Valuing Residential Energy Efficiency: Analysis for a Prototypical Southeastern Utility

Andy Satchwell | Berkeley Lab
Ryan Hledik | The Brattle Group
Oleksandr Kuzura | The Brattle Group
Oluwatobi Adekanye | NREL
Chioke Harris | NREL

JULY 2022

This work was funded by the U.S. Department of Energy Building Technologies Office under Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231 and National Renewable Energy Laboratory Contract No. DE-AC36-08GO28308.
Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

COPYRIGHT NOTICE
This manuscript has been authored by authors at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and National Renewable Energy Laboratory under Contract No. DE-AC36-08GO28308 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.
Contents

1. Introduction
2. Approach Overview
3. Findings
4. Conclusion

A Technical Appendix describing key modeling inputs, assumptions, and methodology is available at: https://emp.lbl.gov/publications/valuing-residential-energy-efficiency
In the context of an evolving U.S. power system, it is important to develop a more nuanced understanding of the value of energy efficiency (EE) as a system resource.

The purpose of this study is to identify how much cost-effective residential EE remains, which new program and policy initiatives could access it, and the value it would bring to the power system.

The benefits of residential EE to the power system are estimated in a forward-looking system planning and valuation analysis.

The analysis focuses on a variety of residential EE measures that could be deployed by a prototypical summer-peaking utility in the Southeastern U.S.

Findings are based on NREL’s hourly ResStock EE savings profiles and Berkeley Lab’s Cost of Saving Electricity database. The modeling was done using Brattle’s GridSIM capacity expansion platform.
INTRODUCTION

Key study boundaries

THIS ANALYSIS DOES...

- Identify the amount of each EE measure that is cost-effective from the utility’s perspective.
- Assess a range of common standalone residential EE measures and a packaged grouping that may be offered by utilities.
- Characterize a vertically-integrated utility intended to be generally representative of Southeastern loads and resources.

THIS ANALYSIS DOES NOT...

- Identify cost-effective EE from the participating or non-participating customer perspective.
- Model numerous EE measures with different performance assumptions and grouped into many possible packages for program delivery.
- Evaluate specific Southeastern utilities, alternative future grid scenarios, and uncertainty in EE assumptions.
The analysis uses a capacity expansion model (Brattle’s GridSIM model) to quantify the prototypical Southeastern utility’s total cost of serving electricity demand for a 20-year planning horizon (i.e., 2021-2040).

We analyze the impact of EE additions under business-as-usual (BAU) conditions, and then quantify the extent to which cost-effective residential EE deployment would increase under various program and policy initiatives.

The modeling simulation selects the cost-effective EE portfolio by allowing it to “compete” with supply side resources.

- **EE benefits** are represented by avoided system resource costs (i.e., avoided capacity, energy, and ancillary services).
- **EE costs** are represented by participation incentives (i.e., share of incremental equipment & installation cost), administrative costs, and marketing costs.

Energy savings from the EE measures (except smart thermostats, which are modeled as demand flexibility) are modeled as *hourly-interval annual shapes*.

Note: See Technical Appendix for EE measure assumptions and modeling methodology.
The analysis quantifies achievable, cost-effective EE potential under several scenarios, to explore how new policy initiatives can unlock greater EE value.

Scenarios

The analysis quantifies achievable, cost-effective EE potential under several scenarios, to explore how new policy initiatives can unlock greater EE value.

Modeling scenarios:
- **Business-As-Usual (BAU) Achievable Potential:** Utility cost-effective, achievable EE potential under average assumptions about measure costs, customer adoption, and grid characteristics.
- **EE Cost Reduction:** Relative to the BAU assumptions, EE measure costs are reduced by 40% (e.g., through technological advancements).
- **Grid Cost Increase:** Relative to the BAU assumptions, power system costs are higher (e.g., due to higher-than-anticipated fuel prices or labor costs, or materials shortages).
- **Higher EE Adoption:** Relative to the BAU assumptions, maximum customer adoption of EE measures is higher (e.g., due to improved marketing/awareness campaigns).
- **Clean Energy Standard:** A clean energy standard is introduced that ramps up to 40% of generation from carbon-free sources by 2040.
- **Packaged Measures:** Measures are offered to customers as a package rather than a la carte.
- **Technical Potential:** Provided only for context of upper-bound EE potential, assumes eventual 100% participation among eligible customers in all measures modeled.

Note: Further detail about each scenario is provided in the discussion of findings.
The GridSIM model is used to simulate long-term power system operations and the impact of energy efficiency.

