>

A
fereeee "'|

BERKELEY LAB

Lawrence Berkeley National Laboratory

Aerial 3D Building Reconstruction from
RGB Drone Imagery

Mark WuDunn, Avideh Zakhor, Samir Touzani,
Jessica Granderson

Lawrence Berkeley National Laboratory, Berkeley (U.S.A)

Energy Technologies Area
June, 2020




Disclaimer:

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States
Government nor any agency thereof, nor the Regents of the University of California, nor any of
their employees, makes any warranty, express or implied, or assumes any legal responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or the
Regents of the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof or
the Regents of the University of California.

Acknowledgments:

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Building Technologies Office, of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.



Aerial 3D Building Reconstruction from RGB Drone Imagery

Marc WuDunn® P, Avideh Zakhor® ®, Samir Touzani®, and Jessica Granderson®

#Signetron Inc.
bUniversity of California, Berkeley
‘Lawrence Berkeley National Laboratory

ABSTRACT

3D Building Reconstruction is an important problem with applications in urban planning, emergency response,
and disaster planning. This paper presents a new pipeline for 3D reconstruction of buildings from RGB imagery
captured via a drone. We leverage the commercial software Pix4D to construct a 3D point cloud from RGB
drone imagery, which is then used in conjunction with image processing and geometric methods to extract a
building footprint. The footprint is then extruded vertically based on the heights of the segmented rooftops.
The footprint extraction involves two main steps, line segment detection and polygonization of the lines. To
detect line segments, we project the point cloud onto a regular grid, detect preliminary lines using the Hough
transform, refine them via RANSAC, and convert them into line segments by checking the density of the points
surrounding the line. In the polygonization step, we convert detected line segments into polygons by constructing
and completing partial polygons, and then filter them by checking for support in the point cloud. The polygons
are then merged based on their respective height profiles. We have tested our system on two buildings of several
thousand square feet in Alameda, CA, and obtained an F1 score of 0.93 and 0.95 respectively as compared to
the ground truth.

Keywords: Building Footprint, Line Extraction, Polygonization

1. INTRODUCTION

3D building reconstruction is useful in a wide variety of application areas, including urban planning, energy
modeling, and disaster planning. Existing 3D reconstruction methods typically involve the use of satellite
imagery, terrestrial laser scanning, or top-down Light Detection and Ranging (LiDAR) data.! Terrestrial laser
scanning and LiDAR require costly equipment.? LiDAR suffers from limited range data. Terrestrial laser scanning
does not easily scale to large areas. Building footprint extraction from a single satellite image is scalable and
could be applied to large areas, but typically does not result in building facade information or accurate height
information.?

In this paper, we present a novel pipeline for extracting building footprints from drone imagery, including
facade information, the building components, and the height information for each component. Our approach
consists of two overarching steps, line segment extraction and polygonization of the lines. In the line segment
detection step, the point cloud is projected onto a regular grid, preliminary lines are detected using the Hough
transform, subsequently refined with RANSAC, and then converted into line segments by checking the density of
the points surrounding the line. In the polygonization step, detected line segments are converted into polygons,
by constructing and completing partial polygons, and filtering them by checking for support in the point cloud.
The polygons are then merged based on their respective height profiles.

In order to validate the performance of our pipeline, we collected geo-tagged RGB images for two buildings
using the DJI Spark drone with a 12 megapixel camera. We use the commercially available software Pix4D to
construct a point cloud from RGB imagery which has been geo-tagged with GPS information. We evaluate our
proposed building footprints using the F1 and IOU scores against ground-truth building footprints, which were
generated manually in Google Earth. We also present 3D renderings of the building models, generated directly
from the information present in the reconstructed footprints.

Further author information: (Send correspondence to Marc WuDunn)
Marc WuDunn: E-mail: mwudunn@berkeley.edu, Telephone: 1 317 627 7391



The outline of our paper is as follows. Section 2 provides a discussion of previous work in building footprint
extraction. In Section 3, we present our approach for extracting line segments corresponding to walls. Section 4
covers our approach to convert the extracted line segments into a polygonal building footprint. In Section 5 we
present our experimental results, and in Section 6 we provide our conclusions and future work.

