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Abstract

Electricity rates are a main driver for adoption of Distributed Energy Resources (DERs) by private con-

sumers. In turn, DERs are a major component of the reliability of energy access in the long run. Defining

reliability indices in a paradigm where energy is generated both behind and in front of the meter is part of an

ongoing discussion about the future role of utilities and system operators with many regulatory implications.

This paper contributes to that discussion by analyzing the effect of rate design on the long term reliability

indices of power distribution. A methodology to quantify this effect is proposed and a case study involving

photovoltaic (PV) and storage technology adoption in California is presented. Several numerical simulations

illustrate how electricity rates affect the grid reliability by altering dispatch and adoption of the DERs. We

further document that the impact of rate design on reliability can be very different from the perspective of

the utility versus that of the consumers. Our model affirms the positive connection between investments in

DERs and the grid reliability and provides an additional tool to policy-makers for improving the reliability

of the grid in the long term.
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Nomenclature

Parameters

Annk Ann. interest rate for investments in tech. k

CEff Charging efficiency of the battery

CFixk Fixed cost of technology k ($)

CV ark Variable cost of technology k ($/kW or $/kWh)

DEff Discharging efficiency of the battery
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ECt Energy cost at time t ($)

FIt Feed-in remuneration at time t ($)

Ldt Consumer load at time t (kW)

MiSoc Minimum battery state-of-charge (r0, 1s)

OMVk O&M costs of technology k ($/kW or $/kWh)

PCr Battery maximum power/capacity ratio

SRt Normalized solar gen. at t (kWh/kW installed)

Sets

It Set of consumers connected to utility at time t

T Tyr
Ť

Tfr

Tfr Set of failure-repair times

Tyr Set of hourly time points over a year

k Technology type (PV, Storage)

t Time (hr) in Tyr

Variables

α Charging/discharging aux. variable (binary)

capk Installed capacity of technology k (kW/kWh)

cht Battery charge at time t (kW)

dcht Battery discharge at time t (kW)

ik Investment decision for tech. k (binary)

pvt PV output at time t (kW)

soct Battery state of charge at time t (kWh)

uet Electricity export to utility at time t (kW)

uit Import from utility at time t (kW)
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1. Introduction

To achieve emission targets, countries need to increase generation share from renewable energy sources,

not only as part of the bulk generation system but also at the level of the distribution grid [1], where

private owned photovoltaic (PV) systems – installed behind the meter and coupled with electric storage and

control technologies – have been seen as an efficient way to increase decentralized renewables penetration.

Ambitious policy targets have been announced to promote adoption of these Distributed Energy Resources

(DERs) by private consumers, such as the new amendment to the Building Energy Efficiency standard in

California that requires new residential buildings to have a rooftop PV unit installed starting in 2020 [2].

Such policy measures will continue driving down the cost of solar panels and related technologies, such as

storage, creating conditions for a massive adoption.

Besides the technology costs, mass adoption of PV and storage by private consumers is also dependent

on the portfolio of electricity tariffs offered by utilities. In fact, the magnitude and structure of tariffs –

including demand charges, energy rates and PV feed-in remuneration – strongly affect the payback period

of these investments, acting as a second main driver for adoption [3, 4, 5, 6]. Mechanisms of rate design to

promote consumers’ adoption of DERs are presented in [3] and [4]. In case of PV adoption, the authors of

[5] identify feed-in tariffs as a main socio-economic component for adoption; in [6] the dynamics between

retail electricity rates and PV adoption are evaluated.

While not the primary reason for the deployment of DERs, distribution grid security and reliability is also

impacted by the presence of DERs, see e.g. [7] and [8]. Recent studies have explored the use of utility owned

DERs to manage outages and improve the reliability of distribution systems, especially when these DERs

comprise dispatchable technologies, such as battery storage [9], electric vehicles (EV) [10, 11] and demand

response (DR) [12, 13], or when located in active portions of the distribution system, e.g. microgrids [14].

In contrast, DERs placed behind the meter are outside of utilities’ jurisdiction and therefore can only be

indirectly influenced by price signals (e.g. tariffs) to support grid operation [15, 16, 17]. For example, energy

[15] and power [16] based dynamic tariffs can be used to indirectly change the dispatch of EVs in order to

alleviate congestion. Similarly, time-differentiated energy prices can be offered to incentivize DR behaviours

that impact the reliability of the distribution grid [17]. In fact, as shown in [17], time-varying tariffs can

produce changes in consumers net load that significantly affect the magnitude and time distribution of

reliability indices, such as energy not supplied.

These contributions regarding dynamic tariffs applied to EVs and DR together with the extensive lit-

erature on time-of-use (ToU) and peak demand rates demonstrate the effectiveness of tariffs in changing

consumption behaviors and, more recently, in indirectly “dispatching” DERs in order to solve medium- and

short-term operational challenges of distribution systems. However, as pointed above, the effect of tariffs

goes beyond the operational time scale and rate design can be used to indirectly drive long-term adoption

of DERs by private consumers. Thus, tariffs could be included in the utility planning process to create

favourable scenarios of DER deployment from the reliability perspective.
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This paper presents a methodology to quantify the impact of electricity tariffs on the long-term reliability

of distribution systems, considering dynamic (tariff-dependent) adoption of DERs by private consumers. This

adds another layer of complexity to the reliability analysis performed in [17], by capturing the effect of tariff

design both on short-term (dispatch) and long-term (adoption) time scales. To the best of the authors’

knowledge, such methodology does not exist in the literature. It is essential to the ongoing discussion on

the new paradigm of rate design in distributed networks with high penetration of DERs [3, 4, 18, 19]. We

use the proposed methodology to analyze the effect of different aspects of the magnitude and structure

of electricity tariffs on the average energy not supplied (AENS) from the utility, as well as on the actual

magnitude and duration of outages experienced by the consumers. In particular, we are able to quantify the

positive link between DER behind-the-meter adoption and grid reliability. A case study involving a PG&E

69 node feeder, where consumers adopt PV and storage technologies, is used to illustrate the approach.