Objective Function
- Minimize NPV of investment & operational costs

Constraints
- Market design and co-optimized operations
 - Capacity
 - Energy
 - Ancillary services
- Regulatory & policy constraints
- Resource operational constraints
- EE adoption constraints

Inputs
- Supply
 - Existing resources
 - Fuel prices
 - Investment/fixed costs
 - Variable costs
 - New resources (incl. EE)
- Demand
 - Representative day hourly demand
 - Capacity needs
 - Operational reserves requirements
- Energy Efficiency
 - Hourly load reduction parameters
 - Measure interactions
- Regulations, Policies, Market Design
 - State energy policies and renewable generation procurement mandates

Outputs
- Annual Investments and Retirements (incl. EE)
- Hourly Operations
- Supplier Revenues
- System and Customer Costs
- Prices
- Emissions and Clean Energy Additions

Note: Further detail about the GridSIM platform and the optimization formulation is provided in the Technical Appendix.
Characterizing the prototypical Southeastern utility

The analysis uses a prototypical Southeastern utility to illustrate the power system value of energy efficiency.

- The prototypical utility is defined using the characteristics of a variety of Southeastern utilities.
- Gas generation accounts for most of the system generation and capacity expansion.
- Some solar capacity is added as solar costs decline by 2030 and beyond.

Note: See the Technical Appendix for details on assumed utility system conditions.
Energy efficiency measures analyzed

EE measure savings shapes are based on Duke Energy Carolinas weather locations in ResStock to ensure consistency in the weather driving utility loads and EE shapes.

Smart thermostats are included as DR measures in the analysis.

<table>
<thead>
<tr>
<th>EE Packages</th>
<th>Air Sealing</th>
<th>Attic Insulation</th>
<th>Windows</th>
<th>EE Heat Pump Water Heaters</th>
<th>DR Thermostat</th>
<th>EE CAC & ASHP*</th>
<th>Cool Roofs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Water Heating</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermostat DR</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVAC</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>HVAC + Envelope + Water Heating + Tstat</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

* CAC = Central air conditioning, ASHP = air-source heat pumps

Note: See the Technical Appendix for additional EE measure detail, performance assumptions, discussion on EE measure selection and package definition, and a description of the NREL ResStock tool.
EE energy impacts

EE savings profiles are represented on an hourly basis. In some hours, the EE packages increase consumption relative to the baseline (though all packages decrease usage over the year).

Note: Energy savings profiles shown are a per-household average for all days of the season. Summer is June through August, winter is December through February, and shoulder is all other months.
Contents

1. Introduction
2. Approach Overview
3. Findings
4. Conclusion
Historical Savings
- In 2019, Southeastern utility energy efficiency programs deployed over the prior 20 years provided total annual system energy savings of 1.3%.
- This calculation is based on EIA-861 data. It sums incremental EE savings over 20 years, and expresses this sum as a portion of total 2019 Southeastern utility sales.

Business-as-usual savings potential
- Under business-as-usual (BAU) conditions, EE potential that could be achieved through utility programs is almost 3x higher than what has been achieved historically. As discussed previously in this report, this savings potential reflects a forward-looking estimate of cost-effective levels of EE development in a utility resource planning framework under typical system conditions.
The “EE Cost Reduction” scenario captures the impact of a reduction in EE program costs that could be attributed to developments such as technological breakthroughs, economies of scale, or initiatives such as increased research and development activity.

We assume a 40% reduction in EE program costs, based on a review of Berkeley Lab’s analysis of energy efficiency program costs.

- The cost of saving electricity (CSE) varied significantly among U.S. Census regions ranging from a low of $0.015/kWh in the Midwest to $0.033/kWh in the Northeast.
- We assumed a 40% reduction in costs representing the approximate regional difference from the South (our region of focus) to the Midwest (lowest).
- While regional differences in EE costs could be driven in part by a different mix of adopted measures across the regions, we use this comparison as general support for the magnitude of cost reduction assumed in this scenario.
FINDINGS

Impact of the EE Cost Reduction scenario

ACHIEVABLE REDUCTION IN ANNUAL SYSTEM ENERGY SALES

The 40% reduction in EE program costs results in EE becoming a more cost-competitive resource. Annual cost-effective energy savings potential increases to 5.5% as a result.
The “Grid Cost Increase” scenario captures the impact of an increase in power system costs, which could be due to factors such as higher-than-anticipated fuel prices or labor costs, or materials shortages.