2. RELATED WORK

Existing methods for building footprint extraction can be broadly categorized as working with two types of
data: image data from satellite imagery or aerial imagery, and 3D data such as LiDAR. Several geometric
approaches have been proposed using satellite imagery,*” but they only detect building outlines, as extracting
height information from a single satellite image is difficult. They also tend to perform well for relatively simple
building structures, such as those composed of few facades. Methods utilizing convolutional neural networks
(CNNs) on satellite images have also been proposed.® Additionally, Microsoft? released a dataset containing
over 100 million building footprints in the United States generated using neural networks. Although CNNs have
been reported to work well for satellite data, they are difficult to apply to drone imagery or point cloud data,
since they suffer from a lack of labeled training datasets. As a result, generating building footprints which also
contain height information is difficult using deep learning methods.

Many 3D reconstruction methods utilize 3D data such as LIDAR or Digital Surface Models (DSMs) in order to
construct footprints. Even though LiDAR can produce reasonable results,'? ! LiDAR sensor sets for UAVs can
be prohibitively expensive. Methods that utilize DSMs'27'4 allow building height information to be extracted,
as height is encoded into the data model.

In general, the use of geometric features of buildings, such as their shape and their shadows, are useful for the
extraction of building footprints. For instance, Lin and Nevatia'® propose a method to detect simple, rectangular
building roofs from a single oblique image, using edge detectors and 3D evidence present in the image. Their
approach involves generating a number of hypotheses for building footprints which are then pruned to create the
final one. They additionally estimate building height from the shadows. Shadow information is used in several
other approaches'®'7 for the extraction of footprints or their heights. The pipeline proposed by San et. al.'®
utilizes the Hough transform for the extraction of building edges, but is limited to simple rectangular structures
or circular structures. Likewise, Hammoudi et al.'® employ the Hough transform for the extraction of edges
corresponding to building facades, though they fall short of extracting an actual building footprint. Our method
also employs the Hough Transform to generate 2D line segment candidates, which we augment to construct a
full building footprint.

3. LINE SEGMENT DETECTION

Our proposed algorithm for building footprint extraction consists of three parts. The first is a data collection
stage, in which geo-located images of a building of interest are captured using a drone. The images are then
processed in Pix4D to produce a 3D point cloud.

Next we extract the line segments corresponding to the facades of a building using an iterative process. For
this stage, we provide two parameters as input, Amin and l,in, corresponding to the minimum wall height and
length respectively, which in our experiments are set to 1m each. The point cloud is first projected onto a 2D
grid, and then the Hough transform is used to extract lines in the grid. The points within a small perpendicular
distance of the line are found, and RANSAC is used to refine the fit of the line to the points. Line segments
are then extracted for regions of the line for which the density of the points is sufficiently high. We remove
the points corresponding to these line segments, and the process repeats in an iterative fashion. Once all line
segments have been extracted, they are post-processed so that nearby line segments are joined together.

In the final stage, the extracted line segments are converted into polygons. As some walls may have been
missed by the Hough transform or may be absent from the point cloud itself, this step involves repeatedly
completing polygons using geometric rules. The completed polygons are then merged together based on a height
similarity metric to neighboring polygons. In the remainder of this section, we will describe the first and second
stage of our proposed method, namely data collection and line segmention extraction.



(a) (b)
Figure 1: (a) A circular flight path in DJI GS Pro. (b) The full flight plan.

Figure 2: RGB Drone imagery for (a) Building 1. (b) Building 2. (¢) Grid with points accumulated by grid cell
for building 1. (d) Lines detected in the first iteration.

3.1 Data Collection

After a building is selected, we plan the flight so that the drone captures images at most 30 meters from the
building, following many circular paths with a gimbal angle of -35° off the horizon. This ensures that captured
images are sufficiently close to the building to allow for a high quality reconstruction. Successive images are
captured to have a 85% front overlap with one another and are geo-tagged. Examples of the flight plan for a
portion of a building can be seen in Figures 1(a) and 1(b). In order to comply with federal guidelines, the area
is scouted so that there are no persons beneath the flight path of the drone. Flights during rain and heavy wind
are avoided, for both safety reasons and to ensure the images are of high quality.

Each of these circular flights takes on the order of 40 minutes, including 10 minutes to recover the drone and
to replace the batteries. These images are then input to Pix4D in order to produce a 3D point cloud. Figures
2(a) and 2(b) show the point clouds of two buildings we will be processing throughout this paper.

