

LBNL-48858

Computational Economy Improvements

in PRISM

Tonse, Shaheen R., Moriarty, Nigel W., Franklach,

Michael, Brown, Nancy J.

Environmental Energy Technologies Division

05/2003

The work was supported by the Office of Energy Research, Office of Basic Energy

Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S.

Department of Energy, all under Contract

No. DE-AC03-76SF00098.

ERNEST ORLANDO LAWRENCE

BERKELEY NATIONAL LABORATORY

DISCLAIMER

This document was prepared as an account of work sponsored by the United
States Government. While this document is believed to contain correct
information, neither the United States Government nor any agency thereof, nor
The Regents of the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof, or
The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity
employer.

Computational Economy Improvements in PRISM

Shaheen R. Tonse,a,∗ Nigel W. Moriartyb Michael Frenklach,a,b

and Nancy J. Brown,a

a Environmental Energy Technologies Division,

Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA.

b Department of Mechanical Engineering,

University of California at Berkeley, Berkeley, CA 94720–1740, USA.

Keywords: Chemical Kinetics, Response Surface

∗ Author for correspondence.

Telephone: Int + 1(510)486-4556

Fax: Int + 1(510)486-5928

Email: tonse@lbl.gov

May 7, 2003

1

Abstract

The PRISM piecewise solution mapping procedure is applied to reactive flow simulations of

(9–species) H2+air combustion. PRISM takes the solution of the chemical kinetic ODE system

and parameterizes it with quadratic polynomials. To increase the accuracy, the parameterization

is done piecewise, by dividing the multi-dimensional chemical composition space into hypercubes

and constructing polynomials for each hypercube on demand. The polynomial coefficients are

stored for subsequent repeated reuse. Initial cost of polynomial construction is expensive, but

it recouped as the hypercube is reused, hence computational gain depends on the degree of

hypercube reuse. We present two methods that help us to identify hypercubes that will ultimately

have high reuse, this being accomplished before the expense of constructing polynomials has been

incurred. One method utilizes the rate of movement of the chemical trajectory to estimate the

number of steps the trajectory would make through the hypercube. The other method defers

polynomial construction until a preset threshold of reuse has been met; an empirical method

which, nevertheless, produces a substantial gain. The methods are tested on a 0-D chemical

mixture and reactive flow 1 and 2-D simulations of selected laminar and turbulent H2+air flames.

The computational performance of PRISM is improved by a factor of about 2 for both methods.

2

1 Introduction

The study of combustion through finite-difference numerical simulations typically involves a mar-

riage of computational fluid dynamics (CFD) and computational chemical kinetics. The role of the

CFD includes determination of velocities, pressure, convection across cell boundaries, the equation

of state, the modeling of turbulence, and the diffusion of chemical species across cell boundaries.

The responsibility of the chemistry portion is to determine the changes in concentration of each

chemical species and enthalpy in response to the chemical source terms. This is usually accom-

plished through the solution of a system of coupled ordinary differential equations (ODE’s), one

for each of the chemical species and one for the enthalpy. It often proves to be computationally

expensive, e.g., combustion calculations with 3-D modeling domains and large chemical reaction

sets are not practical on today’s computers with the possible exception of supercomputers that have

very restricted availability. A substantial fraction of the computing resources are used for integrat-

ing the chemical ODE’s, e.g., a 2-dimensional calculation with the CFD portion performing all of

the above-mentioned tasks, and with the chemistry of a H2-air mixture, using a reaction set of 9

chemical species and 29 reactions, 85 to 90% of the CPU time is spent on the chemistry [1]. Yet

this hydrogen reaction set is a comparatively simple one and if the larger reaction sets with 500-800

chemical species for diesel combustion are used, the fraction of CPU time spent on chemistry is even

greater. A necessary solution to the enormous size of kinetic mechanisms for complex fuel oxidation

and pollutant formation is to employ a comprehensive reaction mechanism that has been systemat-

ically reduced in size from its original, fully detailed form. Identifying and eliminating unimportant

reactions and species is the major task of mechanism reduction, and must occur without sacrific-

ing accuracy. The question of how the required level of chemical detail changes with respect to

the species and combustion conditions must also be considered. Reduced mechanisms are usually

3

built within a hierarchical spectrum where the complexity of the mechanism is governed by the

level of detail required to answer specific questions regarding combustion performance or emission.

Quantifying the errors associated with using reduced mechanisms is challenging. Calculations for

low-dimensional combustion systems using both the comprehensive and reduced mechanism can be

compared for a range of conditions to begin to establish ranges of validity for the reduced mechanism.

For isolated cases, results of calculations for more complex combustion systems performed with both

comprehensive and reduced mechanisms can be compared using advanced visualization. Some of

the more advanced approaches offer the possibility of error control over limited domains. In order

to reduce the severity of a brute-force approach to chemical kinetics problems varied approaches are

used:

• Reduction of the reaction set, both in the number of chemical species and the number of

reactions, in a systematic way after examining sensitivities and reaction fluxes; [2–6]

• Steady-state and partial equilibrium approximations; [7, 8] Quasi-steady state assumptions

(QSSA) and partial equilibrium (PE) methods have been used widely to reduce mechanisms.

Using the QSSA requires identifying those species that react on a very short time scale rel-

ative to the other species. The QSSA is then used to derive explicit algebraic expressions

for concentrations of the QSS species that can be used to reduce the number of differential

equations used to describe the evolution of the chemical species in time. Partial equilibrium

approximations can also used to provide algebraic expressions for species concentrations. The

difficulty with these approximations is identifying species that are in quasi-steady state and

reactions that are in partial equilibrium as combustion conditions change. Reductions using

QSSA and PE approximations are usually carried out manually on smaller chemical models

referred to as skeleton models.

4

• The Intrinsic Low-dimensional Manifold Method [9–11] is based on a high-dimensional initial-

state reaction trajectory in combustion quickly converging to a low-dimensional manifold of

dimension nc, where nc � ns, the total number of species. The approach takes advantage of

the existence of many different reaction time scales for different species during the combustion

process.

• Computational Singular Perturbation [12] is also a reduction technique based upon classifying

reactions according to their time scales. During the various stages of combustion, fast reaction

groups can be excluded when they are completed. At some time only a small set of important

species remains.

• Using mathematical analysis methods to upgrade the perfomance of existing chemical kinetic

numerical solvers, through implemention of DAEPACK [13]. The performance is especially

impressive for large, sparse chemical mechanisms of several hundred species.

