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ABSTRACT 

There is growing interest in resilience among building owners, service providers, and

policymakers. However, there is a lack of consensus on how resilience is measured, particularly 

energy resilience. This paper describes an effort to develop and test a metric for energy 

resilience. First, it presents a review of current trends and practices in resilience planning, 

focusing on which standards and metrics are currently being used across various sectors to assess 

energy resilience for buildings, and where inconsistencies and gaps exist. This study builds upon 

the literature by narrowing the scope and boundaries of resilience to focus specifically on 

thermal comfort resilience within an office building, and uses parametric building energy 

modeling to evaluate the feasibility of “occupancy hours lost” (OHL) as a resilience metric to 

measure human productivity lost during a power disruption. Using this data, a multiple 

regression model was developed to show which building improvements would have the most 

significant effect on decreasing OHL during a disruption, and thus allow resilience to be 

calculated for a building based on the specifications of these parameters. This study determined 

that OHL may be used as a key resilience metric for assessing how prepared an office building 

will be when faced with the possibility of a power outage, and further addresses the key 

assumptions that must be considered for a resilience metric to be calculated. 

Introduction 

As architects, engineers, designers, and scientists seek to address a changing climate and 

its impact on our environment, the topic of resilience has gained traction as a key priority to 

guide the planning, development, and maintenance of today’s building stock, so that buildings 

will continue to support occupants during a disaster or energy disruption. What makes resilience 

unique is the breadth and range of goals, missions, and livelihoods it applies to, across a wide 

array of sectors and stakeholders, concerning the wellbeing of both people and the environment. 

However, resilience is a very broad and loosely defined concept, covering many different themes 

and topics.  

Resilience, which translates to the ability for a system to swiftly resume functionality 

during a disruption, can apply to a wide range of issues concerning the built environment, 

ranging from energy resilience, ecological resilience, economic resilience, and psychological 

resilience, to social and community resilience. While these themes are certainly not mutually 

exclusive, a holistic pursuit of resilience for the built environment that addresses each of these 

needs simultaneously tends to be a complex endeavor that leads to ambiguity over what features 

and characteristics should define a resilient building and how the same resilience goals would 
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apply to multitudes of building types and purposes. An issue with this holistic pursuit of 

resilience for the built environment, however, is that it tends to ignore the priorities of individual 

buildings, making investment in resilience measures less appealing for stakeholders, who may be 

more immediately interested in keeping their buildings functional than larger-picture resilience 

goals of climate change mitigation and social welfare, as are often the aims of many city-wide 

and regional resilience plans. Thus there is not only a need for resilience metrics for buildings, 

but metrics that are specifically catered to the needs of stakeholders in charge of operating 

buildings, whether their main priority be keeping people safe and comfortable during a disaster 

or maintaining the business operations of an office building during a power disruption. 

Acknowledging the significant emphasis on natural disaster resilience throughout the literature, 

this study seeks to focus on the needs of stakeholders who would benefit from resilience as a 

means of maintaining business operations for an office building. It is important to state at the 

outset that resilience has many dimensions, including the impacts of pandemics such as COVID-

19. No one metric can capture all these dimensions. Rather, a suite of metrics are needed to

measure resilience.

This paper presents an approach and initial results from an effort to develop and test a 

metric for the energy resilience of office buildings i.e. the ability of a building to continue to 

provide energy-related services during extreme events, such as a full or partial power outage, and 

extreme hot and cold weather, also known as “passive survivability” (Ozkan et al. 2018).  Energy 

related services in an office building include thermal comfort, visual comfort, indoor air quality, 

and plug power. The paper is organized as follows: First we review the literature on resilience 

metrics, focusing on studies that directly address energy resilience in buildings or are closely 

related to it. Based on the literature review, we characterize gaps in the current state of the art and 

practice. We then propose a metric for energy resilience, with definitions and a methodology to

compute it. Following that, we describe a pilot analysis wherein we test the application of the

metric in a set of parametric simulations of office buildings. Finally we conclude with further 

research needs.   