3.2 Line Detection

After constructing the point cloud, we detect lines in the point cloud, using a process similar to Hammoudi et
al.!? of accumulating points in grid cells and applying the Hough Transform to detect lines.

The points are first projected onto a 2D grid, with a resolution of 0.1m. The number of points in each cell
is counted and then the value is normalized to be between 0 and 1. Projection along the z or height axis results
in cells containing portions of a facade to have a much higher point count than those without them. We apply



a threshold 7 to the cells of this grid, so that cells not corresponding to a wall, i.e. those with a low point count
are set to 0. For the first iteration, 7 is set to a high, fixed value - for example, 5% of the normalized maximum
number of points in any cell. After the first line segment is extracted, the average point density of the extracted
line segment or facade can be used to update 7. This ensures that only cells with similar densities to those
corresponding to walls have a value of 1. We opt to use,

1
T = 7pavghmin

2
where pgq4 is the running average density and Ay, is the minimum wall height given as input. The factor of
2 is added because a wall may be split between two adjacent grid cells. Figure 2(c) shows an example of the
accumulated grid.

Next, we apply the Hough transform to the accumulated grid. We found the approach by Hammoudi et
al.!¥ of clustering in Hough space to be fairly unreliable with the relatively high number of walls in our dataset,
so we instead opt to find local peaks in Hough space and filter out spurious and duplicate lines later in the
pipeline. For each line, we extract all points within a small perpendicular distance around the line, say 0.2m,
which mostly corresponds to the points on the wall. We further refine the line orientation by applying RANSAC
to these extracted points to find the best-fit line corresponding to the wall points. Figure 2(d) shows an example
of the detected lines.

3.3 Line Segmentation

The walls lie along the detected lines, and so we wish to determine the exact portion of each line overlapping a
wall. To do so, we accumulate the points along the detected line into a 1D grid, with cells of length 0.3m. Then,
we once again threshold the 1D grid cells using the running average point density of all previously extracted
walls, or 5% of the cells’ maximum point count for the first iteration. A diagram showing a gridded line and the
thresholded result is shown in Figures 3(a) and 3(b) respectively. Figure 3(c) shows one of the detected lines
in Figure 2(d), trimmed so that its endpoints lie on the first and last grid cell with a value greater than the
threshold.

After thresholding the grid, we apply a 1D median filter to the grid, whose size is twice the minimum wall
length l,,;,, given as input. This has the dual purpose of removing noise along the line, as well as filtering out
wall fragments that lie perpendicular to the line, whose corresponding cells would still have high point counts in
the image, but only for a few successive cells.

Next, we extract all contiguous sections of the grid with non-zero values to form line segments. The corre-
sponding line segments for the trimmed line in Figure 3(c) is shown in 3(d). In each iteration, we repeatedly
apply the line detection and line segmentation process, while removing the points associated with each detected
line from consideration. This ensures that the Hough transform detects different lines at each iteration. This
process continues until no more line segments are extracted.

3.4 Line Processing

We next post-process the extracted walls, in order to ensure they meet at endpoints. We first determine whether
any endpoints of two different line segments are close together, and if so we close the gap between them by
connecting them together, as shown in Figure 4(a). We also check whether by extending a line segment L; a
fixed fraction, say 15%, of the length of the line, would cause it to intersect another line, Lo. If so, we extend
Ly and split Ly at the point of intersection into two segments, as shown in Figure 4(b). Finally, we delete
duplicate segments by checking whether the endpoints of any pair of lines are close together. An example of the
post-processed output for the data in Figure 3 is shown in Figure 4(c).

4. POLYGONIZATION

Once line segments have been extracted, they are converted into a polygonal footprint. Some line segments may
have been missed in the previous steps, so in addition to converting existing line segments into full polygons,
polygons are inferred from the arrangement of line segments, and then checked for underlying support in the point



White (High Wall (Perpendicular
Point Count) to Line)

Black (Low
Point Count)

Wall (Along the
— Line)

Figure 3: (a) Example of the ’gridded’ line. (b) The line segment in (a) thresholded by density. (¢) One of the
detected lines, trimmed to match the support in the grid. (d) The extracted line segments.

