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A B S T R A C T   

Childhood lead exposure affects over 500,000 children under 6 years old in the US; however, only 14 states 
recommend regular universal blood screening. Several studies have reported on the use of predictive models to 
estimate lead exposure of individual children, albeit with limited success: lead exposure can vary greatly among 
individuals, individual data is not easily accessible, and models trained in one location do not always perform 
well in another. We report on a novel approach that uses machine learning to accurately predict elevated Blood 
Lead Levels (BLLs) in large groups of children, using aggregated data. To that end, we used publicly available zip 
code and city/town BLL data from the states of New York (n = 1642, excluding New York City) and Massa
chusetts (n = 352), respectively. Five machine learning models were used to predict childhood lead exposure by 
using socioeconomic, housing, and water quality predictive features. The best-performing model was a Random 
Forest, with a 10-fold cross validation ROC AUC score of 0.91 and 0.85 for the Massachusetts and New York 
datasets, respectively. The model was then tested with New York City data and the results compared to measured 
BLLs at a borough level. The model yielded predictions in excellent agreement with measured data: at a city level 
it predicted elevated BLL rates of 1.72% for the children in New York City, which is close to the measured value 
of 1.73%. Predictive models, such as the one presented here, have the potential to help identify geographical 
hotspots with significantly large occurrence of elevated lead blood levels in children so that limited resources 
may be deployed to those who are most at risk.   

1. Introduction 

Childhood lead exposure is a problem that affects over 500,000 
children under 6 years of age in the US (Hauptman et al., 2017). There is 
no safe level of lead in the bloodstream (Vorvolakos et al., 2016) and 
even lead levels of 1 μg dL− 1 have been linked to permanent and irre
versible cognitive damage in children under age 6 (Lanphear et al., 
2000; Schwartz, 1994). Elevated Blood Lead Levels (BLLs) in US chil
dren often result from exposure to lead in paint, soil, dust, and water 
(Gould, 2009; Mielke and Reagan, 1998; Roy and Edwards, 2019). 
However, children with elevated BLLs are not evenly distributed in so
ciety: those living below the poverty line are four times more likely to 
have elevated BLLs than their richer counterparts (Vivier et al., 2011). 
Non-Hispanic Black children are particularly at risk (Whitehead and 
Buchanan, 2019). 

The lifetime social cost of childhood lead exposure (lead blood levels 
over 1 μg dL− 1) is estimated to be $50,000 USD per child (Muennig, 
2009). This cost includes all medical costs, loss in IQ, special education, 

and increased crime rates, among other consequences of low-level lead 
exposure. However, this estimate does not include the cost of other 
adverse effects, including immune, cardiovascular, renal, and develop
mental effects (U.S. Department of Health and Human Services, 2012). 
Thus, childhood lead exposure in the US is a $25 billion problem (cu
mulative cost) that not only permanently hinders the livelihood of 
thousands of children, but is also a preventable, yet persistent, matter of 
social and environmental justice (Ettinger et al., 2019). 

Identifying children at risk is challenging because data on housing 
with lead-based paint and plumbing components, or with lead- 
contaminated soils and dust are scarce (Cattle et al., 2002; Mielke, 
1999; Triantafyllidou and Edwards, 2012). Instead, socioeconomic 
features are often used as predictors of elevated BLLs as they account for 
the unfortunate fact that poor minorities are more likely to live in older 
housing with multiple lead sources (lead paint and plumbing were 
commonly used in housing prior to 1978) (Marshall et al., 2020). 

These socioeconomic features have been integrated into statistical 
models meant to predict the risk of lead exposure of individuals and 
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communities; however, their success has been limited. For instance, 
Taylor et al. (2013) found that, while socioeconomic factors are corre
lated to elevated BLLs in pregnant women, using a logistic regression to 
predict their individual exposure risk did not provide accurate results 
(R2 = 0.1). Bierkens et al. (2011) concluded that even if environmental 
lead concentrations in air, soil, and water are known, linear regressions 
are not suited to estimate the average risk of lead exposure of select EU 
countries. This is due to the multifactorial, non-linear, and 
region-specific nature of the problem, compounded by the lack of 
available data (Lanphear et al., 1998). 