- **Wind and solar capital cost**: Increased costs consistent with the NREL Annual Technology Baseline (ATB) “Conservative” case assumptions (see figure at right).
- **Fossil generation capital cost**: Capital cost of new fossil generation is increased by 10%.
- **Fixed O&M cost**: Increased by 10% for all generation.
- **Natural gas price**: Natural gas fuel costs are increased by 20%.
Impact of the **Grid Cost Increase** scenario

Energy efficiency becomes more economically competitive due to the increased cost of generation resources. The increase in cost-effective EE is smaller than in the EE Cost Reduction scenario, primarily because the modeled EE cost reduction is larger than the modeled generation cost increase.
The “Higher EE Adoption” scenario captures the impact of increased EE adoption at a given participation incentive level, which could be due to initiatives such as improved marketing and awareness campaigns.

- This scenario assumes that, all else equal, an increased share of eligible customers will adopt the EE measures.
- For example, whereas up to 30% of customers were assumed to adopt the envelope package at the highest available incentive level* in the BAU scenario, 50% would adopt the envelope package at that highest incentive level in the Higher EE Adoption scenario.
- The assumed increase in participation is derived from assumptions developed for DOE’s [A National Roadmap for Grid-Interactive Efficient Buildings](https://www.energy.gov/eere/buildings/ndoe-grid-interactive-efficient-buildings), based on a review of various market research studies and EE potential studies.

MAXIMUM ADOPTION RATES, BY EE PACKAGE

<table>
<thead>
<tr>
<th></th>
<th>BAU</th>
<th>Higher EE Adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td>Water Heating</td>
<td>60%</td>
<td>80%</td>
</tr>
<tr>
<td>Thermostat DR</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td>HVAC</td>
<td>50%</td>
<td>70%</td>
</tr>
<tr>
<td>Envelope + HVAC + Water Heating</td>
<td>60%</td>
<td>80%</td>
</tr>
</tbody>
</table>

* Refer to the Technical Appendix for more information on incentive assumptions.
Impact of the **Higher EE Adoption** scenario

Expanding the base of engaged customers through innovative means other than financial incentives (e.g., awareness campaigns, targeted marketing) can significantly increase overall EE impacts.
The “Clean Energy Standard” scenario captures the role that EE can play in satisfying a policy requirement for clean energy resources.

- We assume that a new clean energy standard is introduced, ramping up to 40% of generation from carbon-free sources by 2040 (which is consistent with the requirements of clean energy standards in some other U.S. states). EE savings count directly toward satisfying the requirement.

- While state-level RPS requirements are uncommon in the Southeastern U.S., many Southeastern utilities have announced deep decarbonization goals.

<table>
<thead>
<tr>
<th>Southeast State</th>
<th>RPS Policy</th>
<th>Is EE Eligible?</th>
<th>Example Utility or State Decarbonization Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>None</td>
<td>-</td>
<td>Southern Company net-zero GHG emissions by 2050</td>
</tr>
<tr>
<td>Florida</td>
<td>None</td>
<td>-</td>
<td>NextEra 67% reduction in CO₂ emissions from 2005 levels by 2025</td>
</tr>
<tr>
<td>Georgia</td>
<td>None</td>
<td>-</td>
<td>Southern Company net-zero GHG emissions by 2050</td>
</tr>
<tr>
<td>Louisiana</td>
<td>None</td>
<td>-</td>
<td>Entergy net-zero carbon emissions by 2050</td>
</tr>
<tr>
<td>Mississippi</td>
<td>None</td>
<td>-</td>
<td>Southern Company net-zero GHG emissions by 2050</td>
</tr>
<tr>
<td>North Carolina</td>
<td>11.88% by 2021 (weighted-averaged of IOU and POU obligations)</td>
<td>Yes</td>
<td>Duke Energy net-zero CO₂ emissions by 2050</td>
</tr>
<tr>
<td>South Carolina</td>
<td>None</td>
<td>-</td>
<td>Dominion net-zero carbon emissions by 2050</td>
</tr>
<tr>
<td>Tennessee</td>
<td>None</td>
<td>-</td>
<td>TVA net-zero carbon emissions by 2050</td>
</tr>
<tr>
<td>Texas</td>
<td>MW requirement amounting to ~5% of electricity sales.</td>
<td>No</td>
<td>AEP, Entergy, Xcel net-zero carbon emissions by 2050</td>
</tr>
<tr>
<td>Virginia</td>
<td>100% by 2050</td>
<td>No</td>
<td>Dominion net-zero carbon emissions by 2050</td>
</tr>
</tbody>
</table>
Impact of the **Clean Energy Standard** scenario

Allowing EE savings to count directly toward the clean energy standard’s requirements is a key driver of the significant impact of this scenario.
Defining the **Packaged Measures** scenario

The “Packaged Measures” scenario captures the potential for bundling and discounting EE packages to boost program participation and capture installation efficiencies.

- We used ResStock data to account for the energy savings interactions between HVAC, envelope, and water heating measures when combined into a package (e.g., envelope measures improve thermal efficiency and reduce the incremental impacts of HVAC measures when considered in combination).