Extend line

Merge Close segment, split
Endpoints nearby line
A N

:\‘/,/ /\’1, -~
Ignore Endpoints Far D—g

Apart

(a) (b)
Figure 4: (a) Merging endpoints close together. (b) Splitting a nearby line segment. (c) Detected lines after
post-processing.

cloud. Our approach to polygonization can be summarized as follows. We first iteratively construct polygons
from the line segments. To do so, we extract all closed polygons that are already present. Next, we determine
polygon candidates, called ’partial polygons’, which are sets of consecutive line segments not forming a closed
polygon. An example of a partial polygon is shown in Figure 5(a). Then, we add new line segments following
specific rules in order to ‘complete’ the partial polygon to form a closed polygon, and repeat the process. Once
no new closed polygons are created, the polygon construction process terminates, and we estimate the height of
all the closed polygons using the points lying inside them. Finally, we merge the closed polygons based on their
height.

4.1 Polygon Extraction

To extract the polygons, each line segment is treated as an edge in a planar graph. For two such edges, if their
endpoints overlap, i.e. their endpoints are within an e-distance from one another, we consider the two edges to
be neighbors. Clearly, it is possible to traverse along the edges of any closed polygon until one returns to the
starting node.



Left Turn

Q)

(b)

Figure 5: (a) Example of a ’partial’ polygon in Building 1. (b) Counter-clockwise traversal.

We consider the sequence of edges in a cycle to be an ‘ordering’ of the edges. By ordering edges in this
manner, the edges are either in a clockwise or counter-clockwise ordering around the polygon. If we were to
traverse along any convex polygon in clockwise order, we would only ever make right turns, and vice-versa for
counter-clockwise order. An example of a counter-clockwise traversal of edges is shown in Figure 5(b).

Another important property is that an edge can be a part of at most two polygons, one on each side of the
edge. By observing these two properties, we can extract all polygons from the edges. We start at an edge of a
polygon, adding the neighbors connected to one of the ends of the edge. Then, we choose to make only right
or left turns, walking along the edges continuously and adding the rightmost or leftmost edge until we return to
the starting edge. Thus, if we start with an edge and choose to turn only left, we obtain a polygon on one side,
namely the left side of the edge. If we instead choose to turn only right obtain the polygon on the right side.
For a right (left) turn, the angle between two successive edges is defined to be negative (positive).

4.2 Partial-Polygon Construction

As can be seen in the output of the line processing step in Figure 4(c), there are initially only a few closed
polygons present. As a result, in order to construct a polygonal footprint, closed polygons must be created from
the incomplete ’partial’ polygons that are present. We construct the partial polygon such as the one shown in
Figure 5(a) by following a similar polygon extraction process described in Section 4.1. These partial polygons
are sets of edges that would be grouped together without actually forming a closed polygon, i.e. missing a
contiguous section. Since a traversal through a partial polygon does not return to the starting edge, constructing
these partial polygons requires some care. Traversing edges in a single direction will not give us all the edges
of a partial polygon unless we start at an edge which contains one of the two endpoints of the partial polygon.
However, we can find such an edge by performing an initial traversal of the polygon in one direction. Once we
reach an edge with no valid neighbors, i.e. one of the edges which contains an endpoint of the partial polygon, we
reverse our traversal direction and the direction of the turns, adding any edge we visit. In this reversed traversal,
we visit all edges from one endpoint to the other, obtaining all the edges in the partial polygon. An example of
a partial polygon ACDEFGHI is shown in Figure 6(a).

4.3 Polygon Completion

Once we have constructed the partial polygons, we need to construct closed polygons from them. Given the
partial polygon ACDEFGHI in Figure 6(a), there are many potential approaches for constructing a closed
polygon, some leading to higher polygon counts and some to fewer. In the example shown in the figure, a closed
polygon BCDEF is constructed, and a new partial polygon A BFGHI is created. We could have simply closed the
entire partial polygon ACDEFGHI by extending the edges CA and HI so that they intersect, but this approach
would force us to assign only a single height to the entire polygon. By creating smaller polygons instead, we can
achieve finer granularity in height assignment which is useful in the height based merging step to be described
later.