Machine learning is particularly well-suited for complex nonlinear 
problems in which traditional statistical methods fail. Machine learning 
has been used to predict lead concentrations in air (Sethi and Mittal, 
2019), water (Chojnacki et al., 2017), and soil (Zhang et al., 2020), as 
well as the likelihood of housing hazards, including lead paint (Ye et al., 
2019). However, this approach has seldom been tested to predict the risk 
of childhood lead exposure. To the best of our knowledge, only two 
machine learning models have been reported in literature for this pur
pose. Potash et al. (2015) developed a gradient boosting model using 2.5 
million BLL tests from Chicago, IL, and household characteristics, 
including year of construction, physical condition, and number of 
housing units, among others. Socio-demographic characteristics were 
also included. Their best performing model resulted in a precision of 
0.39 and a recall of 0.42 for individual children, (see section 2.4 for 
technical definitions of the terms precision and recall). Another study by 
Potash et al. (2020) used a random forest model to predict childhood 
elevated BLLs. Their best-performing model had a ROC AUC of 0.69 (see 
section 2.4 for a technical definition of ROC AUC). The performance of 
these two pioneering machine learning models for childhood BLL pre
dictions is better than that of traditional statistical methods; however, it 
is still below of that of other models used in other public health appli
cations (Dos Santos et al., 2019). This is likely explained by the high 
resolution of the predictions, in which the risk of lead exposure of each 
individual child is predicted. Childhood lead exposure usually involves 
many environmental factors specific to each child that are difficult to 
measure (Lanphear et al., 2002), thus, predicting individual lead blood 
levels is challenging. Moreover, access to individual-based datasets is 
often limited, particularly for healthcare, where data are protected by 
patients’ privacy laws (Wojtusiak and Baranova, 2011). This makes it 
hard not only to validate existing models, but to extend their use to 
locations outside of individual cities where these models are usually 
trained and tested. 

In the context of designing strategies to prevent childhood lead 
exposure, such as large-scale lead blood testing or source removal pro
grams, using individual-based models with modest predictive power to 
allocate resources might not provide optimal results. These programs 
often involve conducting lead blood tests and source removal at a 
neighborhood scale, and not on an individual basis (Billings and 
Schnepel, 2017; Magavern, 2018; Zahran et al., 2020). Thus, a model 
meant to allocate resources for lead blood testing and removal programs 
should be able to accurately identify geographical areas at risk rather 
than much less accurately identify individuals at risk (of course, accu
rately identifying all individuals with elevated BLLs would be even more 
preferable; however, no model is currently capable of this). 

We hypothesize that using spatially aggregated data (e.g., zip code or 
city) could significantly improve the performance of existing models 
meant to predict elevated BLL in children, while still being valuable for 
designing strategies to prevent childhood lead exposure at a geograph
ically large scale. This is because aggregated data often convey popu
lation trends that smoothen out the variability among individuals living 
under similar conditions, decreasing the noise of individual-based 
datasets (Rushton, 2003). Moreover, aggregated datasets are often 
public and readily available (Wojtusiak and Baranova, 2011), increasing 
data access, transparency, and restrictions on publishing results. Of 
course, the aggregation level should be relevant for the problem at hand: 
using a model that predicts city-wide risk of childhood lead exposure 

might not be as useful as a model that predicts zip codes at risk when 
designing a program meant to identify neighborhoods where children 
have elevated BLLs. 

To date, there are no published studies that have attempted to pro
cess relevant features of aggregated BLL data to predict geographical 
areas at risk of childhood lead exposure. Thus, to our knowledge, prior 
literature is unclear whether BLL data aggregation increases the accu
racy of childhood BLL predictive models at a spatially aggregated scale. 

We report here on the use of machine learning to predict the risk of 
elevated BLLs in children at a spatially aggregated level. Using zip code 
and community-level socioeconomic and environmental data, we pre
dicted the risk of childhood lead exposure for the states of New York and 
Massachusetts. This statistical model is not meant to provide a mecha
nistic understanding of how children are exposed to lead, but to help 
identify areas where they might be exposed to lead so that limited re
sources may be allocated more effectively. 

2. Materials and methods 

2.1. Study sites 

New York and Massachusetts were chosen as study sites because they 
are two of the few states with publicly available BLL surveys in the US. 
The percentage of children under 6 years of age with elevated BLLs were 
obtained for 1642 zip codes in New York from the New York State 
Department of Health for the year 2015 (New York State Department of 
Health, 2015). These data were missing for all 178 zip codes in New 
York City because this city belongs to a separate health jurisdiction, NYC 
Health. In this study we used the Centers for Disease Control and Pre
vention (CDC) reference value of 5 μg dL− 1 to determine whether chil
dren had elevated BLLs or not. We chose this value because it is the 
current CDC guideline and because the datasets provided by both states 
report only the number of children with BLL between 0 and 5, 5–10 and 
over 10 μg dL− 1. This reference value of 5 μg dL− 1 was adopted in 2012 
by the CDC based on the 97.5th percentile of the National Health and 
Nutrition Examination Survey (NHANES) blood lead distribution in 
children ages 1–5 years (CDC, 2021). Although more recent lead blood 
data suggest that this 97.5th percentile is closer to 3.5 μg dL− 1 (Tsoi 
et al., 2016), the CDC has not yet updated their guideline value of 5 μg 
dL− 1. In the case of Massachusetts, the percentage of children with 
elevated BLLs were obtained for all 352 town/cities (also referred to as 
communities) in the state from the Massachusetts Department of Public 
Health, also for 2015 (Massachusetts Department of Public Health, 
2021a). 

