

Jost: Francis Rubinstein

Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon

Meeting Agenda

- Introductions (10 minutes)
- Main Presentation (~ 1 hour)
- Questions, comments from panel (15 minutes)

Project History

- Lighting Scoping Study (completed January 2007)
 - Identified potential for energy and demand savings using demand responsive lighting systems
 - Importance of dimming
 - New wireless controls technologies
- Advanced Demand Responsive Lighting (commenced March 2007)

Objectives

- Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions
- Identify potential negative impacts of DR lighting on lighting quality

Potential of Demand Responsive Lighting Control

Dimming Ballasts Becoming More Energy-Efficient

Relative System Efficiencies Compared for Instant Start, Program Start and Dimming Ballasts

Number of Ballast Models 25 20 Dimming (N=53) Program Start (N=21) Instant Start (N=95) 15 10 5 0 **Relative System Efficiency (RSE)**

Project Tasks

- **Testing and certification framework** for lighting control systems
- *Pilot tests* of promising demandresponsive lighting systems in buildings
- Technology transfer component

Testing and Certification Framework

Requirements

- System-based
- Performance-based

 Technical specifications
- Manufacturer-agnostic
- Technology neutral
- Initial Focus:
 - Demand responsive lighting
 - Other lighting control strategies later (daylighting, tuning, etc)

System-based

- Complete end-to-end solutions
- Software matters
- Monitoring and verification "in-the-box"
- Calibration and commissioning

Examples of Performance Metrics

- Lamp-Ballast Efficiency

 Relative System Efficiency (RSE)
- System Response (Latency)
 - "Spinning Reserve" capability
- Reliability
 - Depth of shed
 - Uncertainty (variability) of shed

What's Needed for Ballast Efficiency

A Figure of Merit that can be used to select ballasts according to lamp/ballast system efficacy

What's Wrong with Existing Metrics?

- Ballast Efficacy Factor (BEF) is incorrectly normalized
 - Makes it difficult to compare BEFs between different ballasts
 - The units of BEF are awkward (1/watts)
- System Lumens Per Watt (LPW) conflates lamp-only variables (phosphor type) with ballast-only variables (ballast efficiency)
- The electrical efficiency of the lamp/ballast system cannot be easily disentangled from LPW

Ballast Efficacy Factor

BEF characterizes the lamp/ballast system efficacy of a test ballast operating a generic lamp type (T-8, T-12, T-5 etc)

Relative System Efficacy

RSE is the BEF, but properly normalized to the *rated lamp efficacy*

Definition of RSE:

 $RSE = \frac{Ballast \ Factor}{Ballast \ Input \ Power}$ $Total \ Rated \ Lamp \ Power$

where:

Total Rated Lamp Power = # of Lamps per Ballast × Rated Lamp Power

Why is Relative System Efficacy Superior?

- RSEs from multiple ballast types can be easily compared on "level playing field"
- RSE easily calculated from data already supplied by lamp and ballast manufacturers

RSE is ideal metric for distinguishing premium efficiency ballasts from standard

Relative System Efficiency (RSE) for T-8 Fluorescent Ballasts (1,092 Ballast/Lamp Combinations)

Relative System Efficiency (RSE) for T-5 Fluorescent Ballasts (218 Ballast/Lamp Combinations)

Relative System Efficiency (RSE) for 1298 Fluorescent Ballast/Lamp Combinations from a Single Ballast Manufacturer

Relative System Efficiency (RSE)

Summarizing

- RSE is superior to BEF for distinguishing ballasts in terms of system efficacy
- It is easy to calculate RSE from BEF without any additional data

Lessons Learned from Lighting Controls Demonstrations

- Evaluating the energy savings from lighting controls is harder than evaluating the savings from electronic ballasts
 - Electronic ballasts save energy simply because they are installed
 - Lighting controls only save energy if they positively impact operational performance
- Need independent, third party evaluation of controls savings
 - Manufacturer information not reliable
- Critical to measure energy usage both *before* and *after* installation of controls
 - The baseline matters!
- Demand response should be integrated with energy efficiency strategies
- Lighting controls should monitor and archive energy data as well
 as control lighting

Reducing the Risk of Installing Lighting Controls

Utilities need a consistent, reliable methodology for evaluating the energy savings and demand shed potential for various combinations of lighting control strategies in different building applications, regardless of networking technology.