We opt to create an additional edge that closes a portion of the partial polygon. This has the effect of
creating a small closed polygon, and potentially another partial polygon to be completed in future iterations.
The implementation of the polygon completion process proceeds as follows. We consider two distinct classes of



J K

A B .
& g ¢ New Edges{/—)
< New Edges
{
E C
I+ Edgetoadd ¢---------- D
b I

H G ¥ i D -

(a) (b)
Figure 6: (a) Completion process for a partial polygon with 3 corners. (b) Propagation effect of completing
one partial polygon to the completion of another in a subsequent iteration. (¢) Completion process for a partial
polygon with 1 corner.

partial polygons: those with 2 or more corners, and those with only one corner. For each partial polygon with 2
or more corners, where a corner is connected to two edges with a non-zero angle between them, we first take the
two adjacent corners of the polygon with the smallest distance between them. In Figure 6(a), this corresponds
to corners C and F. Next, we take the smallest edge connected to either of these corners, such that it does not
lie between the two corners. In Figure 6(b), this corresponds to edge FE. From these three resulting endpoints,
namely CEF, we then complete the rectangle by adding edge BF' and splitting edge AC' into two pieces, namely
AB and BC. This process completes a portion of the partial polygon. In this process, choosing the corners
with the smallest distance between them tends to lead to more proportional polygons. Although we could have
conceivably chosen the largest distance instead, this would have led to long, skinny, small polygons in future
iterations, resulting in error prone height estimation due to a low point count.

For the case where the partial polygon only has one corner, we instead complete the polygon using the two
edges extending from the corner. An example of this is shown in Figure 6(b), where the only corner is endpoint
B. As aresult, edges AB and BC are selected, and edges CE and AF are created. The reason we require at least
one corner is because any polygon with no corners corresponds to a single line, for which we have no information
how far a polygon might extend.

Figure 6(a) shows one iteration of the completion process, where the partial polygon closes at endpoint F,
and the edge BF is added as a result. Note that the addition of an edge in one iteration can lead to new partial
polygons in subsequent iterations, creating a 'domino’ effect, which enables our method to complete the entire
partial polygon ACDEFGHI, while creating several smaller polygons in the process. This allows us to segment
the polygons in a more granular fashion based on their heights, since we can estimate the height for each polygon
individually. We also perform the same process on the already closed polygons, in order to subdivide them
further. For example, in Figure 6(a), we add an additional edge starting at endpoint D and ending on the line
segment BF, represented by the dashed line.

The newly added edges, such as BF, create new endpoints such as B, which may cause other partial polygons
to close at B in future iterations if they share the edge BC. This is shown in Figure 6(c), where B causes a
neighboring partial polygon, namely JABC, to create the edges BK and KJ in the next iteration. This is useful
because facades are often aligned with one another even if they are not directly in contact. For example, for the
partial polygon of Figure 5(a) the two facades, whose points of intersection with the partial polygon are labeled
A and B respectively, are aligned vertically but do not come in contact with one another. If either facade is
missing from the line detection step, the other facade is used to recover it.

For each edge we add as a result of the polygon completion process, we check that the height profile of the
points along the edge are consistent and above A, and remove it otherwise. This is to ensure that the edge is
not part of the ground and does not lie across rooftops of different heights. To obtain the heights along each of
these newly added edges, we extract the 3D points from the point cloud around each edge similar to Section 3.3,
segment the points into a 1D grid along the line, and assign to each grid cell the 90*" percentile for the height
of the points that lie inside them, as these correspond to the rooftop heights with high probability. Then, we



polygons after all iterat

Figure 7: Example of the completed (unmerged) ions have completed.

propose to take the first and third quartiles of the values over all the grid cells corresponding to the edge under
consideration, and verify that they differ no more than a small amount, e.g. 0.5 meters.

Once all the discovered partial polygons in the iteration have been completed, the iteration is complete. Since
new partial polygons may have been formed as a result of this process, the steps in Sections 4.1, 4.2, and 4.3
are repeated. This creates a ’domino’ effect where the additional edges at each new iteration allow previously
undiscovered partial polygons to be constructed, until no more edges or closed polygons are added. We then
remove all edges that are not part of any closed polygon. An example of the completed polygons for the point
cloud shown in Figure 2(a) is shown in Figure 7.