The paper is organized as follows: Section 2 presents the adoption model; Section 3 describes the Monte

Carlo simulation of system states and the storage model during line failures applied to compute the reliability

indices; Section 4 provides a case study where the reliability impact of different aspects of tariff design is

evaluated; finally, Section 5 presents the main conclusions.

2. Adoption Model

In this section, we model adoption of behind-the-meter DERs by private consumers, assuming economic

rationality in long-term consumers’ decisions related to the acquisition and utilization of DER technolo-

gies. This economic rationality is presented as an optimization model, where individual consumers size and

dispatch their DER assets in ways that minimize their energy costs. It is important to stress that this

approach differs from more complete socioeconomic models of adoption and diffusion that usually capture

short-term social and geographical aspects of consumers’ decisions, such as the ones used in [5] and [20].

However those models require detailed characterization of specific regions and consumer groups and do not

allow general conclusions. Thus, in the context of long-term evaluation of adoption, and with the purpose of

deriving general conclusions (not socioeconomic/spatial dependent), we assume economic rationality as the

single criterion for adoption. The approach used in this paper is part of the Distributed Resources Customer

Adoption Model (DER-CAM), a DER adoption and microgrid planning tool developed by Lawrence Berke-

ley National Laboratory. For a detailed explanation about the background knowledge and research used to

build the adoption model presented below, we refer to the methods related to the PV and storage in [21].

The objective function minimizes the fixed/variable costs for investments in DERs (in this paper we

consider only PV and storage). The cost function also takes into account the tariffs, i.e. the hourly costs of

energy and the remuneration paid by the utility for the energy injected into the grid. The cost function is
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given as:

c “
ÿ

kPts,pvu

´

CFixk ¨ ik ` CV ark ¨ capk

¯

Annk `
ÿ

tPTyr

puit ¨ ECt ´ uet ¨ FItq. (1)

Constraints of the problem include the fixed cost condition of the investments (2). Hourly operation of

the battery is constrained by the reservoir model (3), the storage capacity (4) and the power limits (5), as

well as inequalities precluding simultaneous charging and discharging (6)-(7). PV generation is limited by

the installed capacity and the solar irradiation (8). Equation (9) imposes the energy balance of the system.

capk ď ik ¨M (2)

soct “ soct´1 ` cht ¨ CEff ´
dcht
DEff

(3)

MiSoc ¨ caps ď soct ď caps (4)

cht, dcht ď caps ¨ PCr (5)

cht ď α ¨M (6)

dcht ď p1´ αq ¨M (7)

pvt ď cappv ¨ SRt (8)

Ldt “ uit ´ uet ` pvt ` dcht ´ cht. (9)

The above optimization problem is rather simplified, in particular treating demand and DER production

as certain, and all costs as known and constant over time. A more realistic setup would be a fully stochastic

model for dynamic decision-making that would capture both the intermittent generation and the multiple

layers of uncertainty in demand level and DER operations, plus side effects of DER integration saturation

and congestion. Our choice is driven by three complementary considerations. First, a fully stochastic model

would be orders of magnitude more complicated and would bring a host of computational challenges, taking

the focus away from our main topic of the interplay between tariffs and reliability. Second, we emphasize

that (2)-(9) optimizes for the behind-the-meter investments to be carried out by consumers. The latter

simply do not have the time or the skill to build a sophisticated investment framework, especially relative

to a centralized plan that might be adopted by utilities and grid operators. Thus, the DER-CAM model is

a streamlined mathematical idealization of the decision making process that might be used (and is actually

being used in reality) by prosumers to size their DERs. Third, there is an ongoing overarching debate about

the main drivers of behind-the-meter DER adoption with motives ranging from social concerns about clean

energy and climate change, to tax and regulatory driven decisions, to concerns about grid security (witness

the large-scale forced outages in California during the 2019 fire season). Since capturing all these aspects in

the adoption model is beyond the scope of this paper, the DER-CAM formulation presented above should
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be viewed as a representative example of economics-driven DER adoption serving the purpose of this paper,

rather than as the most realistic framework to predict DER adoption in a particular area.

3. Reliability Analysis

This section presents a methodology to perform the reliability evaluation for different tariff scenarios and

subsequent adoption of PV and storage technologies. This work builds upon existing reliability methods

and indices at the level of the distribution grid, which are commonly used in the power systems reliability

studies [7, 22]. More detail about this underlying reliability framework can be found in [23].

It is important to stress that our reliability evaluation is based on the adequacy concept of reliability,

which is a common technique used for the long-term evaluation in distribution grids reliability [23]. This

means that the short-term power quality and security aspects, such as feeders’ capacity, as well as voltages

in the nodes, are considered to be within limits both with and without adoption of DERs.

3.1. Adoption Model Simulation

We consider a radial distribution network with B buses, denoted tb1, b2, b3 . . . , bBu. Each bus contains

a consumer with private investments in DERs. Given a tariff, an optimization is run for each consumer,

using the model presented in Section 2 to find the optimal portfolio of PV and Storage investments and their

dispatch policies. The above determines the decentralized adoption of behind-the-meter DERs; we treat grid-

side DERs as fixed, i.e. exogenous to the given distribution network and not affected by the consumer-facing

tariffs.

