational advantage; however, the
model complexity and the time required to train such models in this kind of problem is little.
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Figure 14: Categorization of transfer learning effectiveness and negative transfer analysis

These advantages are usually more important when dealing with different applications, such
as in computer vision. As a result, the jumpstart performance is a less reliable metric
compared to the asymptotic performance, which is better suited to quantify the goodness
of a model.

5.4. Online deployment

Figure 17 shows the MAE error distribution over each week of the year for the two
techniques (ML and TL) deployed online. The configuration selected for the target building
was characterized by Climate 3C (the same of the source building), occupancy pattern 2
and a high efficiency level. This configuration was selected on the basis of the outcome of
the previous analysis. The transfer learning model (already trained on one year of source
building data) was updated for the target building each week as new data became available
following an anchored deployment configuration that employed existing data and a new
week’s data using the same learning rate of transfer learning configuration (2*10−3). The
machine learning model used the same deployment strategy without leveraging pre-training
data from the source building. To highlight both relative and absolute performance, the
figure reports a candlestick visualization. The green color of the box highlights the cases
when the TL showed higher performance against ML, while the red box represents the
opposite occurrence. The height of the box measures the difference in terms of performance
between the two models, while the two extremes indicate the absolute value of MAE. The
figure shows that especially during the first weeks of deployment, the ML had very poor
performance when compared with TL. However, as training data became available for the
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Figure 15: Prediction evolution for the first time-step with different techniques for effective and negative
TL

Figure 16: Jumpstart comparison over different training time

ML, the performance difference between the two models tended to decrease, and after week
40, the performance of the two models were comparable.

6. Discussion

Building dynamics prediction proved to be effective to unlock the potential of advanced
control strategies. However, the main bottleneck is represented by the data availability in
most of the buildings, making the exploitation of data driven models a niche. TL promises to
overcome this problem, but still requires further studies to quantify building similarity. This
research aimed to quantify the feature importance of several variables in a TL setting. In
particular, this study compared two TL techniques and assessed the effect of data availability
and case specific features (e.g., climate, efficiency level, occupancy). To capture the effect of
the different variables, an experiment design was conceived. Analysis of the results revealed
several insights: first, unlike the ML models, the error performance over multiple time-
steps is very small for the first time-step, increasing more steeply with the following time-
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Figure 17: Performance comparison between online ML and online TL

steps, while on average TL showed better performance. This information is particularly
helpful for advanced controllers that require precise estimation of the upcoming time-steps.
Additionally, analysis of the data availability aimed to assess how much data are necessary
in TL and ML settings. The analysis showed that for ML a higher amount of data in the
target building may be counterproductive, especially when the target building is located in
climates with a great variation between the different seasons (Climate 5A). On the other
hand, using a large amount of data helps to reduce the variance of TL models, obtaining
more robust results.

Furthermore, the analysis confirmed the ability of TL to deal with different efficiency
levels and occupancy, while limitations were observed for its effective applications across
different climates, highlighting the role of external (outdoor air) temperature as the most
important feature. Moreover, the focus on the asymptotic performance and the negative
transfer allowed researchers to identify guidelines and constraints on the application of
transfer learning for building dynamics prediction. The analysis of the results identified
data-scarcity (one week) and the application on the same climate of the source building as
the best case study to deploy TL. Furthermore, performance analysis suggest that for dif-
ferent features (e.g., climate), when new data are available the optimal solution consists in
using online transfer learning and shifting to online machine learning when a robust dataset
in the target building is available (e.g., one year). On the other hand, when the most impor-
tant features are the same for the source and target building, transfer learning may achieve
performance improvement independently from the amount of data used, highlighting its ef-
fectiveness in generalizing machine learning models. Lastly, a specific analysis was carried
out on jumpstart performance; however, despite the computational advantages introduced
by TL, the time needed to train such models is relatively low, due to the small dimension
with respect to computer vision domains. This suggests the use of asymptotic performance
as a key performance indicator to evaluate the effectiveness of TL.
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6.1. Limitations

A key concern about the comparison of the different models is the influence of the testing
period on performance. Indeed, a model trained on one year of data and tested on one month
may experience different performance based on the month selected for testing (e.g., winter,
summer). This can be caused by considering the climate used for training, which can be
cooling or heating dominant. However, the purpose of that type of analysis was outside
the scope of this study and aimed at evaluating the robustness of ML and TL models.
Furthermore, the influence of the thermal zone (e.g., a perimeter zone with more exposure
to weather versus an interior zone) has not been fully characterized, since its introduction
in the design of experiments would have reduced the output interpretability. Lastly, the
limitation of the optimization process lies in the neural network structure, optimized only
for the source case with a specific set of features (e.g., climate, efficiency level, occupancy).
As a result, other case studies may have sub-optimal DNN architectures, especially for one
year of data, that may require a more complex model. However, the methodology avoided
the optimization of the DNN for every condition to allow a peer-to-peer comparison between
ML and TL.