We note that not all children within a community or zip code were 
tested for lead. In this study we assumed that the tested children were 
representative of all at-risk children within their respective zip codes or 
cities. BLL testing for children under 3 is mandatory in Massachusetts, 
after which BLLs are monitored only for children living in at-risk areas 
(Massachusetts Department of Public Health, 2021). In contrast, New 
York children are only tested if they are considered to be at risk (New 
York State Department of Health, 2021). Thus, the datasets used likely 
overrepresent children with elevated BLLs, which is desirable given the 
large social cost of failing to identify children at risk of having elevated 
BLLs. 

While other states do report BLLs in children, many of them do so at a 
county level. Given that the robustness of machine learning models is 
often dictated by the amount of data used during training, working at a 
county level will likely not provide enough datapoints per state to 
develop a robust model. Furthermore, the low resolution of county-level 
BLLs cannot facilitate narrowly targeted intervention and mitigation 
strategies. 

2.2. Data acquisition 

Socioeconomic data for New York and Massachusetts were obtained 
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from the 2015 American Community Survey (US Census Bureau, 2016). 
These data include, for each census tract, average income, percentage 
below the poverty line, percentage of property ownership, race, and 
ethnicity, among others. These socioeconomic features have been linked 
to elevated BLLs in numerous studies (Schultz et al., 2017; Trimble, 
2016). 

The 2015 Housing Price Indices (HPI) for each zip code were also 
obtained from the Federal Housing Finance Agency. HPIs represent the 
average price changes in repeat sales or refinancings on the same 
properties. We included HPI in the model because this index reflects, 
among many other things, housing construction year, which is an 
important feature given that old housings are more likely to have lead 
paint and plumbing (Whitehead and Buchanan, 2019). Housing con
struction year data were publicly available only for Massachusetts from 
the Massachusetts Department of Public Health, but not for New York. 

Lead levels in drinking water were also obtained for each school in 
New York and Massachusetts from the New York State Department of 
Health and the Massachusetts Department of Public Health, respec
tively. Lead in drinking water in schools is an important source of lead 
exposure in children (Doré et al., 2018); however, it does not provide 
information on exposure in children under 4 or 5 years of age (children 
often start going to school at age 5). To the best of our knowledge, no 
household lead levels in drinking water at a state level are publicly 
available. 

2.3. Data processing 

A schematic overview of the steps taken to process the data and 
implement the machine learning model, described herein, is shown in 
Fig. 2. The data described in section 2.3 were combined with the BLL 
data using Geographic Information Systems (GIS). In the case of the New 
York dataset, the socioeconomic data were converted from a census tract 
scale to a zip code level by averaging the tract data within each zip code. 
The lead water levels in schools were first converted to average values 
per school district and then each zip code was assigned to a school 
district based on distance. This was done because not all zip codes have 
schools. Thus, the New York dataset consisted of 1643 datapoints, where 
each point corresponded to a zip code and all the associated data (per
centage of elevated BLLs and socioeconomic, housing and lead water 
data, among others) with that geolocation. A total of 46 features were 
associated with each datapoint. 

In the case of the Massachusetts dataset, the socioeconomic data 
were aggregated from a census tract level to a town/city level by taking 
the weighted average by population density. The HPI index was aggre
gated from a zip code level to a town/city level also using a weighted 
average. On the other hand, lead in drinking water levels in schools were 
averaged for all schools within a town/city. Thus, the Massachusetts 
dataset consisted of 352 points, all of which corresponded to towns/ 
cities and their corresponding socioeconomic, demographic and water 
quality data. A total of 38 features were associated with each datapoint. 

Both datasets were further processed by first one-hot-encoding 
(turning into binary values) all categorical features and by normal
izing every feature so that all values range from 0 to 1. Missing values 
were filled in by using the mean value of each feature (e.g. missing in
come values were filled in using the average income of every city or zip 
code). Less than 5% of the data were missing for both New York and 
Massachusetts datasets. 