For each bus b P tb2, b3 . . . , bBu, the optimization problem is solved locally, independent of the other

consumers in the distribution network, considering the data (such as load profile pLdbtqtPTyr
and tariff

cbt :“ pECbt , F I
b
tqtPTyr ) only for the consumer at bus b. As before, the output of the optimization includes the

optimal investments pcapbkq, optimal dispatch policy for the storage pch
b
t , dch

b
tqtPTyr , PV generation ppvbtqtPTyr ,

and purchase (export) of power from (to) the utility puibt , ue
b
tqtPTyr

. As done in [17], by running this opti-

mization we are assuming that each consumer will dispatch storage technologies in a way that minimizes her

own costs.

3.2. Monte Carlo Simulation

In this paper, we only consider power interruptions due to failure in the distribution lines and assume

the rest of the system components, e.g. storage and PV, to work without any failures, in particular ignoring

intermittency in PV generation and any potential overvoltages caused by high solar penetration. Extending

our approach to incorporate respective failures would be mathematically straightforward, although compu-

tationally intensive. At any time t, we assume that each of the distribution lines l P t1, 2, . . . , Lu could be

in one of the two states, described through the variable δlt, connected (δlt “ 1) and disconnected (or failed,
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δlt “ 0). We further assume that each distribution line transitions from one state to the other independently,

following an Exponential distribution fτ p¨q for the transition times τ lt :

fτt
l
psq “ λ̃lte

´λ̃l
ts (10)

where λ̃lt “ λlfδ
l
t ` λ

l
rp1´ δ

l
tq. The parameter λlf P R` represents the line failure rate, i.e. rate of transition

from state δlt “ 1 to δl
t`τ l

t
“ 0, and λlr P R` represents the repair rate, i.e. rate of transitions from δlt “ 0 to

δl
t`τ l

t
“ 1.

Remark: the network topology is taken to be fixed; the possibility of network reconfiguration or the use

of utility owned DERs to minimize impact of line failures has been extensively explored in the literature

(e.g. [7] and [22]) and are not considered in our reliability analysis.

The state of the distribution network is defined via Lt “ rδ
1
t , δ

2
t , . . . , δ

L
t s, which is a vector of states for

each distribution line. The time for the next transition of the whole distribution network from state Lt is

defined via τt :“ minl τ
l
t with probability density function

fτtpsq “ λ̃te
´λ̃ts, (11)

where λ̃t “
řL
l“1 λ̃

l
t is additive thanks to properties of Exponential random variables. At the transition epoch

t ` τt the distribution network may transition to L possible states. The probability that the distribution

network changes state due to a change in the kth distribution line is:

P pτt “ τkt |Ltq “
λ̃kt

řL
l“1 λ̃

l
t

. (12)

To assess the reliability of the distribution network, we simulate Monte Carlo samples of the transition times

and transition states using Equations (11) and (12). For a total of Ns Monte Carlo samples, we denote by

Ln0:T , n “ 1, . . . , Ns the nth sample of the sequence of transition states in the time interval r0, T s and by

T nfr, n “ 1, . . . , Ns the corresponding sequence of transition epochs.

Notice that the output of the optimization in Section 2 is defined on the set Tyr containing only hourly

time steps, however, the transition times T nfr P r0, T s in any Monte Carlo sample are continuous. As a result,

computation of the reliability indices requires analyzing the system for t P T n :“ Tyr
Ť

T nfr. Thus, we extend

the output of the optimization problem from t P Tyr to t P r0, T s using piecewise constant functions for all

the variables, except battery state-of-charge soct which is linearly interpolated:

soct “ soctj´1 ` chtj ¨ CEff ´
dchtj
DEff

¨ ptj ´ tq @t P rtj , tj`1q and tj P Tyr. (13)

3.3. Network Representation During Failures

A distribution network can be represented as a graph with vertices tv1, . . . , vBu representing the buses

tb1, . . . , bBu, and the edges te1, e2, . . . , eLu representing the distribution lines tl1, l2, . . . , lLu. This transfor-

mation is useful when considering large networks with thousands of buses and distribution lines. Since we

only consider radial networks in this paper, the corresponding graph is an acyclic tree. A failure at any
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distribution line is equivalent to “breaking” the edge in the corresponding tree, partitioning it into two com-

partments. At any time t, we represent the total number of compartments as At ě 1 and Ii,t, i “ 1, . . . , At

representing the set of vertices in compartment i.

The overall set of compartments at time t is denoted by At “ tI1,t, . . . , IAt,tu, where I1,t is the set of all

vertices which have a path to v1 (substation); it corresponds to buses with uninterrupted supply of power

from the utility even after line failure(s). The buses corresponding to vertices v R I1,t have no connection

to the utility at t. For this set of buses, consumers with no DERs, or only PV installed, experience a power

outage. In contrast, consumers with storage devices installed behind the meter are able to supply their loads

in isolation. Assumptions on the respective islanded operation are presented next.

3.4. Storage dispatch policy during outages

Line outages will force behind-the-meter storage devices to work in an islanded mode, prioritizing the sup-

ply of consumers’ load. Therefore, due to multi-period nature of the optimal dispatch given by pchbt ,dchbtqtě0

(again, superscript b to emphasize that it is specific to the storage at bus b), an outage affects the dispatch

policies in subsequent times.

To address this issue, an optimal re-dispatch policy should be run for each islanded storage device and

for each outage. However, given the number of outages and nodes in the system, this would increase

exponentially the computational complexity of the simulation. Instead, we propose a heuristic in order to

keep the operational conditions of the storage device as close as possible to the original optimal dispatch

calculated with the adoption model presented in Section 2.