Literature Review of Resilience Metrics and Frameworks for Energy 

Resilience 

Through reviewing the literature on resilience for the built environment, this study has 

found that while metrics for assessing the resilience of buildings have been proposed, there are 

currently no universally agreed upon metrics for assessing the resilience of buildings, with 

existing metrics belonging to various resilience measurement systems and frameworks with 

distinct scopes and criteria (Marjaba and Chidiac 2016). A significant theme of the literature 

surrounding resilience assessment for buildings is focused around the need for metrics and what 

methods may be used to develop and test them. A key challenge that has made it difficult to 

pinpoint specific concrete metrics for building resilience is the matter of how to address the 

broad and ambiguous nature of resilience as a concept, amidst the challenge of distinguishing it 

from seemingly related concepts, such as sustainability (Phillips et al. 2017). Others note the 

wide range of disciplines that resilience encompasses, including engineering, psychology, 

ecology, materials science, and beyond (Florin and Linkov 2016), with suggestions to focus only 

on certain aspects of a specific site (Carlson et al. 2012). These efforts however, particularly the 

pursuit of a single comprehensive resilience metric for buildings, are complicated by the need to 

balance resilience goals across multiple technical, environmental, economic, and social priorities, 
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warranting a need for multiple metrics to be considered when evaluating the overall resilience of 

a site (Willis and Loa 2015). 

Efforts to narrow the scope of resilience down to the individual building level to gain 

specificity, while a necessary preliminary step for measuring resilience, are met with a diverse 

array of quantitative and qualitative contextual factors that may further complicate the 

implementation of simple and clear metrics. Building resilience may simultaneously be subject 

to considerations of power grid stability (Bie et al. 2017), security, ecological integrity 

(Molyneux et al. 2016), natural disaster preparedness (Cutter, Burton, and Emrich 2010), 

comfort (Lomas and Giridharan 2012), business continuity (Petit et al. 2013), and beyond. 

Others present conceptual frameworks (Cerѐ, Rezgui, and Zhao 2017) as a method for assessing 

the resilience of buildings, by providing users with a logical and streamlined approach for 

categorically mapping out and organizing the relevant resilience priorities and data requirements 

that are needed for making informed decisions on measurement applications (Sharifi and 

Yamagata 2015), often taking the form of matrices (Roege et al. 2014), workflow charts (Petit et 

al. 2013), and decision trees (Bie et al. 2017).  

Conceptual frameworks, offered throughout the resilience literature, are generally 

proposed as agnostic to any one resilience focus, but are widely adopted as the most appropriate 

means for assessing the resilience of buildings, despite being loosely grouped together with 

considerations for infrastructural resilience and energy resilience. For example, the Resilience 

Measurement Index (RMI) framework breaks down the pursuit of infrastructural and 

community/regional resilience into the categories of preparedness, mitigation measures, response 

capabilities, and recovery mechanisms, with associated action items assigned to each category, 

with specificity achieved by breaking these categories down into subcategories based on the 

resolution of data required (Petit et al. 2013). A similar framework proposed by Vugrin, Castillo, 

and Silva-Monroy (2017) builds upon the previously established Resilience Assessment Process 

(RAP) by providing guidelines to define context-specific electrical grid resilience metrics 

through organization into “consequence categories” that allow for disruptions to be evaluated by 

their unique impacts on critical functions, with evaluation of improvement determined by 

appropriate units of measurement, calculation processes, and relevant statistical properties 

(Vugrin, Castillo, and Silva-Monroy 2017). It is important to recognize that these frameworks 

ultimately provide a means to strategically approach and think through the process of resilience 

metric development and application for buildings, and do not necessarily themselves propose 

explicit metrics.  

Additional epistemological considerations in the literature include: how to define baseline 

functionality (Cutter, Burton, and Emrich 2010), weighting of resilience criteria (Alshehri, 

Rezgui, and Li 2015), and defining the achievement of resilience as either binary or on a 

spectrum (Vugrin, Castillo, Silva-Monroy 2017).  

A common concept used throughout the resilience literature to represent the 

quantification of resilience is the resilience curve, which demonstrates the performance of a 

desired function over time relative to a baseline, where resilience is defined as the area above 

this curve and underneath the baseline after a disruption event, with resilience increased by 

simultaneously diminishing damage severity and decreasing recovery time (Cimellaro, Reinhorn, 

and Bruneau 2010; Afrin and Yodo 2019; Florin and Linkov 2016; Kammouh et al.  2019; 

Ladipo et al. 2019). A vital component of the ubiquitous “resilience curve”, performance 

baselines provide the necessary means to define acceptable levels of functionality for a system 

inflicted by a disruption and serve as a means to compare resilience measures, with different 
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authors having developed unique methods for defining this baseline. Notably, Watson et al. 