• Optimization Approach [14] A global reduction of the original system of chemical rate equa-

tions, replacing it with a reduced set which inherits the stability and the non-linear behavior

of the original set of equations.

• Principal Component Analysis [15], an eigenvalue-eigenvector analysis of the sensitivity matrix

of the normalized sensitivity coefficients and its transpose has also been used for mechanism

reduction. The eigenvalues provide an absolute measure of the significance of some parts of the

mechanism. The magnitude of the coefficients in the eigenvectors measure the importance of

the reactions for a given eigenvalue. Taken together, the eigenvalues and eigenvectors measure

the significance of reactions in the overall mechanism. Principal component analysis provides

an objective criterion for selecting a minimum reaction set by including only those reactions

5

which comprise the principal components. A bare-bones mechanism can be obtained that

might be used as the starting point of other mechanism reduction scheme. These methods

reduce the severity of the computational problem, but still require the solution of differential

equations.

Another class of methods used to reduce the costs of complex chemistry develops models to

mimic the time evolution of the ODE’s. In these approaches the time-integration calculation, which

dictates the evolution of the chemical kinetics over time interval ∆t, is viewed as a mapping from

one chemical composition (and temperature) to another:

F(Ct
1, C

t
2, . . . , T

t,∆t) → (Ct+∆t
1 , Ct+∆t

2 , . . . , T t+∆t) (1)

where Ct
i is the concentration of species i at time t. An inexpensive approximate mapping Φ with

a simpler functional form is then constructed, replacing F with:

Φ(Ct
1, C

t
2, . . . , T

t,∆t) → (Ct+∆t
1 , Ct+∆t

2 , . . . , T t+∆t) (2)

Approaches within this class include: Solution Mapping [16,17]; Piecewise Reusable Implementation

of Solution Mapping (PRISM) [18]; Fifth- to eighth-order polynomial parameterizations [19]; and

In situ adaptive tabulation (ISAT) [20, 21]. Laminar flamelet libraries [22] follow a similar philos-

ophy but output a flame speed rather than time-advanced chemical concentrations. Typically the

construction of a suitable model requires the solution of the chemical kinetics equations at several

discrete chemical compositions followed by a parameterization procedure to evaluate the solution

over a continuous range of input chemical compositions. Further utilization of the model does not

require additional ODE integration, and is far less expensive. Because of the strongly nonlinear

character of kinetics equations, Φ of Eqn. 2 is only valid for some localized neighborhood in chemi-

cal composition space; both the extent of this neighborhood and the order of the parameterization

6

control the model accuracy. As examples: in PRISM Φ is a set of quadratic polynomials defined

within a hypercube; in ISAT it is a set of linear polynomials defined within an ellipsoidal region.

A key question in justifying these approaches is whether there is sufficient reuse of these localized

neighborhoods to offset the initial construction cost.

In PRISM we describe the thermo-chemical state of a fluid with Ns species and reaction tem-

perature at any instant of time as a point r(t) ≡ (Ct
1, C

t
2, . . . , C

t
Ns

, T t), in C, where C is chemical

composition space of Ns+1 dimensions. A solution–mapping technique is used, in which the result

of a time-integration of the chemical rate equations is parametrized by a set of algebraic quadratic

polynomial response surfaces in C, i.e. the replacement of F by Φ. The solution–mapping is done

piecewise on hypercubes which partition C and contain a distinct Φ parameterization for each hy-

percube. In principle enthalpy could be used instead of temperature, and could be advantageous in

most systems as enthalpy varies only slightly in many systems. After much thought we chose tem-

perature as it is more naturally an independent variable, and it is explicitly present in the Arrhenius

rate equations whose time-integrals are being approximated by the polynomials. Additionally, the

CFD codes we use provide temperature rather than enthalpy as an input variable. The conversions

between temperature and enthalpy would add an additional efficiency penalty to the polynomial

evaluation.

As an example, a pure chemistry case with zero spatial dimensions has a single chemical tra-

jectory governed only by the chemical ODE system. Evolving a concentration through time in this

manner entails successive evaluations, with the response from one time-step used as input for the

next. The location of the initial point r(t0) ≡ [Ct0
1 , Ct0

2 , . . . , Ct0
Ns

, T t0] determines the first hypercube

for which polynomials are to be constructed. Perhaps for a few time-steps the polynomials of this

hypercube will successively map

7

Φ(r(t0),∆t0) → r(t1), where t1 = t0 + ∆t0,

Φ(r(t1),∆t1) → r(t2),

Φ(r(t2),∆t2) → r(t3) . . .

all the while remaining in the same hypercube, but at some time t = tn, the solution r(tn+1) will

fall outside the hypercube. Figure 1 depicts this with an example that uses two chemical species,

where the hypercubes are squares. When the solution falls outside the hypercube we must determine

within which new hypercube the point r(tn+1) lies, construct new polynomials for it, and so on.

[Figure 1 about here.]

In a previous study [18] we simulated laminar premixed and turbulent non-premixed H2+air

combustion and saw a factor of 10 speedup when comparing the cost of a single polynomial evaluation

to a single ODE time-integration. Recent algorithmic improvements have since raised this factor

to 15. This gain was offset slightly by the cost of constructing the polynomials for the hypercubes,

which imposed an initial investment that yielded returns as the polynomials were reused multiple

times. Mean reuse rates of several thousand per hypercube were observed, ample to recover costs,

since cost-effectiveness was achieved at a reuse rate of 266 for the H2 reaction set. The reuse

distribution was a skewed distribution, with a large number of hypercubes having very low reuse

(less than 10). The mean usage was increased by a smaller number of highly reused hypercubes.

For the low reuse hypercubes it would be far more efficient to use the ODE solver directly rather

than construct polynomials.

In this paper we investigate two methods to exploit the skewness of the reuse distribution. The

first method makes an a priori estimation of the number of expected reuses to identify hypercubes

that will ultimately not be used much. A hypercube can have a high degree of reuse as a result

of being in a part of C where trajectories move relatively slowly, and thus take many steps as they

8

move through the hypercube. The method anticipates high reuse by utilizing the rates at which

trajectories are moving, to calculate a trajectory “velocity” VTr, either using solely chemical rate

information, or by including the contribution to trajectory displacement from CFD effects. The

resulting quantity VTr is then combined with an estimated trajectory length through the hypercube

to determine the number of expected reuses, NER. On the basis of NER we decide whether or not

polynomial construction is worth the expense.