With such a database, utilities will be able to appropriately incentivize the installation of energy savings controls in all building types.

Rationale for Pilot Tests

- Energy and demand savings from lighting controls systems must be evaluated under realistic building conditions
- Consistent evaluation of alternative solutions relative to well-defined baseline
- Evaluate changes in luminous environment under different lighting scenarios

Pilot Test Methodology

• Evaluate demand and energy savings under different lighting scenarios

– Permuting the general and task lighting

- Define fair, consistent baseline against which to compare DR alternatives
- Evaluate changes in luminous environment under different lighting scenarios using High Dynamic Range photometry

Lighting Quality Evaluation

- Lighting quality metrics to be considered include:
- Near-hemispherical, accurate luminance maps of illuminated workstations from key viewpoints, presented as iso-luminance and false color renderings
- Statistical luminance analysis considering luminance ratios, distribution and uniformity of all visible surfaces, including computer monitors
- Detailed glare analysis of all sources including daylight from windows
- Horizontal illuminance distributions at the working plane and vertical illuminance at key viewing directions
- Spectral content, color temperature, S/P ratios

Status of Pilot Tests

- Two workstation-specific lighting control systems at Philip Burton Federal Building
 - Agiliti by Lightolier
 - Edapt by Ledalite
 - Low ambient basecase
- Building 90 flex space
 - LMCS by Lumenergi
 - ZigBee wireless ballasts by RF Arrays (?)

High Dynamic Range Photometry

- Canon 5D with fisheye lens
- Automated image capture
- Analysis of data in Adobe Photoshop CS 3
 - Well-document, production system for HDR capture and analysis

Sample HDR

Workstation Specific Luminaires I

Agiliti by Lightolier Two T-5 HO lamps top-over bottom DALI-based

User control of lower lamp

Building control of upper lamp

Workstation Specific Luminaires II

Edapt by Ledalite

Three T-8 lamps per luminaire

RS-485 network

User control of two outer lamps

Building control of center lamp

Control Panel for Demand Response

Load shedding - Building settings

installation	~	10000000	V		v
1104010101		Building control	Atak	ogue Readings	Zore Templates
Hetwork		Lighting Controls	Server de	ta collection	Builting had
Building default adding group name ad shedding action ad shedding prority addshed Level 1 padshed Level 2 padshed Level 2 padshed Level 3 of the entire bu phting % of total actional shedding caternal fixed shedding caternal DR request	Earling Orlan Load sheddin Normal load s 2 & 3 (used by 	g affects levels only hedding boal or external fixed trigger used by lighting sy ds to use	•	.oedshed from Ingger	vdd New

Control Panel for Fine-tuning the DR Strategy

Local load shedding (Fixed trigger options)

Local load shedding (Variable shedding options)

Graphic User Interface

Commissioning Panel for Daylight Controls

i Photosensor	Information				. 🗆 🔀			
Photosensor	9 (Used by zone	7.8,10,12,13)		i	a			
Photosensor 9. (SBC 1, 'SBC 1')			B	•			
Photosense	or Details			V				
Date Installed	22/01/05	Enabled 🔽						
Floor	Ground Floor	*	Calibration Style	Simple	•			
SBC	SBC 1, 'SBC 1'	•	SBC input	SBC 1, hput 9 - This Photosensor	*			
OK	Cancel		naloque Inputs	A	vice			
View calibration points for Smole hput of 18 - 8 Lux Remove All Utilities								
		A	wanding jubur					
Add Calibratio	n) [Modify Selected	(Anal	ogua reading) 🔶					

Technology Transfer

- Informed, public-interest TAG guiding research
 - No manufacturers
- Developing the market transformation vehicle
- Setting RSE efficiency targets
- Evaluating potential negative impacts

Impact of Electronic Ballasts and T-8 Fluorescent Lamps on Lighting Consumption

Annual Shipment of Ballasts in US (1988 – 2003)

Fluorescent Lighting in Commercial Buildings (2001)

After 20 years, 50% of US lighting still uses inefficient magnetic ballasts

Source: Navigant Consulting, Inc., U.S. Lighting Market Characterization, Volume I: National Lighting Inventory and, Energy Consumption Estimate, Final Report for US DOE, 2002

US Bureau of the Census

Market transformation vehicle