(2015), use the RAP method to establish performance baselines based on resilience goals and 

associated evaluation metrics; Sharifi and Yamagata (2015) detail the basic approach of 

measuring resilience against an established performance baseline, additionally arguing that 

multiple baselines may be necessary for a comprehensive assessment of resilience (Sharifi and 

Yamagata 2015), where for the case of building resilience, baselines may even represent other 

buildings. Resilience may be measured as continuous (Vugrin, Castillo, Silva-Monroy 2017), or 

binary i.e. a system is either resilient or not resilient, which is an especially vital consideration 

when planning for energy availability (Department of Defense 2017). 

While certain resilience metrics, such as power availability and system redundancy 

(McAllister 2013; Florin and Linkov 2016) may seem relatively direct and transparent, some 

higher-level metrics, such as “cost of recovery” and “average number (or percentage) of critical 

loads that experience an outage” (Vugrin, Castillo, Silva-Monroy 2017), may provide 

stakeholders with a more comprehensive “big picture” assessment of resilience. However, other 

factors that are more interdisciplinary and integrative - such as human comfort and operational 

continuity- may not best be supported by single units of measurement, necessitating a system of 
weighting to detail the degree of influence certain factors will have towards overall resilience. 

Key approaches to weighting have been demonstrated through the analytical hierarchy process 

(AHP) and Delphi method for consensus assessment, where individual weights are calculated for 

the influence of multiple interdisciplinary resilience-related dimensions (Alshehri, Rezgui, and 

Li 2015), as well as through the use of multicriteria decision making (MCDM) and “expert-based 

indirect approaches”, where resilience is calculated through the summation of “relevance 

coefficients” to gain clarity on the influence of various resilience “indicators” (Cerѐ, Rezgui, and 

Zhao 2017). Similarly, the RMI framework uses “subject matter expertise” (SME) to base the 

weightings of various resilience factors on, with ultimate weightings for resilience calculation 

established through various stages of consensus-building for solicited resilience experts (Petit et 

al. 2013). To contrast, Cutter, Burton, and Emrich (2010) use spatial assessment and empirical 

ranking through expert judgement and proxies to derive “disaster resilience scores” for multiple 

resilience criteria, rather than unique weightings for resilience criteria, basing their approach on 

the idea that resilience criteria should be weighted equally and that disaster preparedness should 

ultimately be measured by a score for each criterion, since it would be easier to understand than 

an abstract weighting process (Cutter, Burton, and Emrich 2010). In the “Benchmark Resilience

Score” presented by Stephenson et al. (2010), an evaluation of 0% resilient to 100% resilient 

provides stakeholders with a straightforward indication of whether the resilience of a community 

or organization is either “very poor”, “poor”, “fair”, good” or “excellent” (Alshehri, Rezgui, and 

Li 2015). 

There are several criteria-based resilience rating systems and certifications, such as 

LEED (USGBC 2019), RELi 2.0 (USGBC 2018), U.S. Resiliency Council Building Rating 

System (Mayes and Reis 2017), and BREEAM (Building Research Establishment Environmental 

Assessment Method) (Marjaba and Chidiac 2016), where resilience assessment generally falls 

between approaches of “performance-based” verification or “feature-based” verification 

(Burroughs 2017). Similar to these resilience criteria and rating systems, are the multiple forms 

of resilience scoring systems used throughout the field of disaster resilience, such as the 

“Disaster Resilience Scorecard for Cities” (UNDRR 2017), which offers a high-level assessment 

of resilience that packages the factors of climate, energy, social, and economic into a single 

score, using similar weighting methods discussed by Cutter, Burton, and Emrich (2010).  
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Attempts to quantify resilience at the building-scale remain generally abstract and 

sporadic across a wide range of frameworks and methodologies, often diverging from core 

building science first principles. These research gaps indicate a need for clear and tangible 

resilience metrics that are based on the performance of key building energy technologies, with 

simple and straightforward applications for building-level stakeholders.  