The second method takes advantage of the shape of the distribution to defer polynomial con-

struction for a hypercube until a certain number of reuses has occurred. Until then the ODE solver

is called. Although it appears that this method has the disadvantage that the reuse distribution is

not known until the problem has been run once, in practice this is not serious since simulations are

frequently re-run with small changes in input parameters and the shape of the reuse distribution

does not change significantly between runs. All the reuse distributions we have encountered during

the course of simulations are amenable to this method.

In Section 2 we briefly review the PRISM method and describe the two new methods by which

hypercube reuse is improved. In Section 3 these methods are applied to four cases: a point reaction

case with zero spatial dimensions and 3 CFD simulations: a 1-D laminar premixed H2+air flame, a

2-D premixed H2+air turbulent jet, and 2-D non-premixed H2 and air turbulent jets. Notation is

defined in Appendix A.

2 Method

2.1 Prism Overview

Solution mapping [16, 17] makes numerical chemistry calculations more efficient by parameterizing

the time–integration of the chemical rate equations with a set of algebraic polynomial response

9

surfaces in chemical composition space C. We partition C into non-overlapping adjacent hypercubes

with a distinct polynomial parameterization for each. The hypercube edges and corners are restricted

to regular intervals along the axes. This allows us to use a simple indexing for each hypercube,

that permits fast and efficient searching when locating a hypercube. Calculations for a hypercube

are not performed, and storage is not allocated, until a reaction trajectory enters it for the first

time. Once calculated, polynomials are stored in a data structure, to be retrieved whenever the

time evolution of a composition within that hypercube is required. All calculations and hypercube

positions use log(concentration) and reciprocal temperature because the underlying chemical rate

equations typically conform better to a quadratic model under this transformation.

To parameterize the response of the time-integration, the ODE solver is called at selected points

within the hypercube. Each point corresponds to a set of input concentrations, a temperature,

and a time-step length. These input concentrations and temperature are propagated by the ODE

solver over the specified time-step length, returning a set of final concentrations and temperature

(responses) at each point. A quadratic regression is applied to each response, resulting in a set

of Ns+1 polynomials for the hypercube. These Ns+1 polynomials taken together comprise the

inexpensive mapping (see Eqn. 2) and determine the time evolution of any input point located in

the hypercube. By evaluating them using the initial concentrations, temperature and time-step

as input variables, we obtain as responses the concentrations and temperature at the end of the

time-step. The polynomial coefficients and hypercube coordinates are stored in a data structure for

subsequent reuse. Detailed descriptions of the steps of the procedure follow.

10

Polynomial Construction

The Ns+2 dimensional space is divided into hypercubes of a predetermined size, with one axis as-

signed to each species, one to temperature, and one to the time-step ∆t. This last dimension has

been added as a convenience so that ∆t can be treated as a continuously varying input variable.

The concentrations and the time-step are transformed into their logarithms and temperature into

its reciprocal, a choice that reflects the Arrhenius form of the reaction rate equation. This trans-

formation produces a better quadratic parametrization; for instance, use of reciprocal temperature

results in error reduction of approximately 30%.

Determination of the polynomial expression begins by locating the hypercube in which the given

input point sits. Once this has been done, to parametrize the response of the ODE system, the

ODE solver needs to be called repeatedly at selected points about the hypercube. Each point

corresponds to a set of concentrations, a temperature and a time-step length. The concentrations

and temperature are propagated by the ODE solver for the length of time specified, returning a set

of concentrations and temperature.

In order to produce a quadratic polynomial of Nv = Ns +2 variables with 1+Nv + 1
2Nv · (Nv +1)

constant, linear and quadratic coefficients, we use the methods of surface response theory to ensure

that number and placement of the points preserves the coefficient resolution, i.e., the ability of the

regression algorithm to accurately calculate coefficient values of the order required. The optimal

placement of these points in our problem is determined by the use of orthogonal composite designs

based on the 211−4
V fractional factorial design [23]. The points are largely on corners of the hypercube,

with an additional point at the hypercube center and one more outside each face, known as a star

point (see Fig. 2 for a diagrammatic 3 D representation). The superscript on the design nomenclature

indicates the number of points on the corners and the Roman numeral subscript is a measure of

11

the mixing of the polynomial coefficients. The design 211−4
V has 128 points on the corners, with

the center point and 22 star points increasing this to 151. Orthogonal designs have an important

numerical advantage because determination of the polynomial expressions from the computed data

points uses a diagonal covariance matrix, thus avoiding the general solution of the normal equations.

[Figure 2 about here.]

We found it useful to shift the corner points slightly toward the hypercube center because

placing a point exactly at a corner wastes resources by unnecessarily parameterizing space outside

the physical hypercube. By trial and error we found that reducing the distance of these points to

the hypercube center by 25% maximized the accuracy.

To obtain the concentrations, Ct+∆t
i , and temperature, T t+∆t, at the end of a time-step, the

construction process results in a polynomial expression composed of quadratic terms of each species

concentration, Ct
i , the temperature, T t, and time-step, ∆t. Thus the concentration of species i,

Ct+∆t
i , is given by:

log Ct+∆t
i = ai,0 +

Ns∑
j

ai,j log Ct
j + ai,Ns+1

1
T t

+ ai,Ns+2 log ∆t

+
Ns∑
j

Ns∑
k≤j

ai,jk log Ct
j log Ct

k + ai,Ns+1 Ns+1
1
T t

· 1
T t

+ ai,Ns+2 Ns+2 log ∆t · log ∆t

+ cross terms between the Cj , T, ∆t (3)

where ai are the polynomial coefficients determined in this procedure. The number of the coefficients

in this quadratic polynomial of Nv = Ns+2 = 11 independent variables is 1+Nv+ 1
2Nv ·(Nv+1) = 78,

which accounts for constant, linear and quadratic relationships between variables. It is now possible

to evaluate the Ns+1 polynomials and obtain the time evolution of any input point within the

hypercube.

12

Hypercube Storage and Retrieval

We now organize hypercube information for placement into a data structure for future re-use. First

the hypercube is indexed via the coordinates at its center (concentrations, temperature and ∆t)

and because we have restricted hypercubes to lie only at regular positions, the indices have simple

integer values. A key is constructed by concatenating the indices in each dimension in a way that

is reproducible and unique. The information placed in the data structure consists of this key, the

hypercube size and position, and the polynomial coefficients for Np=Ns+1 polynomials in Nv=Ns+2

variables. The number of coefficients is:

Np ×
[
1 + (Nv) +

(Nv)(Nv + 1)
2

]
(4)

Multiplying Np by the floating point representation size (8 bytes) gives a memory requirement of

about 8 kilobytes per hypercube for Ns=9, of which the coefficients account for the major portion.