We denote the operational policy for the charge and discharge of the storage at bus b via pxch
b

tj qtjPT

and pydch
b

tj qtjPT respectively (using ˆ to remind that it is different from the optimal); and the corresponding

state of charge as pxsoc
b
tj qtjPT . Let us define an additional state variable pmb

tj qtjPT , which determines the

operational policy pxch
b

tj ,
ydch

b

tj qtjPT of the storage:

mb
tj “

$

’

’

’

’

&

’

’

’

’

%

1 if b P I1,tj and xsoc
b
tj “ socbtj

2 if b R I1,tj

3 if b P I1,tj and xsoc
b
tj ‰ socbtj .

(14)

The three cases in (14) determine the three modes: normal, active, and recovery.

• Normal (mb
tj “ 1): During this mode, the bus is connected to the utility b P I1,tj , and state of charge

is same as the optimal xsoctj “ soctj . As a result, the dispatch follows the optimal control policy as

derived from the optimization in Section 2, i.e. xch
b

tj “ chbtj , ydch
b

tj “ dchbtj .

• Active (mtj “ 2): storage transitions to a back-up mode when the bus b has no connection to the utility

b R I1,tj . During back-up the storage unit acts to balance the net demand (load - PV generation),

supplying power when net demand ą 0 and charging when net demand ă 0 while being constrained
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by the physical limits of the storage unit. We assume that the storage control at time tj is determined

by the information available only prior to tj , i.e. at the time of failure, so the policy does not depend

on the time-to-repair and assumes the failure will continue at least until the nearest hourly time-step.

Thus, the storage policy is given by:

ydch
b

tj “

´

pLdbtj ´ pv
b
tj q ^

ydch
b,max

tj

¯`

; (15)

xch
b

tj “

´

ppvbtj ´ Ld
b
tj q ^

xch
b,max

tj

¯`

, (16)

where

ydch
b,max

tj “ rcapb ¨ PCrs ^

„

psocbtj ´MiSoc ¨ capbq
DEff

rtjs´ tj



; (17)

xch
b,max

tj “ rcapb ¨ PCrs ^

«

capb ´ socbtj
CEff ¨ prtjs´ tjq

ff

(18)

and x^ y and pxq` are shorthand notations for minpx, yq and maxpx, 0q respectively.

• Recovery (mb
tj “ 3): bus b is connected to the utility b P I1,t, but its operational state of battery charge

is different from the optimal, xsoc
b
tj ‰ socbtj . Within this mode the charge/discharge policy aims to get

the operational soc back to the optimal. Namely, if the operational soc is higher than the optimal,

socb
rtjs
´ xsoc

b
tj ą 0, the customer sells energy to the grid when re-connection occurs.

xch
b

tj “

´ socb
rtjs
´ xsoc

b
tj

CEff ¨ prtjs´ tjq
^xch

b,max

tj

¯`

. (19)

Conversely, when socb
rtjs
´ xsoc

b
tj ă 0 :

ydch
b

tj “

´ pxsoc
b
tj ´ soc

b
rtjs
q ¨DEff

prtjs´ tjq
^ydch

b,max

tj

¯`

. (20)

Finally, given the operational policy of the storage, the xsoc updates via:

xsoctj`1
“ xsoctj `

`

xchtj ¨ CEff ´
ydchtj
DEff

˘

¨ ptj`1 ´ tjq. (21)

3.5. Reliability indices

In this section we discuss the computation of reliability indices. We only consider active power, with no

losses, and assume that during outages the voltage at each bus connected to the utility grid is within the

security limits. These assumptions are common in reliability studies of distribution networks [14, 17].

Given a Monte Carlo sample of the transition times T n and states Ln0:T , the first step is to evaluate the

loss of load Cb,ntj for the bus b at time t P r0, T s. We define Cb,nt as:

Cb,nt :“

$

’

’

’

’

&

’

’

’

’

%

0 if b P In1,t;

Ldbt b R In1,t, capbs “ 0;

pLdbt ´ pv
b
t ´

ydch
b,n

t `xch
b,n

t q` b R In1,t, capbs ą 0.

(22)
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According to (22), the consumer at bus b does not experience interruptions, Cb,nt “ 0, if connected to

the utility b P In1,t. However, if a line failure occurs between the bus and the substation, b R In1,t, and there

is no local storage, capbs “ 0, the outage experienced by the consumer is equal to the load demand Ldbt . The

implicit assumption is that the PV, due to voltage and frequency stability reasons, requires either the grid

or additional storage to feed the load. If neither is available, the circuit breaker connecting the PV to the

consumer trips and the loss of load experienced by the consumer is equal to the demand. Finally, if the node

is not connected but a storage unit is installed locally, caps ą 0, the loss of load will be equal to the net

demand after storage re-dispatch.

The traditional indices used to assess the reliability of the distribution systems, such as the average

energy not supplied (AENS) and the system average interruption duration index (SAIDI), are focused on

the evaluation of the performance of the utility network. Thus, if a failure occurs, the immediate loss of

load that results from the event is assigned to these indices. However, with the presence of behind-the-meter

DERs, especially PV and storage technologies, at least part of this load can be recovered during a grid failure

event, mitigating the loss of load that is actually experienced by the consumer. This creates an apparent

paradox: on the one hand, the consumer experiences less load curtailment; on the other hand, the distribution

network does not become more “reliable”, as its failure pattern and its performance do not change. Therefore,

to better translate this reality, it is necessary to create additional indices that capture the performance of

the joint system, composed by the distribution grid and the behind-the-meter DERs, and express the actual

failures experienced by the consumers. In this paper, we create two indices with these characteristics and

name them average energy not consumed (AENC) and average outage duration index (AODI). Similar to

the standard AENS, AENC computes the average energy interruptions that are actually experienced by the

consumer. Analogously, AODI corresponds to the SAIDI, but accounting for the duration of the outages

actually experienced by the consumer. Thus, when considering behind-the-meter DER adoption driven by

rate design, AODI will be impacted by the incentives for storage installation provided by the tariff, while

SAIDI remains the same regardless of the rate design decisions, as it only depends on the characteristics of

the distribution grid failures.