The BLL data was also binarized by using a variable threshold T and 
the 5 μg dL− 1 reference value established by the CDC. In the case of the 
Massachusetts dataset, a 1% threshold (T = 1%) was established: if over 
1% children within a town/city had elevated BLLs (over 5 μg dL− 1), then 
the value was set to 1; otherwise, it was set to 0. In the case of the New 
York dataset, a 6% threshold (T = 6%) was established: if over 6% 
children within a zip code had BLLs over 5 μg dL− 1, then the value was 
set to 1; otherwise, it was set to 0. We binarized both datasets differently 
because of the different resolutions of the data and because the 

percentage of children with high BLLs per zip code in New York are 
much higher than the percentage per city in Massachusetts, as shown in 
Fig. 1. 

2.4. Model implementation 

Five machine learning models were implemented, and their perfor
mance compared using the processed Massachusetts and New York 
datasets: Random Forest, Logistic Regression, k-Nearest Neighbor 
(kNN), Decision Trees, and Support Vector Machine (SVM). These 
models were implemented using the Python sklearn package and their 
hyperparameters (model parameters) optimized using 10-fold cross 
validation (described below). The process of hyperparameter optimi
zation consisted of iterating through multiple combinations of hyper
parameters and finding those that provided the highest cross validation 
scores. A short description of each of the models, and their optimized 
hyperparameters are provided in the S.I. 

We briefly introduce a method and five metrics used to evaluate 
machine learning models:  

(1) K-fold cross validation is a commonly used method to test how a 
predictive model will perform in practice. Predictive models are 
typically calibrated with a “training” data set, and their perfor
mance must be tested against data from outside this training set. 
In cross validation, the original data is separated into k inde
pendent (i.e., non-overlapping) subsets and then the model is 
trained with only k-1 subsets. The trained model is then tested 
using the withheld subset. This process is repeated k times by 
successively withholding a different subset for testing each time, 
effectively creating k instances of the model that is trained and 
tested using k different training and testing datasets.  

(2) The “Receiver Operating Characteristic Area Under the Curve” 
(ROC AUC) metric, was briefly introduced in Section 1. This 
metric ranges from 0.5 to 1, is commonly used to evaluate the 
ability of the model to distinguish between True Positives (TP) 
and False Positives (FP) for different probability thresholds. Thus, 
ROC AUC values close to 1 indicate that the model can perfectly 
distinguish between TP and FP, while values close to 0.5 indicate 
that the model is no better than random selection. TPs in our case 
mean that the model predicts that a zip code or town/city has 
more than T% of children with elevated BLLs, and the measured 
value for that zip code or town/city is indeed over T%. FP are 
those cases in which the model predicts that a zip code or town/ 
city has more than T% of children with elevated BLLs, while the 
actual (measured) value for that zip code or town/city is below T 
%  

(3) The “Precision Recall Area Under the Curve” (PR AUC) metric, 
which ranges from 0.5 to 1, is typically used to evaluate the 
ability of the model to distinguish between TP and False Nega
tives (FN) for different probability thresholds. PR AUC values 
close to 1 indicate that the model can perfectly distinguish be
tween TPs and FNs, while values close to 0.5 indicate that the 
model is no better than random selection. FNs are those cases in 
which the model predicts that a zip code or town/city has less 
than T% of children with elevated BLLs, while the measured 
value for that zip code or town/city is under T%.  

(4) The F1 metric is the harmonic mean of Precision and Recall, 
which are defined as follows: 

Precision=
TP

TP + FP
(1)  

Recall=
TP

TP + FN
(2) 

Thus, the F1 metric accounts for the ability of the model to distin
guish between TP and FN for a specific probability threshold (0.5 in our 
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case). 
The five tested models were compared in terms of their mean ROC 

AUC score obtained with a 10-fold cross-validation. The best-performing 
model was tested further by splitting the data randomly into a 70% 
training and a 30% testing dataset by using the train_test_split function in 
the Python scikit-learn package. The data was split 1000 times, and the 
ROC AUC, PR AUC and F1 score were then calculated for the test data in 
each split. Given the importance of accurately identifying locations 
where children might have elevated BLLs and the unbalanced nature of 
our dataset (only about 20% of the datapoints have BLLs above the 
chosen threshold for each State), the PR AUC and F1 metrics provide 
insights into the ability of the model to accurately predict the minority 
class labels and to avoid predicting FNs. 