The data structure complex consists of a memory-resident binary search tree, a memory-resident

doubly linked list and a direct access disk file, all associated through cross-referencing pointers. The

binary tree has the key of a hypercube at each node. During a search for a hypercube, when a

key is matched, the polynomial coefficients are retrieved from either the memory-resident list or

the disk file. Additionally, the hypercubes can be stored on disk between simulations and reused

in subsequent runs that have the same reaction set and differ only slightly in physical conditions,

giving a substantial saving on repeat calculations.

In summary, given a point rt(C1
1 , Ct

2, . . . , C
t
Ns, T

t) and a time-step ∆t, the PRISM procedure is

comprised of the following steps:

1. Determine within which hypercube it lies and calculate the key.

2. Traverse binary search tree and search for the key.

13

3. If key is found retrieve the coefficients from either memory or disk. If key is not found,

construct polynomials.

4. Evaluate the polynomials to obtain rt+∆t = φ(rt,∆t).

Accuracy

For PRISM to be useful it needs two qualities: accuracy and economy. The second is quite obvious:

a significant calculational speedup is all that is required, and we discuss this later. The question of

accuracy is more difficult to quantify. What is an acceptable error per time-step? Do these errors

propagate in simulation time giving increasingly inaccurate results? If so, can these errors be reduced

to provide sufficiently accurate results? The issue of errors is quite challenging for time-dependent

because we cannot recognize an unacceptable solution unless it appears physically implausible.

A measure of accuracy available at the moment of construction would be very helpful to gauge

the validity of a hypercube’s polynomial expressions. Since we determine the exact solution at

many points within the hypercube during the polynomial construction phase, we simply evaluate

the polynomials at the same points to obtain the relative error and use the root mean square of the

residuals as a measure of accuracy of the hypercube.

We apply a conservative criterion for local accuracy that is chosen to preserve a high level of

global accuracy. Specifically, we require that each species within a hypercube has a relative error

in molar concentration of less than 5 × 10−3 and an absolute error of less than 10−4 times the

sum of all the molar concentrations. For our case studies we find that < 5% of the hypercubes

are not sufficiently accurate when these criteria are applied. When a polynomial fit is rejected

by the error criteria, the hypercube is tagged as being “inaccurate”, and subsequently the ODE

solver is used instead of evaluating the polynomial. Therefore, an inability to meet the accuracy

14

requirements has consequences only for the economy of the method, specifically only the cost of

constructing polynomials is wasted, but the accuracy of the simulations is not sacrificed. A small

fraction of “inaccurate” hypercubes actually suggests optimal hypercube size has been achieved

since it indicates that the hypercubes have not been sized too small. This approach to error control

maintained global concentration errors of 0.1–0.5% in the present computations. The factors that

influence the accuracy of the polynomial expression are:

Hypercube size: Accuracy improves as hypercube size decreases and parametrization becomes

more accurate. The hypercube should be as large as possible without accuracy being sacrificed

because this reduces the total number of hypercubes, e.g., filling a given region of space with

hypercubes of half the size would require 2Ns+2 as many hypercubes! With respect to expense of

generation as well as storage requirements, larger sides are advantageous. Table 1 indicates the

trend of decreasing error with decreasing edge size, as illustrated on lines 1,2, & 3, where the size is

varied from 0.25 to a full order of magnitude. Independently we have also varied the temperature

interval, (see lines 1,4 & 5) and observe the same behavior. We note that the hypercube sides can be

relatively large, 0.25–0.5 of an order of magnitude in concentration and time-step, and 10–20 K for

temperature. This is of course dependent on the chemical mechanism, temperature and pressure.

We have found that this resolution holds for all our case studies where temperature varies from

300K–2000K, pressure is atmospheric, and in the non-premixed case where there is a range of local

stoichiometries.

[Table 1 about here.]

Number of points: The accuracy also depends on the number of points used in the polynomial

fitting procedure. Decisions that affect the number and placement of these points are described

15

earlier in sub-section 2.1. Lines 1,6 & 7 of Table 1 show the degradation of accuracy as the number

of points is decreased. For our 11 dimensional application we changed the number of points used

and considered 151, 87 and 55 points. Increasing from 87 to 151 points slightly improves accuracy,

and decreasing to 55 points reduces accuracy significantly.

Enthalpy and elemental mass conservation: We are able to take advantage of the conservation

relations that constrain the problem of intent. The mapping of a point over a time-step should

conserve both total enthalpy and number of atoms of each element involved. While the ODE solver

that supplies the points conserves these quantities very well, the resulting fitted polynomials do not

always do so and the resulting solution is a small distance from the exact final solution. Part of the

inherent accuracy loss in using a parametrized polynomial may be restored by enforcing conservation.

In Ns+1 space the exact reaction trajectory of the system will always follow a hypersurface on which

enthalpy and mass are conserved. By applying mass and enthalpy conservation our final point is

shifted back onto that hypersurface, not necessarily onto the exact final point but hopefully closer

to it. (We have an under-determined system with Ns+1 variables but only Nelem+1 conservation

equations where Nelem is the number of elements in the system.) We impose conservation after

the polynomial has been evaluated by adjusting the final values of the species concentrations using

a simple approach consisting of the following steps: (1) Set up Nelem+1 conservation equations;

(2) allow Nelem+1 species concentrations to vary, requiring that the remaining concentrations be

constant; (3) solve the resulting Nelem+1 simultaneous linear equations. The choice of species to

be designated as variable is particularly important, and our criterion is to keep to a minimum

the relative change in species concentration that occurs after the linear system solution. For each

conserved element, the algorithm selects as a variable, the most abundant species which contains that

element. Since we have an additional equation for enthalpy conservation, of the remaining species,

16

that with largest concentration is also chosen as a variable regardless of its elemental makeup.