Proposed Metric for Energy Resilience 

Our goal was to define a metric that could be used by building industry stakeholders - 

investors, owners, operators - to evaluate and support decision-making around the energy 

resilience of buildings. Toward that end, the metric should be appropriately responsive to 

changes in building features that affect resilience i.e. it should reflect the impact of these features 

based on underlying building science principles. At the same time, the metric should be 

meaningful, transparent, and reasonably easy to use for stakeholders to support decision-making.

There are already well-established metrics and criteria for thermal comfort, visual 

comfort, and indoor air quality in buildings. There are also well-established methods to evaluate

these metrics at a given point in space and time. There have also been some studies on aggregate 

measures, such as daylight autonomy, thermal autonomy, and ventilation autonomy of buildings 

(Ko et al. 2018). Building on these criteria, we sought to define a metric based on the extent to 

which building occupants are able to occupy and work in the building during an extreme event.   

Using hours of occupancy as the unit of office building functionality, we defined a metric 

of “occupancy hours lost” (OHL) to measure functionality lost during an energy disruption, on 

the premise that for an office building, lost hours of employee occupancy will translate to lost 

economic output1. This simple metric of OHL frames the benefits of resilience efforts for office 

buildings in a way that is meaningful for stakeholders and shows impacts on business continuity, 

while also being a measure of climate change adaptation and environmental stewardship. 

The OHL for a given building is an absolute measure of resilience. In order to compare it 

and benchmark it with other buildings, we propose a second complementary metric: “occupancy 

hours lost ratio” (OHLR), defined as the ratio of the OHL to the total occupancy hours under 

normal operating conditions. Both OHL and OHLR can be specified for a given condition and a 

given time period, e.g. one week of power outage during an extreme heat event.    

Since it is difficult to realistically model what would determine if a person would choose 

to stay and work in their office building, specifically during a heat wave and without access to air 

conditioning or during a cold winter day without heat, we have chosen to simplify this process 

by using thermal comfort as a proxy for occupancy, simply reasoning that if a person is 

comfortable, they will occupy the building, and if they are not comfortable, they will leave the 

building. Acknowledging that thermal comfort exists on a spectrum and will be different for 

different people, we further acknowledged the need to establish hard boundaries to delineate 

conditions for when it is either so hot or so cold that it would be unsafe for any human being.  

Whereas resilience in the natural disaster context may focus on providing cooling centers 

during heat waves to keep people safe or emergency warming centers during winter periods, this 

does not necessarily consider the potential of this relief to support the continued productivity of 

buildings, specifically office buildings. To evaluate a realistic sense of thermal resilience, a 

distinction must be made between indoor thermal conditions that are not conducive to business 

1 We recognize that economic output is a complex function of several factors, and that occupant-hours is not 

equivalent to productivity. In this case, occupancy hours is simply a first order measure of resilience. 
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productivity and indoor thermal conditions that are life threatening. This leads to a consideration 

of both thermal habitability and thermal tolerance as criteria for thermal resilience, where 

thermal habitability dictates a fixed temperature point at which individuals will be at serious 

health risk, and thermal tolerability dictates a spectrum of uncomfortable temperatures that can 

be withstood, albeit still uncomfortable. Thermal habitability pertains to safety, whereas 

thermal tolerability pertains to comfort. While thermal habitability leads to a simple binary 

assessment, where indoor thermal conditions are either habitable or inhabitable, thermal 

tolerability is a function of time elapsed, where uncomfortable temperatures can be tolerated, but 

only for a certain amount of time, along with the additional complexity of different tolerance 

ranges for different individuals.  

To define the intricacies that dictate how humans perceive and react to thermal 

conditions, both physiologically and psychologically, is an enormously complex endeavor that is 

outside the scope and boundaries of this study, and thus for simplicity, we base our assessment of 

thermal tolerance and thermal habitability on previously established criteria for ideal thermal 

conditions, specifically those detailed in the LEED v4 pilot credit for Passive Survivability

(Wilson 2019). Livable conditions are defined here as standard effective temperature (SET) 
between 54 °F and 86 °F. Deviations from this livability range are limited to a certain number of 

degree-days (or degree-hours) during winter and summer conditions. For example, for non-

residential buildings, a deviation above 86 °F SET is allowed, up to 18 °F SET degree-days (432 

°F SET degree-hours) during a one-week period. This assumes a linear relationship between

thermal stress and time endured. We also considered using a thermal stress damage function that

calculates the nonlinear increase in heat and cold stress severity as temperatures rise or fall, based on a host of 

physiological and psychological data inputs that consider both how the body and mind perceive 

heat and cold. However, there is inadequate research that we could draw upon to develop such 

criteria. 