Thus, we employ the standard definitions of energy not supplied ENSb,npcbq and duration of the inter-

ruptions from the perspective of the utility IDb,n
pcbq, plus introduce energy not consumed ENCb,npcbq and

the consumer outage duration ODb,n
pcbq at the bus b for the nth Monte Carlo sample as:

ENSb,npcbq :“

ż T

0

uibt1bRIn
1,t

dt, (23)

IDb,n
pcbq :“

ż T

0

1tbRIn
1,tu

dt, (24)

ENCb,npcbq :“

ż T

0

Cb,nt dt, (25)

ODb,n
pcbq :“

ż T

0

1
tCb,n

t ą0udt. (26)

ENSb,n accounts for the total energy that the utility could not supply to bus b during the period r0, T s.
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ENCb,n and ODb,n quantify, respectively, the loss of load and the outage duration for the consumer after

incorporating the re-dispatch from the storage. Equations (23)-(26) emphasize the dependence of these

metrics on the tariffs cb.

To clarify the definition of ENSb,npcbq and ENCb,npcbq, Table 1 summarizes the relationship between

these indices for different investment scenarios at bus b. As shown in the table, when only PV is installed

behind the meter, the ENC is higher than the ENS. This occurs since the demand at b seen by the utility

right before a failure is the net load, while the actual outage experienced by the consumer corresponds to

the total load due to the disconnection of PV.

Table 1: Relationship between ENS and ENC

Investment Relationship between ENS and ENC

None ENSb,npcbq “ ENCb,npcbq

Only PV ENSb,npcbq ď ENCb,npcbq

PV and storage ENSb,npcbq ě ENCb,npcbq

Finally, a generic reliability index with B buses in the distribution network can be defined as:

Index :“
1

Ns

Ns
ÿ

n“1

”

řB
i“2 F

bi,n

B

ı

, (27)

σpIndexq “

c

řNs

n“1

”
řB

i“2 F
bi,n

B ´ Index
ı2

Ns
, (28)

where F bi,n is a test function. Thus, Index computes the average of the test function over the buses and

the Ns Monte Carlo samples and σpIndexq is the standard error in estimating the index. If the test function

is ENSbi,npcbiq, then the corresponding index is AENS; if it is IDbi,npcbiq, then the index is SAIDI; if it is

ENCbi,npcbiq, then the index is AENC; and if it is ODbi,npcbiq, then the index is AODI.

3.6. Algorithm

We summarize the overall sequence of steps to compute the reliability indices in Algorithm 1. Line 2 calls

the adoption model of Section 2 for computing the optimal investment in DERs and their dispatch policy.

Lines 4-10 compute the ENS, FD, ENC and OD for every bus in the network given a Monte Carlo sample

of sequence of failure repair times for the distribution lines. Lines 6-8 compute the loss of load at each

transition time (or hourly time step) in the Monte Carlo sample. Line 12 computes the reliability indices by

averaging over all the buses and samples.

11



Algorithm 1 Monte Carlo simulation for reliability computation

1: Input: Distribution network, load demand for consumers

tariff rates, failure and repair rates.

2: Solve the optimization problem from Sec. 2 for each bus b “ 2, 3, . . . , B.

3: for n “ 1, 2, . . . , Ns do

4: Simulate set of failure-repair times T n
fr on r0, T s (Sec. 3.2).

5: for t P T n :“ Tyr

Ť

T n
fr do

6: Find the set of buses I1,t connected to substation (Sec. 3.3).

7: Compute storage dispatch ydch
b,n

t ,xch
b,n

t , b “ 2, 3, . . . , B (Sec. 3.4).

8: Calculate Cb,n
t for b “ 2, 3, . . . , B using Eqn (22).

9: end for

10: Compute ENSb,n,FDb,n,ENCb,n and ODb,n (Eqns (23)-(26)).

11: end for

12: Calculate indices: AENS, SAIDI, AENC and AOD via Eqn (27).

13: return: AENS, SAIDI, AENC, AOD

4. Results

4.1. Case Study

This section discusses the effect of different tariff structures on the adoption of PV and storage technologies

by private consumers, along with the consequent impact on the reliability of the system, both from the

perspective of the consumers and the utility. We consider the modified PG&E 69-bus [24][25] MV network

(Figure 1), where each node connects either a Commercial complex (blue diamonds), a public service building

(green circles) or a block of Midrise Apartment buildings (red triangles). Annual load profiles were obtained

from the 16 DOE Reference buildings database for the climate zone of San Francisco [26]. From the database,

hospital, offices and school profiles were considered public service, while the remaining (with the exception

of the Midrise Apartment) were assumed commercial. Load profiles were scaled to fit original network load

[24] at 8:00am on the first day of January. The total annual energy consumption is « 23GWh.