- To capture the maximum potential benefit of measure packaging, we assumed that the package would be adopted at the highest achievable participation assumed for any of the individual measures.

- We assumed that the levelized cost of saved electricity for the package is equal to the lowest of any individual measure, to account for the cost savings associated with installing the measures together.

- In general, there is limited empirical information available on the costs, benefits, and customer interest in EE packages; this area needs further research.
Impact of the Packaged Measures scenario

While interactions can decrease the energy savings contributions of individual measures in a package, cost savings and/or increased adoption potentially could more than offset this effect, resulting in a net increase in system energy savings.
Achievable reduction in annual system energy sales
For a prototypical Southeastern utility, residential EE only

Under business-as-usual conditions, achievable EE potential is almost 3x higher than what has been achieved historically.

With new program and policy initiatives, residential EE could increase the historical savings rate by over 7x, resulting in a 9.5% reduction in annual system sales by 2040.

Additional savings potential still remains.

Note: Cumulative EE reduction in system annual sales may be different from component values due to rounding.
Energy efficiency “scorecard”

MODELED RESIDENTIAL ENERGY EFFICIENCY IMPACTS, 2021-2040

<table>
<thead>
<tr>
<th></th>
<th>Business-as-Usual Scenario</th>
<th>With All Policy Initiatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy savings</td>
<td>3.8% reduction in total system sales (11.3% of residential sales)</td>
<td>10.4% reduction in total system sales (30.6% of residential sales)</td>
</tr>
<tr>
<td>Avoided CO₂ emissions</td>
<td>17 million tons (4.9% of total power sector emissions)</td>
<td>86 million tons* (24.9% of total power sector emissions)</td>
</tr>
<tr>
<td>Retired coal capacity</td>
<td>2,532 MW (About five medium-sized coal plants)</td>
<td>2,532 MW* (About five medium-sized coal plants)</td>
</tr>
<tr>
<td>Power generation cost savings</td>
<td>$1,025 million, NPV (4.8% of total power system cost)</td>
<td>$4,759 million, NPV† (17.7% of total power system cost)</td>
</tr>
</tbody>
</table>

* Effects attributable to combined impact of energy efficiency and renewable generation required by clean energy standard. All coal capacity is retired in BAU scenario, so there are no further increases in coal retirements associated with additional policy initiatives.
† Reference generation cost includes grid cost increases and clean energy standard.
Contents

1. Introduction
2. Approach Overview
3. Findings
4. Conclusion
Key insights

EE is a cost-effective resource
- For the prototypical Southeastern utility analyzed in this study, a limited portfolio of residential EE measures could reduce system energy consumption by 3.8% per year, and save roughly $1 billion (NPV) in resource costs under BAU cost and participation assumptions by 2040.
- Implementing all the program and policy initiatives considered would increase annual energy savings 2.7x and deliver ~$3.7 billion (NPV) in additional power system cost savings.

Reducing utility EE program costs and/or higher program participation are among the most impactful initiatives
- Initiatives that lower EE costs (e.g., R&D activities) and increase program participation (e.g., customer education, more effective contractor channels) resulted in the largest increase in cost-effective residential EE.
- The two initiatives may complement each other as lower EE costs are likely to drive greater program participation.

Utility resource planning tools can be used to assess the value of residential EE to the utility power system
- Publicly available tools, like [Berkeley Lab's Time-Sensitive Value (TSV) Calculator](https://timesensitivevalue.berkeley.edu/), can be used for initial screening of high value EE measures that are then modeled within resource planning tools.
- Additional analysis outside of the traditional resource planning framework can account for additional incremental EE benefits such as deferred investment in distribution system upgrades.

Packaging EE measures is under-explored
- While many of the interactions with energy savings can be estimated, there is little empirical evidence to inform whether measure packages are cheaper and/or more likely to be adopted than standalone EE measures.
Acknowledgements

This work was funded by the U.S. Department of Energy (DOE) Building Technologies Office under Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231 and National Renewable Energy Laboratory Contract No. DE-AC36-08GO28308. We would like to especially thank Dale Hoffmeyer for his support of this work. For comments and input on this analysis, we also thank Marc LaFrance and Maddy Salzman (DOE), Ross Beppler (Southern Company), Margaret Pigman and Natalie Mims Frick (Berkeley Lab), and Julie Michals (E4TheFuture). Roger Lueken and Jesse Cohen (Brattle) provided additional research support. A portion of the research was performed using computational resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory. Any remaining errors or omissions are our own.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, The Regents of the University of California, or the Alliance for Sustainable Energy, LLC.