Along with using the LEED Passive Survivability “livable conditions” range as our basis 

for thermal comfort to assess building occupancy during a power outage, thermal habitability 

limits are placed at 103 °F SET, based on the Heat Index threshold for dangerous heat conditions 

(National Weather Service), and 40 °F SET, based on best engineering judgement for 

dangerously cold conditions, using standard effective temperature (SET), rather than dry bulb 

temperature, to incorporate additional stress added by humidity. If temperature ever goes beyond 

either 103 °F SET or drops below 40 °F SET, thermal conditions will then be deemed as unsafe, 

and occupants will be required to leave the building due to lack of thermal habitability.  

To calculate OHL, we first determine habitability. If indoor temperatures rise above 

103 °F SET or fall below 40 °F SET, conditions are deemed uninhabitable and all occupancy for

that hour and for the rest of the day will be lost, regardless of thermal tolerability. If the 

condition of thermal habitability is met, we next determine thermal tolerability. Thermal 

tolerability is calculated by summing the degree hours over 86 °F SET or under 54 °F SET that 

exceed the thermal tolerance allowance limit for each day over the course of a week, for each 

building zone, and for the whole building, with 432 degree-hours above 86 °F SET allowed for

peak summer conditions and 216 degree-hours below 54 °F SET allowed for peak winter

conditions. Thermal tolerance allowances for both peak summer and peak winter periods are 

divided evenly between each day of the week. Once the thermal tolerance allowance for a day is 

expended, additional hours above 86 °F SET or below 54 °F SET are deemed as intolerable, and 

all occupancy hours are lost. Thus OHL for each day is calculated by summing the number of 

occupants for each hour deemed as inhabitable and for all subsequent hours. If no hour is 
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deemed inhabitable, OHL for each day is calculated by summing the number of occupants for 

each hour deemed intolerable after the daily tolerance allowance has been expended. OHLR is 

calculated by dividing weekly OHL for the building by the ideal weekly occupancy for the 

building, across all building zones. 

Pilot Analysis 

Objectives 

To fit with the conditions of the LEED Resilient Design for Passive Survivability “safe” 

conditions set for a one-week period, the pilot analysis used in this study was based on a one-

week long power outage, testing the thermal comfort of a building with no air conditioning and 

heating through conventional HVAC during the hottest week of the year and coldest week of the 

year, denoted in this study as the “hot” event and “cold” event. To slightly modify this however, 

this study divides the designated degree-hour tolerance allowance provided by the LEED pilot

credit into daily allowances, based on the fundamental assumption that if a person experiences 

stress from extreme heat or cold, they will be recovered by the next work day, assuming that heat 

stress and cold stress will not carry over from day to day. Accordingly, degree hour tolerance 

limits are different for peak summer and peak winter conditions, with the hot event allowing for 

432 degree hours deviation from 86 °F SET and the cold event allowing for 216 degree hours 

deviation from 54 °F SET. The specific disruption we use for this study is a power shut off for a 

medium sized office building, occurring at the first hour of a seven-day work week, considering 

reduced work hours for the weekend. 

Parametric Simulation Analysis 

We used energy simulation to assess the feasibility of OHL and OHLR to predict 

building occupancy as a metric for energy resilience based on the previously addressed 

conditions for thermal habitability and thermal tolerability. We modeled a medium office 

building for two vintages: the DOE post-1980 reference model (DOE n.d.) and the DOE 
ASHRAE 90.1-2007 prototype model (DOE 2018). We used an adaptation of these two 

models that included more detailed thermal zoning. We used models for two climate zones:  

Houston (ASHRAE-IECC zone 2A) and San Francisco (ASHRAE-IECC zone 3C). We

simulated OHL for two events: power loss for seven days during the hottest and coldest week

of the year. In total, we had eight scenarios i.e. combination of two vintages, two climate

zones, and two events. We used EnergyPlus software for the simulations.
To assess the impact of various building components in contributing to office building 

energy resilience, a set of 500 parametric model runs were carried out for each scenario, with 

each simulation incorporating a set combination of resilience-related building components at 

varying levels of performance. Table 1 shows the range of values for each parameter. To keep 

data considerations simple, this study bases calculations for OHL on only two output values: 

hourly indoor SET by zone, and hourly indoor occupancy by zone, adding a spatial component to 

this pilot analysis to distinguish the varying levels of OHL across different building zones, 

acknowledging that while conference rooms and office spaces will experience the most 

significant OHL during extreme heat and cold, OHL for generally unoccupied zones will 
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ultimately be insignificant, given the lack of employees present in these zones (e.g., storage, 

corridors, stairs, etc.). 