2.5. Model implementation in New York city 

The best-performing model was implemented with data from New 
York City to predict, for each zip code, the likelihood that over 6% of the 
children have elevated BLLs. These results were compared to measured 
childhood BLLs in New York City, which were obtained at a borough 
level for the year 2015 (New York City Department of Health and Mental 
Hygiene, 2020). To compare these data to our modeled results, we first 
calculated the modeled expected number of children with elevated BLLs 
for each zip code using the following equation: 

E(Ch)=T * P(T)*Pop (3) 

Where E(Ch) is the expected number of children with BLLs exceeding 
5 μg dL− 1 within each zip code, P(T) is the modeled probability that over 
T% of the children have elevated BLLs (T = 6% for the New York model) 

Fig. 1. Heat maps of the study sites showing the percentage of children with elevated BLLs (over 5 μg dL− 1) within (a) zip codes in New York (n = 1642) and (b) each 
community (city/town) in Massachusetts (n = 353). There is missing data for some zip codes the in New York dataset; these are shown in white. Note that the color 
scale in each map is different. New York has a larger percentage of children with elevated BLLs (more than 5 μg dL− 1) than Massachusetts. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Schematic overview of the steps taken to process the data and implement the machine learning models. Note that each datapoint corresponds to the per
centage of children within each zip code or town/city with Blood Lead Levels (BLLs) over 5 μg dL− 1 in New York and Massachusetts, respectively, and all its 
associated features (socioeconomic, chemical, and housing). BLLs are encoded as binary variables, where 1 and 0 represent that a zip code or town/city has over or 
under T% of children with elevated BLLs, respectively, where T% is 6% for NY and 1% for MA datasets. 
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and Pop is the population of children under 6 years old residing in each 
zip code. The values of E(Ch) were then aggregated for all zip codes 
within each borough in New York City and the results compared to the 
measured data. We note that Eq. (3) would underestimate the number of 
children with elevated BLLs in zip codes where more than 6% of the 
children have elevated BLLs. However, this threshold is far from the 
1.73% average of children with elevated BLLs in New York City in 2015 
(New York City Department of Health and Mental Hygiene, 2020). 

The compiled datasets used in this study, as well as the code used to 
implement the machine learning models may be found in our Github 
repository (Lobo et al., 2021). 

3. Results and discussion 

3.1. Model selection 

The best-performing model for both the New York and Massachusetts 
datasets was a Random Forest (RF), as shown in Fig. 3 (these results 
were obtained after model hyperparameter optimization). The hyper
parameters used in the model for each dataset are shown in Table 1, 
while the hyperparameters of the other models are shown in the S.I. The 
RF model outperformed all other models in terms of the average ROC 
AUC score, demonstrating that it provides more TP and less FP than the 
other models. Moreover, this model resulted in less variability among 
the folds, as shown by the lower standard deviations among the folds 
during cross validation. Thus, the RF model was selected for further 
testing with data from the study sites and New York City. 

We note that all the tested models provided good results during cross 
validation. Even the logistic regression model, which has been used 
unsuccessfully in previous studies for similar purposes (Taylor et al., 
2013) resulted in high ROC AUC values (0.84 and 0.87 for the New York 
and Massachusetts datasets, respectively). This supports our hypothesis 
that predicting elevated BLLs at a geospatially aggregated level (zip 
codes or towns/cities) is more feasible than predicting BLLs at an indi
vidual person-scale, as other studies have attempted. 

3.2. Model performance 

The optimized RF model was further tested by randomly splitting the 
datasets into train and test sets 1000 times and by calculating the ROC 
AUC, PR AUC and F1 scores. These results are shown in Fig. 4. As a 
reference, the average F1 score reported in the study by Potash et al. 
(2015) was 0.40 (we calculated this value using the harmonic mean of 
their average precision and recall of 0.39 and 0.42, respectively). In 

contrast, our geospatially aggregated model provided an average F1 
score of 0.78 and 0.80 for the New York and Massachusetts datasets, 
respectively. Another model developed by Potash et al. (2020) resulted 
in an average ROC AUC score of 0.69, while our model’s average ROC 
AUC was 0.87 and 0.91 for the New York and Massachusetts datasets, 
respectively. It is likely that the difference in performance between our 
model and those previously reported in literature results from the lower 
resolution of our datasets. Most of the models reported in literature use 
socioeconomic and environmental features to predict elevated BLLs of 
individuals in specific locations. In contrast, our model predicts elevated 
BLLs in relatively large populations (on the scale of zip codes and cit
ies/towns) at a state level using aggregated data. The aggregated data 
helps smoothen the variability among individual children, which allows 
identifying spatial trends. 

Despite the good average performance of the RF model, significant 
variations in performance were observed among the 1000 splits for both 
datasets, as shown in Fig. 2. The variability for all three metrics, F1 
score, ROC AUC and PR AUC, was higher when using the Massachusetts 
dataset. The worst-performing model instance in the Massachusetts 
dataset had an F1 score of 0.55, a ROC AUC of 0.73 and a PR AUC of 
0.62. It is likely that this performance was a product of overfitting, as 
models trained using small datasets are more likely to overfit the data 
(Ying, 2019). However, the worst-performing model still has a higher 
ROC AUC than other models found in literature. 