7. Conclusions

The present work introduced a methodology to assess feature importance in TL settings
for building dynamics prediction. The problem involved the development of approximately
250 models that were deeply analysed in order to assess their most important features. The
error distribution comparison showed that transfer learning reduced error in the first time-
steps, suggesting its coupling with advanced control strategies, which rely on short-term
predictions. The analysis also demonstrated that climate is the most influential feature,
determining the success of the transfer. Another analysis showed that data availability
also affects performance, suggesting the coupling of transfer learning with online learning
if the features are extremely different, while showing that TL can adapt easily to different
building energy efficiency levels and occupancy patterns. The study also compared two TL
techniques (weight-initialization and feature extraction), showing a slightly better perfor-
mance of weight-initialization. A specific analysis of negative transfer learning identified the
strengths and weaknesses of the method. Lastly, this study compared the performances of
the algorithm in an online fashion, to support its coupling with an advanced controller in
real-world implementations. In conclusion, TL was found to be effective in most of the cases,
especially when dealing with changes in building related variables, providing more robust
predictions. Future studies will focus on:

• The application of transfer learning with different input data dimensions. Buildings
have different levels of sensing and metering, providing diverse sources of measured
data, which may represent a limit for the deployment of transfer learning models. Stud-
ies can aim to assess transfer learning’s ability to adapt to different input dimensions
without losing the ability to capture building thermal dynamics.
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• The feasibility of developing a database of model archetypes for the most important
features. This work aims to create different data-driven archetype models based on
climate and building archetypes, which could be used by researchers to test and speed
transfer learning applications in both commercial and residential buildings.

• The deployment of transfer learning techniques in residential buildings based on real
data (e.g., the large scale smart thermostat data from ecobee’s Donate Your Data pro-
gram). Residential buildings have usually fewer sensors installed and are characterised
by high stochasticity (due to occupant use behavior). The analysis can aim to assess
the effectiveness of transfer learning on real data at a large scale.

• The implementation of transfer learning to simulate building thermal dynamics in
a real building, to support control applications and evaluate its performance when
integrated with advanced control strategies like model predictive control, comparing
it against a traditional rule-based controller. The main goal of the application would
be to study the interaction between neural network prediction and control strategies
in a real building.

• The formulation of a transfer learning framework for control problem. The applica-
tion would test the potentialities of transfer learning for advanced control (e.g., model
predictive control, reinforcement learning) for performance benchmarking in a stan-
dardized test framework such as BOPTEST [42].
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Nomenclature

ARMAX Autoregressive-Moving-Average with Exogenous Inputs

BNN Bayesian Neural Network

DOE Department of Energy

DRL Deep Reinforcement Learning

GEB Grid-interactive Efficient Building

HVAC Heating, Ventilation and Air Conditioning

LSTM Long Short Term Memory
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MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MEL Miscellaneous Electric Load

ML Machine Learning

MLP Multy-Layer Perceptron

MPC Model Predictive Control

MSE Mean Squared Error

PINN Physics-Informed Neural Network

RNN Recurrent Neural Network

TL Transfer Learning

VAV Variable Air Volume

XGBoost EXtreme Gradient Boosting
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[27] J. Drgoňa, A. R. Tuor, V. Chandan, D. L. Vrabie, Physics-constrained deep learning of multi-zone
building thermal dynamics, Energy and Buildings 243 (2021) 110992.

[28] L. Di Natale, B. Svetozarevic, P. Heer, C. N. Jones, Physically consistent neural networks for building
thermal modeling: theory and analysis, arXiv preprint arXiv:2112.03212 (2021).

[29] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data
Engineering 22 (2010) 1345–1359.

[30] G. Pinto, Z. Wang, A. Roy, T. Hong, A. Capozzoli, Transfer learning for smart buildings: A critical
review of algorithms, applications, and future perspectives, Advances in Applied Energy 5 (2022)
100084.

[31] M. M. Hossain, T. Zhang, O. Ardakanian, Evaluating the feasibility of reusing pre-trained thermal
models in the residential sector, UrbSys 2019 - Proceedings of the 1st ACM International Workshop
on Urban Building Energy Sensing, Controls, Big Data Analysis, and Visualization, Part of BuildSys
2019 (2019) 23–32.

[32] Z. Jiang, Y. M. Lee, Deep transfer learning for thermal dynamics modeling in smart buildings, in:
2019 IEEE International Conference on Big Data (Big Data), IEEE, 2019, pp. 2033–2037.

[33] Y. Chen, Y. Zheng, H. Samuelson, Fast adaptation of thermal dynamics model for predictive control

27



of hvac and natural ventilation using transfer learning with deep neural networks, in: 2020 American
Control Conference (ACC), IEEE, 2020, pp. 2345–2350.

[34] Y. Chen, Z. Tong, Y. Zheng, H. Samuelson, L. Norford, Transfer learning with deep neural networks
for model predictive control of hvac and natural ventilation in smart buildings, Journal of Cleaner
Production 254 (2020) 119866.
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