Table 1. Parameter values 

Climate: Houston San Francisco 

Parameter Unit V1 V2 V3 V4 V1 V2 V3 V4 

Window-to-wall ratio - 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 

Window glazing type 

U-Value 

(W/m²-K) 5.8 4.6 3.5 3.3 5.8 4.1 3.2 2.8 

Solar Heat Gain Coefficient (SHGC) - 0.54 0.29 0.25 0.23 0.54 0.39 0.29 0.22 

Exterior walls insulation (without film) 

U-Value 

(W/m²-K) 1.29 0.85 0.7 0.51 1.26 0.7 0.51 0.47 

Wall reflectance - 0.22 0.3 0.5 0.7 0.22 0.3 0.5 0.7 

Roof insulation 

U-value

(W/m²-K) 0.57 0.37 0.28 0.23 0.57 0.37 0.28 0.23 

Roof reflectance - 0.3 0.55 0.7 0.8 0.3 0.55 0.7 0.8 

Occupant density (ft²/person) 130 200 300 400 130 200 300 400 

Plug load (W/ft²) 1.25 1 0.75 0.5 1.25 1 0.75 0.5 

Orientation 

Degrees from 

north 0° 45° 90° 0° 45° 90° 

Variation in parameter values between simulation runs for Houston, TX and San Francisco, CA, where V: 

Value. 

Table 2 shows the average OHL and OHLR values for each building scenario used in this 

study. Figure 1 shows the range of OHLR across all parametric simulations for selected 

scenarios. The hot events resulted in significantly higher OHL and OHLR values than for the 

cold events, with a wider range in temperatures observed in hot events for both Houston and San 

Francisco, as seen in Figure 1.  
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Table 2. Results for average OHL and OHLR 

Vintage Climate Event OHL OHLR 

Post-1980 2A Hot 10259.51 0.76 

Post-1980 2A Cold 374.33 0.02 

Post-1980 3C Hot 4594.45 0.34 

Post-1980 3C Cold 417.54 0.03 

2007 2A Hot 9136.73 0.68 

2007 2A Cold 340.2 0.02 

2007 3C Hot 4151.96 0.31 

2007 3C Cold 826.01 0.05 

OHL and OHLR values displayed for each building scenario, where 2A represents the climate for Houston,

TX, averaged across 500 parametric simulations, with each combination of climate-vintage-event scenarios

listed. 3C represents the climate for San Francisco, CA, based on weather file nomenclature. 

Figure 1. Median building OHLR for hot and cold events. a. Houston Post-1980 2A b. San 

Francisco Post-1980.  

Calculations for OHL and OHLR revealed a significant variation in values between 

zones, as depicted in Figure 2. For Houston’s hot week it was revealed that the zones most 

significantly contributing to OHLR were conference rooms (Zone ID: 1,2,3,4) and that the zones 

least contributing to OHLR were enclosed office spaces (Zone ID: 33,34,35). OHLR ranged 

from 0.35 to 0.95. For San Francisco’s Hot week, the lobby area stood out as contributing the 

most significantly to OHLR for the whole building, with the enclosed office spaces, lounge, and 

open office spaces experiencing no occupancy loss. 
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 Figure 2. OHLR across 35 unique building zones for the hottest week. top: Post-1980 Houston 

 bottom: Post-1980 San Francisco.  
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Simplified Predictive Models Through Regression Analysis 

While OHL can be computed via simulation as shown above, most stakeholders are 

unlikely to have available on-hand the necessary data sources for comprehensive energy 

resilience modeling, or the wherewithal to conduct such detailed analyses. For wide scale 

adoption and use of a metric such as OHLR it is vital to have available simple user-friendly 

methods for assessing energy resilience for buildings that require simple data inputs.  