The computational costs for polynomial construction, polynomial evaluation and ODE integra-

tion are specific to the H2+air chemical mechanism and the order of factorial design utilized, but

not strongly dependent on the simulation’s physical conditions, e.g., they do not vary much between

a 0-D simulation and a 2-D turbulent jet. The factorial design dictates the number of ODE calls

to be made during polynomial construction. The costs of ODE time-integration and polynomial

evaluation both depend on the chemical mechanism. The relative computational costs, specific to

the H2 reaction set, for polynomial construction, polynomial evaluation and ODE integration are

in the ratio 266 : 1
15 : 1. PRISM is intended for use in an operator-split CFD simulation where the

response from a PRISM operation is passed through several CFD operations, such as diffusion and

convection, and their output is used as input for the PRISM in the next time-step.

2.2 Trajectory Velocity (VTr) and Expected Reuse (NER)

This method aims to identify hypercubes that have high reuse by predicting the number of time-steps

(defined as Number of Expected Reuses: NER) taken when the chemical trajectory enters a new

hypercube, and at that time deciding whether or not to construct the hypercube’s polynomials. In

short, this is accomplished (described below) by dividing the expected length of trajectory through

the hypercube by the expected length for each time-step. The NER calculation costs significantly

less than polynomial construction.

We define trajectory velocity VTr as a vector in C, with each component (VTr)i being the net

rate of change of the ith species, calculated from the sum of the rates (ω̇ij) of the reactions that

contribute to its production: (VTr)i =
∑26

j=1 ω̇ij , where the total number of reactions in this particular

mechanism is 26. Multiplying VTr by the time-step, VTr ·∆t gives a first order approximation to the

17

trajectory displacement vector in C. A second approach, more accurate and expensive, but still small

compared to the cost of polynomial construction, is to integrate the ODE over a single time-step ∆t.

In between these two extremes are other possibilities, such as linearly extrapolating VTr to the point

where it exits the hypercube and taking the average of the initial and final values, or using the value

of VTr at the center of the trajectory, and so on. These various possibilities for VTr were evaluated

and we selected the simplest, first order method as there was insufficient improvement to justify the

more complicated methods. The cost associated with this method is derived from the chemical rate

contributions to species production, and is much less than the cost of polynomial construction, or

even that of an ODE call. The three costs are in the ratio 1
7 : 266 : 1 respectively.

In addition to the trajectory length of the time-step | VTr | ·∆t, we require the expected trajectory

length through the hypercube. To estimate transit length, we linearly extrapolate the trajectory

entry point coordinates in the direction vector of VTr until it exits the hypercube and define

NER ≡
trajectory length

| VTr | ·∆t
(5)

Whenever the trajectory enters a new hypercube we calculate NER. If NER is above break-even

usage, (≈ 250) we proceed to construct polynomials for the hypercube and store them in a data

structure. If NER does not meet the usage requirement we do not construct polynomials as we

would not recover the polynomial construction costs. The hypercube is flagged as “ODE only”and

subsequent visits from a chemical trajectory to this hypercube result in an ODE time integration.

Up to this point VTr has been derived using trajectory movement solely from chemical rates.

In some of our case studies, the influence of CFD on trajectory movement through C is significant.

For these we replace | VTr | ·∆t with the combined displacements of the CFD and the chemistry

contributions, done by measuring the displacement of a trajectory from one time-step to the next.

Since the hypercube is often accessed by more than one CFD grid cell, it is necessary to associate the

18

CFD cell with the trajectory, by using the CFD grid indices. We acknowledge that it is undesirable

for the chemistry module to require any knowledge of the CFD solver, beyond the chemical state at

the beginning of the time-step and the time-step length itself. Often, for any particular hypercube we

are simultaneously measuring reuse from the trajectories of up to 20 CFD cells at a given time and we

must determine if any of these has sufficient expected reuse to warrant hypercube construction. As

a result we need to differentiate between them. The chemistry module’s knowledge of the external

CFD solver is used solely for book-keeping purposes and does not affect any internal chemistry

calculations. When a trajectory enters a hypercube the chemical mixture and cell index are stored.

On the next time-step if the trajectory from the same CFD cell remains in the same hypercube,

then the displacement in C is calculated. Using the same linear extrapolation idea as for the purely

chemical case above we then calculate NER. This modification shows improved accuracy over the

purely chemical version, but there remain hypercubes where actual reuse NAR far exceeds NER.

The majority of hypercubes with this behavior are visited by trajectories from large numbers of

CFD cells (> 20). For these cases the first trajectory into the hypercube, (which is the one used to

calculate NER) is likely not the one that uses the hypercube the most. A later trajectory hits the

hypercube at a location where it has a much smaller trajectory velocity and this is the trajectory

that carries the most weight in determining hypercube usage. This later trajectory would give a

better estimate of NER. To take advantage of this we modified our procedure so that if a hypercube

fails the NER cut, the ODE solver is called, but NER calculations continue to be performed for

later trajectories entering the same hypercube. If one of them passes the cut, then polynomials are

constructed.

The length of the timestep is also treated as a hypercube dimension (see Eqn. 3). Possible

changes in it are not treated by the VTr method and could conceivably result in a hypercube with

19

a slow VTr being used less than foreseen. A large change in ∆t caused by a sudden fluctuation in

fluid conditions could result in many constructed hypercubes ceasing to be used. The value of ∆t

is handed down by the parent CFD code.

2.3 Deferred Polynomial Construction (DPC) Method

Our objective here is to study the consequences on computational expense of deferring the construc-

tion of polynomials for a hypercube until it has first been reused a certain number of times, ND. In

the interim the ODE solver is called to advance the trajectory through the hypercube. The criteria

to determine ND are cost-based; waiting until ND reuses have occurred eliminates polynomial con-

struction for hypercubes with reuse less than ND, but simultaneously increases the cost associated

with the remaining hypercubes by subjecting them to unnecessary ODE integrations.

Consider a hypercube reused N times. If N is less than ND the total cost is that of calling the

ODE solver N times: CODE ·N . If N is greater than ND the cost has contributions from calls to the

ODE solver (CODE), then polynomial construction (CPC), and subsequent polynomial evaluation

(CPE): CODE ·ND + CPC + CPE · (N −ND). For a set of hypercubes whose reuse distribution is

denoted f(N) the total cost is obtained by convolving the cost with f(N):

Total cost =
∫ ND

0
CODE · f(N)NdN +

∫ Nmax

ND

[CODE ·ND + CPC + CPE · (N −ND)] · f(N)dN (6)

Here Nmax is the upper limit of f(N) and we take the liberty of replacing the summation by an

integral in light of large values of N . Note that setting ND = 0 reduces Eqn.6 to the special case

where polynomial construction is not deferred.