As also shown in Fig. 4, the New York RF model tended to have larger 
PR AUC than ROC AUC values. This means that this model overestimates 
the positive label (when over 6% of children within zip codes have 
elevated BLLs), sacrificing accuracy for precision. This is desirable from 
a public health perspective, as the cost of predicting FPs are lower than 
those of predicting FNs (it is more desirable to falsely predict that a zip 
code has a high risk of childhood lead exposure than to falsely predict 
that it does not have a high risk of lead exposure). However, the opposite 
is true for the Massachusetts model: ROC AUC values were greater that 
PR AUC values. This suggests that the model tends to underestimate the 
positive label, indicating that it will predict more FNs than FPs. This 
problem may be addressed by decreasing the probability threshold used 
to decide the model’s outcomes so that more positive predictions (those 
where the model predicts that over T% of the children have elevated 
BLLs) are made. 

3.3. Feature importance analysis using random forest 

The features in the New York and Massachusetts RF models were 
ranked by their Gini score, which represents the loss in entropy (sta
tistical dispersion) resulting from adding each feature to the model (see 
Fig. 5). We note here that the way RF models work, only the magnitude 
of reduction in entropy (impact on prediction) is measurable, but not the 
direction in which the feature impacts the prediction. In both RF models, 
poverty and race-related features are most important when predicting 
childhood lead exposure, which aligns with previous studies (Hauptman 
et al., 2017). In the case of the Massachusetts model, the most important 
feature corresponds to the percentage of children under 6 living in each 
zip code or town/city. We have two hypotheses to explain this: 1) It may 
be the case that not enough BLL tests were performed or that testing was 
not done randomly, making the results in each zip code or city unrep
resentative of the population. This could explain why the model’s 
outcome changes as the number of children tested increases (areas with 

Fig. 3. 10-fold cross validation score of 5 optimized machine learning models 
using the ROC AUC score for the New York and Massachusetts datasets. The 
bars represent the mean ROC AUC scores, and the error bars the standard de
viation. Random forest outperformed all other models in terms of attaining the 
highest average ROC AUC score, and demonstrating the smallest value for the 
standard deviation among the folds. 

Table 1 
Best combination of hyperparameters for the random forest model implemented 
using the New York and Massachusetts datasets.   

NY MA 

Number of trees 1000 500 
Maximum features 4 6 
Maximum depth 12 9  
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more children have greater number of tests). 2) Low-income minorities 
tend to have higher fertility rates (Baughman and Dickert-Conlin, 2009) 
and this population disproportionally suffers from elevated BLLs 
(Hauptman et al., 2017). Thus, it may be the case that a town/city with 
more children is more likely to have more cases of elevated childhood 
BLLs because more children might indicate less wealth and the presence 
of minority communities. 

Other important features in both random forest models include 
housing metrics. These results were expected and have been proven to 
correlate to childhood elevated BLLs in multiple studies. In the case of 
the Massachusetts RF model, the percentage of pre-1978 housing units is 
an important feature, which was also expected because old housing is 
more likely to have lead plumbing and lead paint, two major sources of 
lead exposure. In the case of the New York model, we did not have access 
to housing construction year; however, we used Housing Price Index 
(HPI) as a proxy. As shown in Fig. 5, this index is an important source of 
information gain in the New York model, indicating that it might be a 
useful variable for predicting elevated childhood BLLs. Finally, lead 
levels in schools’ drinking water were not an important feature ac
cording to the Gini index. This might be because drinking water is not 
usually the main source of lead exposure in children (Dignam et al., 
2019) and because school water quality does not directly impact chil
dren under 4 or 5 years of age. These children usually consume water in 
their homes; however, there are no available public records of 
lead-levels in household water supplies. It is likely that the housing data 
used in the model (housing construction date and HPI) indirectly pro
vides information of lead exposure from drinking water at a household 
level. This is because old buildings are more likely to have lead pipes 
(Abernethy et al., 2018), which is the main source of lead in drinking 
water. 

3.4. Feature importance analysis using a logistic regression 

Even though the Gini index provides information about the impor
tance of each feature, it does not inform on how each of them affect the 
outcome of the model in terms of magnitude and sign. Given that the 
logistic regression model provided good results in both datasets during 
cross validation (see Fig. 3), we ranked the features based on the 
magnitude of the regression coefficients to gain insights into how each 
feature affects the outcome of the model but presented our results to also 

differentiate them by the direction (color-coded for positive or negative) 
of the influence on the final resulting prediction. These results are shown 
in Fig. 6. 