PV radiation data was obtained from Typical Meteorological Year 3 datasets for the same geographical

area [27]. We assume the fixed cost CFixpv and variable CVarpv cost as $2500 and 2500$/kWh respectively

and a PV lifetime of 20 years. We consider a storage charging/discharging efficiency (CEff{DEff) of 0.9,

a maximum charge/discharge rate PCr of 0.3 kW per kWh installed, and minimum state of charge MiSoc

of 0.2. Due to the relatively small rate of charge/discharge, relatively low costs of storage are assumed:

fixed cost CFixs “ $250 and variable cost CVars “ 250$/kWh respectively. Lifetime of the batteries is

considered to be 10 years and to simplify the analysis the effect of energy degradation due to calendar and

cycle capacity losses is neglected. However, adding this effect is straightforward, for example using the

methodological framework proposed in [28].

The base purchase rate ECt for the different consumer classes (residential, services and commercial) is
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Figure 1: Modified PG&E 69-bus system [25] with 3 customer types.

presented in Table 2. Residential tariffs have only two blocks of Time-of-use rates (on-peak and off-peak),

while service and commercial consumers have a three-segment tariff structure, divided into on-peak, mid-

peak and off-peak hours. The peak purchase rate for the residential consumers is during the evening from

4:00pm - 9:00pm, while service and commercial consumers have peak purchase rate during the day from

noon-6:00pm. For all classes of consumers the feed-in remuneration, FIt, received at time t for exporting

energy to the utility grid is considered to be 30% of the energy cost shown in Table 2.

We use Ns “ 500 Monte Carlo samples on the time horizon of 1 year, r0, 8760s hours, to compute all the

reliability metrics.

4.2. Base Case Results

Table 3 presents the four system reliability indices, considering the base case tariffs for each type of

consumer. For comparison purposes, three scenarios of investment were assumed: (A) no investments by

the consumer are allowed and only the original load is considered for the calculation of the indices; (B) the

consumers are allowed to make optimal investments, but only in PV; (C) optimal adoption of both PV and

Storage.

As presented in the Table, AENS significantly decreases when PV investments are allowed, since the

energy dependence on the utility is reduced. When storage is added to the system in scenario (C), AENS

keeps decreasing. This is explained by the incentive for self-consumption that is implicit in the tariff, with

a feed-in remuneration 30% lower than the energy costs. Thus, the presence of storage avoids some PV

injection during the daylight hours, allowing the use of this energy in subsequent periods and decreasing the

total energy required from the utility grid. By observing the distribution of AENS for the 3 scenarios (left

panel of Figure 2), it is possible to conclude that the PV investments, both alone or combined with storage,

also reduce the variance of the index.
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Table 2: Base tariff rates and periods for different classes of consumers

Type Weekdays Weekends Summer Winter

($/kWh) ($/kWh)

Residential Tariff Jun-Sep Oct-May

On-peak 4:00pm - 9:00pm — 0.36335 0.22588

Off-peak Other times All times 0.26029 0.20708

Services Tariff May-Oct Nov-April

On-peak noon - 6:00pm — 0.14726 0.10165

Mid-peak
8:00am - noon

— 0.10714 0.10165
6:00pm - 9:00pm

Off-peak 9:00 pm - 8:00 am All times 0.08057 0.08717

Commercial Tariff May-Oct Nov-April

On-peak noon - 6:00 pm — 0.21471 0.1309

Mid-peak
8:00am - noon

— 0.15958 0.1309
6:00pm - 9:00pm

Off-peak 9:00pm - 8:00am All times 0.13151 0.11384

Table 3: Reliability Indices and Investment Scenarios (base case)

Scenario AENS SAIDI AENC AODI PV Storage

(kWh) (hours) (kWh) (hours) (kW) (kWh)

No DERs 526.3 12.1 526.3 12.1 0 0

PV only 378.8 12.1 526.3 12.1 3,812 0

PV+Storage 355.8 12.1 417.4 9.5 3,812 3,852

In contrast, as shown in Table 3, the magnitude and the duration of the outages experienced by the

consumers (AENC and AODI) only decrease when storage is added to the system. This reduction also

occurs in terms of the variance of the indices, illustrated in Figure 2 (right panel). Without storage, PV is

not able to operate in islanded mode during a line failure in the distribution grid, which results in the entire

loss of load for the consumers. From the utility perspective, the magnitude of the interruption considered

during a failure is the net load, which justifies the difference between AENS and AENC observed in Table 3.

In scenario (C), the adoption of storage by some consumers partially rectifies this difference, decreasing

the AENC and the AODI. However, the AENC is still significantly higher than the AENS, which means

that the base case tariff is not able to incentivize storage investments in all consumer segments. Indeed, the

computation of the hourly indices in Figure 3 shows a considerable difference between AENC and AENS
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Figure 2: Distribution of AENS for the 3 scenarios (left); Distribution of AENC for the 3 scenarios (right).

during the daylight periods, indicating that most of the consumers invest only in PV technologies.
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Figure 3: Hourly indices for scenario (C).

To better understand the impact of the tariff incentives on the reliability of the system via adoption of

PV and storage, a sensitivity analysis to different tariff components is conducted in the following subsections.

For ease of presentation, we restrict ourselves to univariate analysis, modifying one tariff component at a

time. More comprehensive multivariate sensitivities are left to future research. Because running our model

is computationally intensive, we advocate the application of statistical surrogates to investigate multiple

sensitivities simultaneously so as to identify optimal tariffs.

4.3. Homothetic variation of energy tariffs

The variation of the energy tariff offered by the utility affects the economic conditions for adoption of

DERs by private consumers. As shown in the previous section, this adoption has an impact on the system

reliability indices, both from the perspective of the utility and of the consumers.