To gain some insight into the problem we chose several several simple functions for f(N), and

analytically evaluated and differentiated Eqn.6 with respect to ND to find the value of ND which

resulted in minimum cost. Function #1 was a constant straight line function; functions #2–5 all

20

decreased with increasing N, either exponentially, linearly, or as the reciprocal of a power. Table 2

shows whether such cost minima existed, and if so, their location.

[Table 2 about here.]

For the flat function (#1) and the exponential (#2), minima were never found. This was not a

surprise for function #1, as we intuitively expect to find minima only in cases where f(N) is large

for small N and drops sharply. However, the lack of a minimum for the exponential tells us that

we also need substantial counts at large N : exponential forms decline too quickly. For the linearly

declining (#3) and the two reciprocal power functions (#4,5), minima exist. For #3, ND ≥ NB

(the break-even usage) while for #4,5 it lies between 1 and NB. Additionally, for #3 Nmax must be

greater than 3NB, explicitly indicating that the tail must be significant. The minima in all these

cases occur as a result of opposing contributions from:

• hypercubes with N < ND (which never undergo polynomial construction)

• hypercubes with ND < N < NB (for which polynomial construction is a waste, but is done

anyway)

• hypercubes with N > NB (for which polynomial construction is beneficial)

The relative populations in these groups depend on the shape of the function and the parameters

ND and Nmax. This exercise with analytical functions gives us valuable insight into the shapes of

reuse distributions that would benefit from a DPC cut. It also tells us that the value of ND is close

to NB. We also note that the minima are shallow, which implies that searching for the most optimal

ND will not net us much more gain than simply setting ND to a reasonably close value, such as

NB. Using the definitions and derivations in Appendix B we develop a simple formula which shows

21

the computational gain that results from moving from ND=0 (no DPC) to ND=NB, for any simple

integrable f(N):

Computational Gain = CPC[N<(1− N<

NB
)−N>] (7)

Using this, a PRISM user can determine whether it is worthwhile setting the deferred polynomial

construction threshold to NB given any hypercube reuse distribution f(N). The quantities in Eqn. 7

are easily determined from f(N). There may have been a more optimal value of ND somewhere

between 0 and NB but it would take far more effort to extract it. A look at Eqn. 7 tells us that

unless f(N) has N< → NB or unless N< and N> are comparable, the gain should be substantial.

[Figure 3 about here.]

In Figure 3 we show the reuse distributions from two of the simulations that we have run. (During

the simulation, hypercube reuse statistics are gathered, and at the end a hypercube reuse frequency

distribution is plotted.) Both distributions have the properties necessary to make the DPC method

practical: a large number of hypercubes with very low reuse and a tail (in excess of an exponential

drop) at very high reuse.

3 Results and Discussion

The VTr and DPC methods are tested on 3 different time-evolving reactive flow simulations. The

Coyote CFD code [24] is used, within which the chemistry calculation uses the DVODE differential

equation solver [25] and the CHEMKIN thermodynamic library [26]. An additional 0-dimensional

chemistry-only case is run for the VTr method. All simulations use the 9-species H2+air reaction set

described in Table 3, obtained by removing carbon from the GRI-Mech 2.11 mechanism [27]. The

factorial design for constructing hypercubes (211−4
V) uses 151 points, with hypercube side lengths of

22

0.1·log10(concentration) for the 3 major species H2, O2 and H2O, 0.25·log10(concentration) for the

other species, 20 K for temperature and 0.2·log10(timestep). These values are chosen for reasons of

accuracy.

For each case we show how the 2 methods result in fewer polynomial being constructed, and the

resulting computational gain will be shown on plots of CPU time vs. timestep number. Only the

portion of CPU time utilized in chemistry calculations is reported.

[Table 3 about here.]

Zero-Dimensional

The first example considers premixed combustion purely in chemical composition space C, with zero

physical dimensions so that the reaction trajectory is determined solely by chemical kinetics. The

initial mixture is stoichiometric H2-air at 1200 K, high enough for burning to commence. The time-

step is fixed at 10−7 s. Once the simulation is started the fuel is consumed and the system comes

to rest adiabatically at an equilibrium temperature of 2819 K after 250 µs.

[Figure 4 about here.]

Figure 4a shows the correlation of NAR with NER, with many points falling on the dashed line (NAR

= NER). The actual hypercube reuse, NAR has integer values, while NER can have fractional values.

Since for a 0-D calculation there is only one trajectory, NER was recalculated for each timestep

through each hypercube and the value plotted was the largest NER encountered by the trajectory

during the traversal of each hypercube.

23

1-Dimensional Laminar Flame

The second example is a more complex system that includes the influence of convection and diffusion

between CFD grid cells: a propagating premixed 1-D laminar flame. The physical configuration is

a 1 cm long (200 CFD grid cells) tube, closed at one end and open at the other end to atmospheric

pressure. A small portion of the tube near the open end is filled with hot burned gas, while the

remainder is filled with unburned stoichiometric H2-air at room temperature. A flame forms at the

interface between the burned and unburned gas mixtures and propagates toward the closed end.

During the simulation NER is calculated when a hypercube is first used, and at the end the reuse

statistics for all hypercubes are gathered, giving us their respective NAR. Figure 4 shows the effect of

including or excluding the effect of fluid mechanics on trajectory movement from th NER calculation.

Examining a plot of NAR against NER, (Figure 4b) where NER is calculated solely using chemical

information, reveals that NAR and NER exhibit less correlation than seen in the 0-dimensional case

(Fig. 4a). The correlation is improved if NER is calculated taking into account the effect of fluid

mechanics on trajectory movement (Fig. 4c). The overall effectiveness of the method is illustrated by

Fig. 5a which shows accumulated CPU time in seconds vs. timestep number for different cases. The

expense is highest when using an ODE solver instead of PRISM to advance the chemistry. The CPU

time per timestep is reflected by the slope of this curve, which increases slightly as the simulation

progresses, due to the decreasing number of CFD cells containing cool, unburnt gas as the flame

front progresses down the tube. For PRISM with no NER or DPC requirement, (labeled “no cut”)

there is a sharp initial rise caused by the expense of polynomial construction for approximately 3000

hypercubes early in the run; subsequent CPU time is used mainly for polynomial evaluation. This

is because for a premixed 1-D laminar flame with approximate translational symmetry nearly all

of active C is accessed early. At later times as the flame propagates through the mixture it has

24

translational symmetry and so covers about the same portion of C as it did earlier. The simulation

was run for 90000 time-steps with almost all hypercube construction in the first 5000 timesteps. The

slope at later times is less than that of the ODE curve, as polynomial evaluation is less expensive

than ODE time-integration. The case requiring hypercubes to have NER > 250 before allowing

polynomial construction results in polynomials being constructed for far fewer hypercubes so that

the initial rise is smaller. The total CPU time for this is only about half of that for the “no cut”

case.