As seen in the figure, and just like in the random forest model, 
housing information (HPI and pre-1798 housing) is a very important 
feature. As expected from prior more narrow studies, HPI is negatively 
related to childhood elevated BLLs, while pre-1798 housing is positively 
related to it. Prior literature strongly suggests that older houses, which 
usually have a lower HPI index, may be sources of lead exposure. In both 
models, race-related features also behave as expected from prior nar
rower literature: the percentage of White and Black populations are 
negatively and positively related to childhood lead exposure, respec
tively. Furthermore, the prior known fact emerges from both models 
that low-income communities are disproportionately exposed to toxic 
levels of environmental lead. Prior researchers have documented in the 
literature that low-income minority groups tend to have higher rates of 
childhood lead exposure (Sampson and Winter 2016). Finally, both 
models agree that lead in school drinking water is less important than 
other features for children of age 4–5 years (in the New York model this 
feature is even negatively related to lead exposure). However, the 
importance of lead in drinking water as a source of childhood lead 
exposure cannot be disregarded based on these results as we do not have 
direct information on household water quality. 

3.5. Illustrative example of model implementation in New York city 

The zip code-level RF model, previously trained with data from the 
entire State of New York, excluding New York City, was used to predict 
the probability that over 6% of the children residing in each zip code in 
New York City have elevated BLLs (BLLs >5 μg dL− 1). The resulting 
probabilities are shown in Fig. 7. As seen in the figure, our model pre
dicted that most zip codes in New York City are not at risk of having over 
6% of children with elevated BLLs. This is consistent with the average 
1.73% of children 2015 with elevated BLLs in New York City (New York 
City Department of Health and Mental Hygiene, 2020). However, the 
map shown in Fig. 7 has two high risk areas (shown in orange) which are 
located in the Brooklyn and Queens boroughs. These two boroughs ac
count for most of the cases of elevated BLLs in New York City children, as 
measured by NYC Environment & Health (New York City Department of 
Health and Mental Hygiene, 2020). Furthermore, the neighborhoods in 

Fig. 4. Box plot of the F1 score and the Area Under the Receiver Operating Characteristic (ROC AUC) and Precision-Recall (PR AUC) curves for 1000 instances of the 
model using the (a) New York and (b) Massachusetts datasets. The performance of the model is excellent for both the New York and Massachusetts datasets; however, 
more variability is observed when using the Massachusetts dataset, for reasons discussed in the text. 
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Brooklyn and Queens with the highest rate of children with elevated 
BLLs in 2015 were Clinton Hill and Jamaica, respectively (New York 
City Department of Health and Mental Hygiene, 2020), both of which 
are contained within the orange areas shown in Fig. 7. 

Using Eq. (3) for every zip code, we estimated the expected child
hood elevated BLL exposure rates, expressed as cases per 1000 children, 
for every borough in New York City. These modeled results, as well as 
the measured childhood elevated BLL exposure rates are shown in Fig. 8. 
As seen in the figure, the modeled results are within the standard error of 
every borough. The mean values between measured and modeled data 
are also similar, except for the Staten Island borough. However, the 
reported childhood elevated BLL exposure rates in this borough are 
likely unrepresentative of the population given the small sample size, 
which explains the large standard error. In fact, the data from two of the 
sampled neighborhoods in Staten Island have the following warning: 
“Estimate is based on small numbers so should be interpreted with 
caution”. 

It is worth noting that our model provided accurate BLL estimates for 
New York City even though this city has taken aggressive measures to 
combat childhood lead exposure (recall that the model was trained with 

state data, excluding New York City). In 2015, 2.8% of the children 
residing in the State of New York, excluding New York City, had BLLs 
over 5 μg dL− 1, one of the largest exposure rates in the US (Centers for 
Disease Control and Prevention, 2019). In contrast, on the same year, 
only 1.73% of the children residing in New York City had BLLs over 5 μg 
dL− 1 (New York Health, 2021). This is likely a result of wealth distri
bution: New York City is the wealthiest city in the State of New York 
(United States Census Bureau, 2011); thus, it has more resources to 
invest in the removal of potential lead sources. This effect was captured 
by our model, as wealth is one of the most important features for the 
model implemented with data from New York State (see Fig. 3). 

Of course, the map shown in Fig. 7 does not show any new infor
mation given that New York City already tests children for BLLs. How
ever, given that our modeled results closely match those reported in lead 
blood tests, we expect that this model may be trained with data from 
other states and then applied to cities within those same states where 
BLL testing data is lacking. 