By defining the energy cost rates presented in the base case tariff as ECt, the homothetic variation can

be described by ECt “ γpur ¨ ECt @t P r0, T s, where γpur represents the variation factor of the energy
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purchase costs for consumers. In this analysis, we allow a variation of 30% of this purchase cost factor,

i.e. 0.7 ď γpur ď 1.3.
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Figure 4: Effect of γpur on DER investments cappv and caps (left) and reliability (right).

Figure 4 presents the adoption of PV and storage as a function of the homothetic variation of the energy

costs, as well as the consequent impact on AENS and AENC. Although both PV and storage capacity

increase with the energy rates, PV is already cost-effective at 70% of costs, while storage requires higher

rates to become economically worthwhile. As expected, AENS decreases as consumption depends less on

the utility and more on the on-site PV generation, whereas the magnitude of outages experienced by the

consumers (AENC) only decreases with the adoption of storage. However, it is possible to observe that this

effect does not have a linear characteristic, i.e. initial adoption of storage has little impact on AENC, which

indicates that the reliability benefits for consumers from storage adoption depend not only on the available

capacity, but also on its utilization throughout the day. Therefore, the next subsection will analyze the

reliability impact of the time component variation of tariffs.

4.4. Time differentiation of energy rates

In this section we consider a variation in the ToU component of the tariff by increasing the cost of

energy during the peak hours and keeping constant the off-peak and mid-peak rates. Similar to the previous

analysis, we use a peak ratio, γpk, to describe this variation and represent the energy costs as:

ECt “

$

’

&

’

%

γpk ¨ ECtt if t P Tpk;

ECtt if t R Tpk,
(29)

where Tpk is the set of times corresponding to on-peak periods presented in Table 2. Since the on-peak

component of the ToU only lasts 5 hours for residential and 6 hours for commercial and services consumers,

we allowed a variation up to 250% of these costs: 1.0 ď γpk ď 2.5.

Figure 5 shows the effect of this variation on the DER investments (cappv, caps) and the consequent

impact on reliability indices. Increasing γpk raises aggregate investments in storage up to 400% (3,852 kWh
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Figure 5: Effect of γpk on DER investments (left panel: cappv and caps on the left and right y-axis respectively) and reliability

(right panel).

to 16,162 kWh), but has only moderate impact on the adoption of PV (from 3,812 kW to 4,255 kW). Thus,

a significant differentiation between off/mid peak and on-peak rate creates a stronger incentive for storage

adoption than for additional PV capacity. We note jumps in the capacity of the storage investments as

a function of γpk as ToU differentiation becomes relevant for more and more classes of consumers. From

a reliability perspective, AENS remains practically constant, meaning that the overall dependence on the

utility changes minimally, due to the insignificant variation in PV investments. In contrast, AENC decreases

significantly as storage capacity is introduced. However, Figure 6 shows that the average outages experienced

by the consumers do not decrease uniformly throughout the day. When comparing the base tariff against a

scenario where peak costs are doubled, it is possible to observe a reduction on AENC during the day/evening

hours and no improvements during the night.
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Figure 6: Impact of ToU differentiation on hourly distribution of AENC: base case vs. peak factor γpk “ 2.

This can be explained by the storage dispatch policy generated from an extremely differentiated ToU
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structure that incentivizes consumers to buy energy during the morning and keep the batteries full until the

on-peak period. Therefore, if a failure occurs during the day, behind-the-meter batteries will be full and able

to drastically minimize the impact of the outage on the consumers. This situation persists until the end of

peak period when batteries fully discharge and storage no longer can buffer line failures.

Thus, thanks to their capability to influence storage adoption, rate design policies comprising time

differentiation of costs are an effective solution to improve AENC. This can be seen in Figure 7 which

compares homothetic variation of Section 4.3 with the energy costs differentiation scenarios analyzed above

with respect to their impact on AENC and on the overall annual costs of the consumers. We find that for the

same annualized costs—see equation (1)—the AENC is considerably lower when differentiation is included

in rate design.
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Figure 7: Impact of homothetic variation and cost differentiation policies on consumers’ annual costs and consequent effect on

AENC. Blue dots correspond to different values of γpk P r1, 2s, orange stars to different values of γpur P r0.7, 1.3s and the black

diamond to the base scenario with γpk “ γpur “ 1.

4.5. Shifting time-of-use periods

Our last analysis consists of shifting in time the on-peak component of the ToU rate applied to the

residential consumers, keeping the peak costs and duration (5 hours) equal to the base case. Thus, instead

of starting at 4PM, four additional possibilities to start the residential on-peak period are explored: 8AM,

10AM, 12PM and 2PM. Figure 8 shows that this shift has little effect on the PV penetration cappv, but

a significant impact on storage adoption caps, namely storage investments decrease dramatically when the

on-peak period is moved to the morning. Indeed, in this situation, the on-peak energy costs overlap with

the solar generation period, reducing the net load when energy costs are higher and dispensing the need for

larger storage capacities.

In particular, when the on-peak starts at 8AM, it still ends within the daylight period (1PM), allowing

batteries to re-charge using PV generation, and subsequently keeping a full soc until the peak of the next
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Figure 8: Effect of shifting the on-peak period of residential tariffs on DER investments (left) and reliability (right).

morning. This long period at full capacity mitigates the impact of outages on consumers when a grid

failure occurs during the evening/night, resulting in a low value of AENC. When the on-peak period starts

at 4PM, there is almost no incentive to charge the batteries before the morning, making consumers more

vulnerable to grid failures during the night. However, since the batteries are empty in the morning, the PV

self-consumption can be maximized, reducing the overall net load purchased from the utility and decreasing

the AENS.