Good performance is also seen from the DPC method which does not construct polynomials

until a preuse threshold (set equal to the break-even usage NB) has been met. NB depends mainly

on the chemical reaction set, and is 266. Figure 5a shows the accumulated CPU time. As with

the NER > 250 case, far fewer polynomials are constructed, resulting in a smaller initial rise. At

later times the slopes of the NER, DPC and “no cut” cases are nearly the same, indicating that we

are correctly rejecting the hypercubes that should be rejected and retaining those that should not.

Table 4 summarizes the performance with information on number of hypercubes constructed, their

mean reuse, CPU time used in chemistry, and total CPU time.

[Figure 5 about here.]

[Table 4 about here.]

2-D Axisymmetric Premixed Turbulent Jet

As a third example we have simulated a premixed H2+air 2-D turbulent jet, starting from a quiescent

non-combusting state and proceeding until a turbulent flame has developed. For this and the

following non-premixed case study, an LES turbulence model [28] is applied in Coyote in which sub-

grid features are modeled with flux-gradient approximations using an eddy viscosity. The sub-grid

25

length-scale filter is about 3 times the CFD cell size. The physical configuration is a cylindrically

symmetric chamber of radius 8 cm and height 20 cm, with the inlet at the center of the base and

open at the top to atmospheric pressure. The inlet conditions are stoichiometric H2+air at 21 m/s

and 300 K from a jet of radius 0.35 cm. The chamber is initially filled with air at 300 K with the

exception of a “hot-spot” of air at 1600 K placed near the fuel jet, to initiate combustion. The

simulation was run for about twice the time needed to reach a steady state.

Figure 5b shows the accumulated CPU time curves for the same 4 cases as were shown in the

laminar flame. The DPC method gives the best result. At timestep 30000 (about the time steady

state was reached) the ratio of total CPU times between the DPC and “no cut” curves was 0.6. At

timestep 60000 the ratio was 0.7. Again, Table 4 summarises the cases with information on number

of hypercubes constructed, their mean reuse, and CPU times.

2-D Axisymmetric Non-premixed Turbulent Jet

The final example is a non-premixed 2-dimensional turbulent jet with coaxial H2 and air inflows,

starting from a quiescent non-combusting state and proceeding until a turbulent flame has developed.

The physical configuration is similar to that above, except that there are two concentric inlets at

the center of the base, with H2 at 21 m/s and 300 K in the inner jet of radius 0.35 cm, and air at

1 m/s and 300 K in the outer jet, which has radial extent from 0.5 to 8 cm. We run for about twice

the time needed to reach a steady state.

Figure 5c shows the CPU usage for the “no cut,” NER > 250 and DPC cases. The NER > 250

and DPC perform about equally well, with the former slightly better. Table 4 gives summary

performance information. The non-premixed case differs from the previous cases in that it accesses

a substantially larger portion of C. Addtitionally, during the simulation, we noticed that a factor

26

2 reduction in ∆t occurred for a short period at the beginning, as the CFD code was attempting

to avoid numerical instability. Both these effects resulted in a larger number of hypercubes being

created. The “no cut” suffers substantially as a result of this. The NER calculation detected that

most of these low ∆t hypercubes had insufficient reuse and so did not construct polynomials for

them. However, in general this case did not give as good improvement over the ODE as the other

2 cases, probably because of the larger portion of C accessed.

Summary and Conclusion

The PRISM method improves the computational performance of a reactive flow calculation through

a solution–mapping technique that replaces the time–integration of the chemical rate equations with

a set of algebraic polynomial response surfaces. This paper describes two approaches for improving

the efficiency of PRISM. It is important to clarify the costs incurred running PRISM, those associated

with polynomial construction and those associated with polynomial evaluation. The two methods

reduce the cost of polynomial construction, accomplishing this by constructing polynomials only

for hypercubes that exhibit a high degree of reuse during the course of the simulation. They each

improve PRISM’s efficiency by approximately a factor of two but cannot be used simultaneously to

achieve a factor of four because they each identify approximately the same subset of highly reused

hypercubes.

The first approach, the Trajectory Velocity (VTr) method, employs the rate of movement of

a chemical trajectory combined with an estimated path length through a hypercube to estimate

the expected hypercube reuse. For the chemistry-only case, the reuse is derived solely from the

chemical rate equations. Three cases with fluid dynamics (FD) were investigated: a propagating

laminar flame, a turbulent premixed flame, and a turbulent diffusion flame. In the three cases that

27

include FD, that portion of the trajectory displacement caused by the FD must also be included in

the reuse evaluation because it improves the correlation between expected and actual reuse. Most

hypercubes are visited by multiple trajectories since the FD cases involve a grid with multiple cells,

each with its own chemical trajectory. The overall reuse of the hypercube is heavily influenced by

the contribution from the trajectories that utilize it most. This is accounted for by recalculating

expected reuse every time a new trajectory enters the hypercube until sufficient reuse is indicated, at

which time polynomials are constructed. In the three flames considered, the efficiency was improved

by a factor of 1.5 to 2.5.

The second approach to improving PRISM’s efficiency is referred to as the Deferred Polynomial

Construction (DPC) method. Efficiency is improved by deferring polynomial construction until a

hypercube has been reused a specific number of times (ND). We demonstrate that it is not necessary

to have detailed knowledge of the shape of the hypercube reuse function to improve efficiency.

Substantial efficiency gains are found as long as the reuse distribution is skewed toward low values

with a long tail in excess of that of an exponential distribution. It is unnecessary to determine the

value of ND that maximizes the efficiency because reasonable values can be obtained by setting ND

equal to the breakeven usage for hypercube construction. All the distributions encountered in our

case studies were well suited to DPC. In the three cases considered, the efficiency was improved by

a factor of 1.5 to 2.5.

Preliminary results with CH4 flames have shown that the VTr and DPC methods are vital to-

ward increasing hypercube reuse over and beyond the level of viablilty. As PRISM development

toward CH4 combustion progresses, one of the methods will definitely be chosen for inclusion in the

implementation.