Fig. 5. Top 15 most important features ranked according to the Gini Index 
when using the optimized random forest model with the a) New York and b) 
Massachusetts datasets. Race-related features are among the most important 
predictors of childhood lead exposure. 

Fig. 6. Top 15 most important features ranked according to the absolute value 
of the logistic regression coefficients when using the a) New York and b) 
Massachusetts datasets. The symbols placed in parentheses next to the feature 
names represent the positive (+) or negative (− ) influence of the regression 
coefficients. As in the random forest model, income and racial features have the 
largest weights; however, water quality and housing construction date are also 
important. All features were normalized before the regression so that their 
magnitudes can be compared. 
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3.6. Model limitations 

The RF models presented thus far were implemented by establishing 
an arbitrary exposure threshold T (1% and 6% for Massachusetts com
munities and New York zip codes, respectively) and the current CDC 
reference value of 5 μg dL− 1. It is likely that these models may be applied 
elsewhere and using different values for the threshold T; however, in all 
cases they must be retrained to account for socioeconomic differences 
and their effect on lead exposure rates. We hypothesize that other 
reference values for determining whether children have elevated BLLs or 
not may also be used; however, this remains untested given that the 
datasets used only report the number of children with BLLs exceeding 5 
μg dL− 1. Given that the models rely heavily on socioeconomic features, 
we do not expect that a model trained with data from one state will be 
directly applicable to another state or country because different loca
tions have different policies to address childhood lead exposure. How
ever, training the model with partial data, like in the case of the state of 
New York, may provide useful insights into locations where BLLs have 

not been measured so that targeted testing and mitigation strategies may 
be implemented. 

Another disadvantage of relying on socioeconomic data is that the 
model does not directly reflect the mechanisms by which children ingest 
lead. Ideally, a model to predict childhood lead exposure will rely 
exclusively on environmental variables, such as lead in air, soil and 
drinking water. However, those variables are rarely measured, thus, 
socioeconomic features are needed because, unfortunately, they corre
late with lead exposure. We hope that environmental justice efforts will 
make models like the one presented in this study obsolete (income and 
race should not be related to BLLs); however, at present they constitute 
useful tools for predicting, and thus, preventing childhood lead 
exposure. 

While the model accurately predicts the risk of childhood lead 
exposure for a given area (zip code or community), it does not provide 
information regarding the variability within each area. This might limit 
its applicability in large and heterogenous communities where aggre
gated data fails to accurately describe the population. 

Finally, the current version of our model is also limited by the lack of 
publicly available data. For instance, water utilities in the US test for 
lead in drinking water in several locations yearly; however, they are 
only required to report the 90th percentile lead level, per the Lead and 
Copper Rule. Knowing the locations where high lead water levels were 
detected would provide invaluable information to models such as the 
ones presented in this study. Not only would this benefit modeling the 
impacts of lead in drinking water on childhood lead exposure, but it 
would also increase the transparency and accountability of water dis
tribution systems. Good quality BLL data is also scarce, as, to the best of 
our knowledge, only New York and Massachusetts have published data 
at a high enough resolution to be useful. Other states have published 
data at a county or state level, which are unsuitable for data science 
applications or even for people interested in knowing if their children 
are likely to have elevated BLLs or not. Making high quality BLL data 
public and easily accessible is not only key for the development of 
models like the one presented in this study but will also increase 
transparency and accountability of local authorities. 

4. Conclusions 

Even though this work focused on developing a machine learning 
model to predict elevated BLLs at an aggregate level in the states of New 
York and Massachusetts, we envision future applications in states that 
do not routinely monitor childhood BLLs. Only 14 states currently 
recommend universal screening (Michel et al., 2020), thus, this model 
has the potential to fill in the gaps in the other 36 states that perform 
partial screening. By testing a fraction of children in these states, this 
modeling approach may help identify areas at the state level where 
children are at high risk of having elevated BLLs so that targeted testing 
and mitigation strategies may be adopted. Moreover, the data collected 
can be can then be added to the training data, successively improving its 
accuracy. We believe that modelling approaches using machine learning 
have the potential to help identify and mitigate childhood lead expo
sure, a preventable heath crisis that affects the most vulnerable members 
of our communities. 
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Fig. 7. Predicted probabilities of childhood lead exposure (BLLs over 5 μg 
dL− 1) exceeding 6% in each New York City zip code. The areas with the highest 
modeled risk are in the Brooklyn and Queens boroughs. 

Fig. 8. Modeled and measured childhood elevated BLL exposure rate, 
expressed as cases per 1000 children, for every borough in New York City in 
2015. Standard error bars are shown for the measured data to account for 
differences in the number of children tested in each borough. The modeled 
results are within the standard error margins of every borough. 
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