5. Conclusion

This paper presented a methodology to quantify the effect of rate design on the long term reliability of

power distribution, assuming that electricity tariffs will become a main driver for adoption of DERs (e.g. PV

and storage) by private consumers.

Our results show that both magnitude and structure of time-of-use electricity rates influence the adoption

and the dispatch of behind-the-meter DERs with significant impact on the outages accounted by the utility

and experienced by the consumers. In general, tariffs incentivizing PV adoption will tend to reduce the

overall consumers’ dependence on the grid, decreasing the energy-related reliability indices considered by

the utility. In contrast, tariffs incentivizing the adoption of storage technologies, such as ToU rates, tend to

mitigate the impact of grid failures on the actual loss of load. Here, the magnitude and temporal aspects of

cost differentiation play a major role on the hourly distribution of the outages experienced by the consumers.

Thus, in many cases, the rate design process can lead to contradictory reliability effects, depending whether

the indices are quantified from the perspective of the utility or of the consumer. This phenomenon reinforces

the need to rethink current regulatory frameworks in the context of mass adoption of DERs. Additionally,

different consumers have distinct sensitivities of reliability to electricity rates. As a result, methodology to

quantify the impact of electricity rates on reliability, as in this paper, can provide targeted guidance for
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policy making.

Additional analysis is required for alternative pricing mechanisms, such as dynamic pricing and demand

response policies that might become more prevalent over time.
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[4] A. Picciariello, J. Reneses, P. Frias, L. Söder, Distributed generation and distribution pricing: Why

do we need new tariff design methodologies?, Electric Power Systems Research 119 (2015) 370 – 376

(2015). doi:https://doi.org/10.1016/j.epsr.2014.10.021.

[5] S. Candas, K. Siala, T. Hamacher, Sociodynamic modeling of small-scale PV adoption and insights on

future expansion without feed-in tariffs, Energy Policy 125 (2019) 521 – 536 (2019).

[6] D. W. Cai, S. Adlakha, S. H. Low, P. D. Martini, K. M. Chandy, Impact of residential PV adoption on

retail electricity rates, Energy Policy 62 (2013) 830 – 843 (2013). doi:https://doi.org/10.1016/j.

enpol.2013.07.009.

[7] D. Issicaba, J. A. Pecas Lopes, M. A. da Rosa, Adequacy and security evaluation of distribution systems

with distributed generation, IEEE Transactions on Power Systems 27 (3) (2012) 1681–1689 (Aug 2012).

[8] A. M. Leite da Silva, L. C. Nascimento, M. A. da Rosa, D. Issicaba, J. A. Peças Lopes, Distributed energy

resources impact on distribution system reliability under load transfer restrictions, IEEE Transactions

on Smart Grid 3 (4) (2012) 2048–2055 (Dec 2012). doi:10.1109/TSG.2012.2190997.

20

https://doi.org/https://doi.org/10.1016/j.epsr.2014.10.021
https://doi.org/https://doi.org/10.1016/j.enpol.2013.07.009
https://doi.org/https://doi.org/10.1016/j.enpol.2013.07.009
https://doi.org/10.1109/TSG.2012.2190997


[9] H. Farzin, M. Moeini-Aghtaie, M. Fotuhi-Firuzabad, Reliability studies of distribution systems inte-

grated with electric vehicles under battery-exchange mode, IEEE Transactions on Power Delivery 31 (6)

(2016) 2473–2482 (Dec 2016).

[10] H. Farzin, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, Reliability studies of modern distribution systems

integrated with renewable generation and parking lots, IEEE Transactions on Sustainable Energy 8 (1)

(2017) 431–440 (Jan 2017).

[11] N. Z. Xu, C. Y. Chung, Reliability evaluation of distribution systems including vehicle-to-home and

vehicle-to-grid, IEEE Transactions on Power Systems 31 (1) (2016) 759–768 (Jan 2016). doi:10.1109/

TPWRS.2015.2396524.

[12] A. Safdarian, M. Z. Degefa, M. Lehtonen, M. Fotuhi-Firuzabad, Distribution network reliability im-

provements in presence of demand response, IET Generation, Transmission Distribution 8 (12) (2014)

2027–2035 (2014).

[13] K. I. Sgouras, D. I. Dimitrelos, A. G. Bakirtzis, D. P. Labridis, Quantitative risk management by demand

response in distribution networks, IEEE Transactions on Power Systems 33 (2) (2018) 1496–1506 (March

2018).

[14] H. Farzin, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, Role of outage management strategy in reliability

performance of multi-microgrid distribution systems, IEEE Transactions on Power Systems 33 (3) (2018)

2359–2369 (May 2018).

[15] R. Li, Q. Wu, S. S. Oren, Distribution locational marginal pricing for optimal electric vehicle charging

management, IEEE Transactions on Power Systems 29 (1) (2014) 203–211 (Jan 2014). doi:10.1109/

TPWRS.2013.2278952.

[16] S. Huang, Q. Wu, M. Shahidehpour, Z. liu, Dynamic power tariff for congestion management in distri-

bution networks, IEEE Transactions on Smart Grid 10 (2) (2019) 2148–2157 (March 2019).

[17] M. Rastegar, Impacts of residential energy management on reliability of distribution systems considering

a customer satisfaction model, IEEE Transactions on Power Systems 33 (6) (2018) 6062–6073 (Nov

2018). doi:10.1109/TPWRS.2018.2825356.

[18] M. Chesser, J. Hanly, D. Cassells, N. Apergis, The positive feedback cycle in the electricity market:

Residential solar PV adoption, electricity demand and prices, Energy Policy 122 (2018) 36 – 44 (2018).
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