4.4 Height Estimation

After obtaining a set of closed polygons, we estimate their height by averaging the height of the points that lie
inside it, within a fixed distance of the boundary. We use our 2D grid to compute the average height of the
points in each cell, and also average over the height of the cells. By taking the average over grid cells rather
than directly using point height, the height computation is spread out across the entire area of the polygon,
minimizing the effects of objects, such as air conditioning units, that may lie on top of the roof, while also
speeding up computation time. Since we are only interested in the height of the roof, we ignore cells near the
boundary of the polygon as these contain the facade points as well. Using the average height inherently limits the
footprint to flat rooftops, since height for pyramid-shaped rooftops is computed at their apex. If we were to use
the 90" percentile rather than average height, our approach could potentially also be used for pyramid-shaped
rooftops.

4.5 Polygon Merging

Once all the polygons have been completed, we recursively merge adjacent polygons if they are close together
in average height, e.g. within 0.5 meters of each other. To do so, we iterate through each edge that is shared
between two polygons, and check their heights. After merging two polygons, we update the height of the merged
polygon by simply performing a weighted average of the average heights of the two polygons, where the weighting
factor is based on the area of the polygon. Using the average height has only been tested to work for flat rooftops,
though it could conceivably work with non-flat rooftops as well. The merged polygons for Building 1 is shown
in Figure 8(a). Figures 8(b) and 8(c) show the resulting heatmap of the heights of the merged polygons for
Buildings 1 and 2 respectively. Additionally, 3D renderings for the footprint of the two buildings are shown in
Figures 8(d) and 8(e).

5. RESULTS

The proposed footprint extraction has been performed on two buildings in Alameda, with point clouds shown in
Figures 2(a) and 2(b) using the full pipeline as described in the paper. To evaluate our results we hand-labeled
the two buildings using satellite imagery of the building from Google Earth. We manually placed markers around
the building outline to obtain their coordinates, which we compiled into polygons. To account for alignment



F1 Score | IOU Score
Alameda Building 1 0.934 0.901
Alameda Building 2 0.950 0.930

Table 1: F1 and IOU scores for our method evaluated on the Alameda datasets

discrepancies, we performed a grid-search to find the best alignment between the generated footprint and the
ground truth. The grid-search was performed by iteratively shifting the generated footprint at different orders of
magnitude, and choosing the one that maximized the intersection area between the generated building footprint
and the ground truth. Next, we computed the F1 and IOU scores for each building as shown in Table 1. Our
method achieves F1 scores and IOU scores above 0.9 for both buildings. Alameda Building 1 actually corresponds
to a larger building complex, for which only a section was imaged. For reasonable comparison, the ground truth
for Alameda building 1 was cut-off at the far-left side, since most of its facades were not present in the images,
and so the number of points corresponding to it in the point cloud was low.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a full pipeline for generating building footprints from 3D point clouds. Specifically, we
constructed a 3D point cloud from two buildings in Alameda, California by capturing RGB images using a drone.
We then processed them with photogrammetry software to construct a 3D point cloud. Our methodology for
generating building footprints achieves good results on both point clouds, demonstrating that the polygonization
approach is a promising avenue for generating building footprints.

One shortcoming of this approach is that sparse line segments can cause potential polygons to be missed.
Future work could focus on either improving the line segment detection algorithm or further developing the
polygonization logic. Moreover, tree detection logic for point clouds could be integrated with our method to
improve results, as trees incorrectly result in polygons.

Additionally, the method as presented only accounts for flat rooftops, as non-flat rooftops were not present
in our test datasets. However, the only portion of our method that assumes a flat rooftop is merging polygons,
and so our methods could potentially be extended to non-flat rooftops by adjusting how the height profiling is
performed.

Finally, our approach does not readily extend to buildings that are less regular, such as circular or pyramid-
shaped buildings. This is because circular buildings are not easily polygonized. Meanwhile, the facades of a
pyramid-shaped building do not lie along the vertical axis, making their extraction problematic for our method.

ACKNOWLEDGMENTS

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building
Technologies Office, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors
wish to acknowledge Harry Bergmann for his guidance and support of the research.



200

@0

800

1000

(d) (e)
Figure 8: (a) Polygons for Building 1 after the merge process has completed. Heatmap of the heights of merged
polygons for (b) Building 1. (c¢) Building 2. 3D Rendering of Alameda Buildings (d) 1 and (e) 2, from the
extracted 2D polygon footprints, with polygons extruded by height.