Supporting this goal for simple predictive models for office building energy resilience, 

we explored an energy resilience regression model as a means for building stakeholders to 

evaluate the resilience of their buildings, requiring only the simple inputs of known building 

component performance measures, such as R-value for insulation and U-value for windows. We 

ran multi-variate linear regressions on the set of 500 parametric simulations for each scenario, 

with OHLR as the dependent variable, and the building parameters as the independent variables, 

yielding an equation of the form: 

OHLR  = k + c1p1 + c2p2 + c3p3 + c4p4 + … + cnpn + εi     (eq.1) 

where: 

OHLR: Occupancy Hours Lost Ratio 

k: y-intercept 

c: coefficient 

p: parameter 

p1: Window-to-wall ratio 

p2: Window glazing type - U-Factor (W/m2-K) 

p3: Glazing type (SHGC) 

p4: Exterior walls insulation without film (U-Value) 

p5: Wall reflectance/emittance 

p6: Roof insulation - (U value) 

p7: Roof reflectance 

p8: Occupancy density (ft2/person)

p9: Electric plug and process (W/ft2) 

p10: Orientation (0°-90°)  

εi: Random error  

The regression coefficients can give stakeholders a realistic and practical assessment of 

which building components will contribute most significantly to improving a building’s energy 

resilience. If a stakeholder can find the values of the listed key building components detailed in 

this model, they can simply enter these values into the regression model and produce a relatively 

realistic assessment of energy resilience for their building, based on OHLR. This of course is 

based on the assumption that other buildings characteristics will more-or-less match those of the 

DOE reference and prototype models used in this study. The results would be less valid for

buildings that deviate more from these assumptions, and a broader set of building models would 

be needed to cover a wider range of buildings, using the same approach.   

The results for each scenario revealed the majority of coefficients to be extremely 

significant in their contribution to building energy resilience, with exceptions seen for window 

glazing, roof insulation, and roof reflectance, as displayed in Table 3. Adjusted R squared values 

for each scenario were generally high, with the exceptions of Post1980-cold and 2007-cold for 

Houston, and Post1980-cold for San Francisco, noting an important pattern in model fits for cold 

scenarios being the poorest. It was revealed that SHGC, wall reflectance, occupant density, and 
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plug load density were all extremely significant across all scenarios, noting the negligible 

coefficient values for occupant density. For Post1980-cold for both climates, it was revealed that 

roof insulation and roof reflectance did not have a significant influence on OHLR, with another 

commonality shown between 2007-cold for both climates, where roof reflectance as well did not 

have a significant influence on OHLR.  

Certain parameters saw coefficients switch between positive and negative values when 

the climate was switched, such as for exterior walls insulation for 2007–hot. As well, coefficients 

for roof insulation for Post1980-hot switched from positive to negative when switched from 

climate 2A to climate 3C. Coefficients for occupant density and orientation were consistently 

negligible, noting that for 2A 2007-hot the coefficient for orientation was not significant. While

not all variations revealed clear patterns, it was evident that coefficients for certain parameters

were heavily influenced by the event (hot/cold), such as for the SHGC coefficient that increased 

from the cold event to the hot event, and the coefficient for wall reflectance that decreased from 

the cold event to the hot event. 

      Table 3. Regression results for each scenario and significance       

     a.

Climate Houston, TX (2A) 

Post1980 Cold Post1980 Hot 2007 Cold 2007 Hot 

Parameter Coefficient Sig. Coefficient Sig. Coefficient Sig. Coefficient Sig. 

Window-to-wall ratio 0.108 *** -0.006 ** 0.219 *** 

Window glazing type -0.001 *** 0.006 *** 

Solar Heat Gain Coefficient (SHGC) 0.034 *** 0.123 *** 0.054 *** 0.2 *** 

Exterior walls insulation (without film) -0.006 *** 0.005 ** -0.005 *** 0.013 *** 

Wall reflectance -0.007 *** -0.019 *** -0.007 *** -0.034 *** 

Roof insulation 0.012 *** 0.02 *** 

Roof reflectance -0.015 *** -0.021 *** 

Occupant density 0.000 *** 0.000 *** 0.000 *** 0.000 *** 

Plug and process load density 0.021 *** 0.061 *** 0.011 *** 0.07 *** 

Orientation 0.000 *** 0.000 *** 0.000 *** 

Adj. R Squared 0.674 0.898 0.653 0.949 
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b.