REFERENCES

[1] Haala, N. and Kada, M., “An update on automatic 3d building reconstruction,” ISPRS Journal of Pho-
togrammetry and Remote Sensing 65(6), 570-580 (2010).

[2] Crawford, P., “Effects of aerial lidar data density on the accuracy of building reconstruction,” (2018).

[3] Kim, T., Javzandulam, T., and Lee, T.-Y., “Semiautomatic reconstruction of building height and footprints
from single satellite images,” in [2007 IEEE International Geoscience and Remote Sensing Symposium)],
4737-4740, IEEE (2007).

[4] Gavankar, N. L. and Ghosh, S. K., “Automatic building footprint extraction from high-resolution satellite
image using mathematical morphology,” Furopean Journal of Remote Sensing 51(1), 182-193 (2018).



[5] Shackelford, A. K., Davis, C. H., and Wang, X., “Automated 2-d building footprint extraction from high-
resolution satellite multispectral imagery,” in [IGARSS 2004. 2004 IEEE International Geoscience and
Remote Sensing Symposium], 3, 1996-1999, IEEE (2004).

[6] Ahmadi, S., Zoej, M. V., Ebadi, H., Moghaddam, H. A., and Mohammadzadeh, A., “Automatic urban build-
ing boundary extraction from high resolution aerial images using an innovative model of active contours,”
International Journal of Applied Earth Observation and Geoinformation 12(3), 150 — 157 (2010).

[7] Sohn, G. and Dowman, I., “Extraction of buildings from high resolution satellite data,” (2001).

[8] Bittner, K., Adam, F., Cui, S., Kérner, M., and Reinartz, P., “Building footprint extraction from vhr remote
sensing images combined with normalized dsms using fused fully convolutional networks,” IEEFE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 11(8), 2615-2629 (2018).

[9] Microsoft, US Building Footprints (2018).

[10] Sampath, A. and Shan, J., “Building boundary tracing and regularization from airborne lidar point clouds,”
Photogrammetric Engineering and Remote Sensing 73 (07 2007).

[11] Zhang, K., Yan, J., and Chen, S.-C., “Automatic construction of building footprints from airborne lidar
data,” IEEE Transactions on Geoscience and Remote Sensing 44(9), 2523-2533 (2006).

[12] Brédif, M., Tournaire, O., Vallet, B., and Champion, N., “Extracting polygonal building footprints from
digital surface models: A fully-automatic global optimization framework,” ISPRS journal of photogrammetry
and remote sensing 77, 57-65 (2013).

[13] Davydova, K., Cui, S., and Reinartz, P., “Building footprint extraction from digital surface models using
neural networks,” in [Image and Signal Processing for Remote Sensing XXII], 10004, 100040J, International
Society for Optics and Photonics (2016).

[14] Nex, F. and Remondino, F., “Automatic roof outlines reconstruction from photogrammetric dsm,” ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1(3), 257-262 (2012).

[15] Lin, C. and Nevatia, R., “Building detection and description from a single intensity image,”
Vision and Image Understanding 72(2), 101 — 121 (1998).

[16] Ok, A. O., “Automated detection of buildings from single vhr multispectral images using shadow information
and graph cuts,” ISPRS Journal of Photogrammetry and Remote Sensing 86, 21 — 40 (2013).

[17] Trvin, R. B. and McKeown, D. M., “Methods for exploiting the relationship between buildings and their
shadows in aerial imagery,” IEEE Transactions on Systems, Man, and Cybernetics 19(6), 1564-1575 (1989).

[18] San, D. K. and Turker, M., “Building extraction from high resolution satellite images using hough trans-
form,” (2010).

[19] Hammoudi, K., Dornaika, F., and Paparoditis, N., “Extracting building footprints from 3d point clouds
using terrestrial laser scanning at street level,” Int. Arch. Photogramm.Remote Sens. 38 (09 2009).

Computer



	COVER Samir - Aerial 3D Building Reconstruction.docx
	Samir - Aerial 3D Building Reconstruction
	INTRODUCTION
	Related Work
	Line Segment Detection
	Data Collection
	Line Detection
	Line Segmentation
	Line Processing

	Polygonization
	Polygon Extraction
	Partial-Polygon Construction
	Polygon Completion
	Height Estimation
	Polygon Merging

	Results
	Conclusions and Future Work