Climate San Francisco, CA (3C) 

Post1980 Cold Post1980 Hot 2007 Cold 2007 Hot 

Parameter Coefficient Sig. Coefficient Sig. Coefficient Sig. Coefficient Sig. 

Window-to-wall ratio 0.058 *** 0.129 *** 0.062 *** 0.094 *** 

Window glazing type -0.002 ** -0.005 *** -0.004 *** 

Solar Heat Gain Coefficient (SHGC) 0.105 *** 0.349 *** 0.254 *** 0.349 *** 

Exterior walls insulation (without film) -0.004 * -0.022 *** -0.02 *** -0.027 *** 

Wall reflectance -0.019 *** -0.057 *** -0.036 *** -0.056 *** 

Roof insulation -0.021 *** -0.017 * 

Roof reflectance -0.04 *** -0.061 *** 

Occupant density 0.000 *** 0.000 *** 0.000 *** 0.000 *** 

Plug load density 0.013 *** 0.103 *** 0.034 *** 0.092 *** 

Orientation 0.000 *** 0.000 *** 0.000 *** 0.000 *** 

Adj. R Squared 0.553 0.931 0.776 0.908 

Regression results for each building parameter presented as coefficients and corresponding significance, where 

*** denotes a p-value of less than or equal to 0.001, ** denotes a p-value of less than or equal to 0.01, and * 

denotes a p-value of less than or equal to 0.05. a. Results for Houston, TX scenarios. b. Results for San 

Francisco, CA scenarios. Blank spaces indicate coefficients that were not significant.

With the parameter coefficients detailed in Table 3, building stakeholders could easily produce a 

coarse estimate of OHL or OHLR for each location, weather event, and building type by 
inserting the above coefficients into equation 1. 

Conclusions and Next Steps

This study aimed to demonstrate the potential of occupancy hours lost (OHL) as a simple 

metric to measure energy resilience for office buildings using simulation to evaluate resilience 

across multiple building configurations and regression to analyze the influence of individual 

building parameters on building occupancy. A parametric energy simulation analysis of a 

medium sized office building shows some clear patterns displayed between hot and cold events

between Houston, TX and San Francisco, CA for two vintages. As expected, OHL varies widely 

between vintages, climates, and weather events, from as low as 10% to as high as 90%. A 

multivariate regression analysis of the simulation results yielded very good model fits and 

showed that the majority of parameters analyzed were statistically significant. This linear model 

provides a means for building stakeholders to predict resilience by generating a coarse estimate 

of OHL with fairly limited building data. Additionally, distribution of OHL across building 

zones revealed substantial variation in energy resilience between zones, allowing stakeholders to 

improve whole building energy resilience by prioritizing certain zones over others. 

While providing the benefit of simplicity, basing energy resilience for office buildings on 

temperature ranges and limits alone ultimately ignores the consideration of key resilience aspects 

that affect the productivity of office building employees beyond thermal comfort. We are 

currently working on incorporating both air quality and daylight autonomy into predictive 
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models for calculating building occupancy to depict a much more holistic view of energy 

resilience, where stakeholders acknowledge the need for employees to have clean air and 
adequate indoor lighting when there is no power to run mechanical ventilation systems and keep 

the lights on, using indicators such as CO2 concentration and illuminance respectively. We are 
also expanding our analysis to a more diverse range of climates, including the need for colder 

climates with severe winters to be represented, such as Chicago.  

Additional parameters and considerations of occupant comfort that stretch beyond 

thermal conditions will allow for a more accurate and holistic assessment of energy resilience. 

Ultimately, the value of OHL as a resilience metric for office buildings must be evaluated and

determined by building stakeholders, and thus further research is needed to empirically validate 

OHL as an effective metric to support stakeholder decision-making.  

Additionally, given the clear impact COVID-19 will have on office building productivity, 

we acknowledge that resilience for the built environment will largely take on new meaning going 

forward, and we accordingly recommend that future research on built environment resilience 

address pandemic preparedness, specifically considering the role of improved ventilation in 

slowing the spread of virus through buildings, and as well considering scenarios where outbreaks 

may lead building managers to require certain employees work remotely from home. 
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