28

Acknowledgements

The work was supported by the Office of Energy Research, Office of Basic Energy Sciences, Division

of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy, all under

Contract No. DE-AC03-76SF00098.

Appendix A Notation

• General

Ns: Number of chemical species

∆t: Length of timestep

C: Chemical composition space of Ns+1 dimensions

• Trajectory Velocity-related

VTr: Trajectory velocity, the rate at which a

chemical trajectory is moving through C.

NER: Number of Expected Reuses of a hypercube

NAR: Number of Actual Reuses of a hypercube

• Deferrred Polynomial Construction-related

CODE: Cost of an ODE time-integration

CPC: Cost of polynomial construction for a hypercube

CPE: Cost of a polynomial evaluation

NB: Break-even usage of a hypercube, equal to CPC
CODE−CPE

29

ND: Reuse threshold for deferred polynomial construction of a hypercube.

Appendix B

For the DPC method we develop a simple formula which shows the computational gain that would

result from moving from ND = 0 to ND = NB, for any reuse distribution that can be described by

a simple integrable function f(N), and show the conditions necessary for a substantial gain to be

obtained. The aim is to use this approach rather than search for the optimal value of ND, as it is a

simpler approach. Using the definitions:

• N< ≡
∫ NB
0 f(N)dN i.e. number of hypercubes with N < NB

• N> ≡
∫ Nmax
NB f(N)dN i.e. number of hypercubes with N > NB

• N< ≡ 1
N<

∫ NB
0 f(N)NdN , mean usage of hypercubes with N < NB

• N> ≡ 1
N>

∫ Nmax
NB

f(N)NdN , mean usage of hypercubes with N > NB

and the relation: NB = CPC/(CODE −CPE), we calculate an expression for the gain, starting from

a form of Eqn. 6. The total cost for all hypercubes with usage less than NB is:

Cost(N < NB) =
∫ ND

0
CODENf(N)dN +

∫ NB

ND

f(N)[CODEND + CPC + CPE(N −ND)]dN

=
∫ NB

0
CODENf(N)dN +

∫ NB

ND

f(N)[CODEND + CPC + CPE(N −ND)− CODEN]dN

= CODEN<N< +
∫ NB

ND

f(N)CPC(1 +
ND −N

NB
)dN (8)

= N<[CODEN< + CPC(1− N<

NB
)] . . . ifND = 0 (9)

= N<CODEN< . . . ifND = NB (10)

So, the gain in moving ND from 0 to NB is their difference:

N<CPC(1− N<

NB
) (11)

30

Similarly for hypercube with usage greater than NB:

Cost(N > NB) =
∫ Nmax

NB

f(N)[CODEND + CPC + CPE(N −ND)]dN

= N>[CPC(1 +
ND

NB
) + CPEN>] (12)

and the gain in moving ND from 0 to NB is:

−N>CPC (13)

The negative sign signifies a loss as these hypercubes had to undergo unnecessary ODE solves for a

while before polynomial construction. Combining Eqns. 11, 13 the total gain in moving ND from 0

to NB is:

CPC[N<(1− N<

NB
)−N>] (14)

(also Eqn. 7)

References

[1] Tonse, S. Observations of the Coyote CFD reactive flow code, 1997.

[2] Frenklach, M.; Kailasanath, K.; Oran, E. S. Progress in Astronautics and Aeronautics 1986,

105, 365–376.

[3] Frenklach, M. Modeling of Large Reaction Systems. In Complex Chemical Reaction Systems,

Mathematical Modelling and Simulation, Vol. 47; Warnatz, J.; Jäger, W., Eds.; Springer-

Verlag: Berlin, 1987.

[4] Wang, H.; Frenklach, M. Combust Flame 1991, 87, 365–370.

31

[5] Frenklach, M. Reduction of chemical reaction models. In Numerical Approaches to Combustion

Modeling; Oran, E. S.; Boris, J. P., Eds.; American Institute of Aeronautics and Astronautics:

Washington, D.C., 1991.

[6] Hewson, J. C.; Bollig, M. Reduced mechanisms for NOx emissions from hydrocarbon diffusion

flames. In Twenty Sixth (International) Symposium on Combustion; The Combustion Institute:

Pittsburgh, PA, 1996.

[7] Peters, N.; Williams, F. A. The structure of methane flames. In Complex Chemical Reaction

Systems, Mathematical Modelling and Simulation, Vol. 47; Warnatz, J.; Jäger, W., Eds.;

Springer-Verlag: Berlin, 1987.

[8] Ramshaw, J. D. Phys Fluid 1980, 23, 675.

[9] Maas, U.; Pope, S. B. Combust Flame 1992, 88, 239–264.

[10] Blasenbrey, T.; Maas, U. Proc Comb Inst 2000, 28, 1623.

[11] Bongers, H.; van Oijen, J. A.; de Goey, L. P. H., submitted for publication in Proc Comb

Inst.

[12] Lam, S. H.; Goussis, D. A. Int J Chem Kinet 1994, 26, 461–486.

[13] Schwer, D. A.; Tolsma, J. E.; Green, W. H.; Barton, P. I. Combust Flame 2002, 128, 270–291.

[14] Petzold, L. R.; Zhu, W. A I Ch E Jou 1999, 45, 869.

[15] Brown, N. J.; Li, G.; Koszykowski, M. L. Int J Chem Kinet 1997, 29, 393–414.

[16] Frenklach, M. Reduced Mechanisms. In Combustion Chemistry; Springer-Verlag: Berlin, 1984;

Chapter 7.

32

[17] Marsden, A. R.; Frenklach, M.; Reible, D. D. J Air Pollut Control Assoc 1987, 37, 370–376.

[18] Tonse, S. R.; Moriarty, N. W.; Brown, N. J.; Frenklach, M. Israel J Chem 1999, 39, 97–106.

[19] Turanyi, T. Comp Chem 1994, 18, 45–54.

[20] Pope, S. B. Combust Theory Modelling 1997, 1, 41–63.

[21] Yang, B.; Pope, S. B. Combust Flame 1998, 112, 85–112.

[22] Bray, K. N. C.; Peters, N. Laminar Flamelets in Turbulent Flames. In Turbulent Reacting

Flows; Libby, P. A.; Williams, F. A., Eds.; Academic Press: San Diego, CA, USA. 92101-

4311, 1994.

[23] Box, G. E. P.; Draper, N. R. Empirical Model Building and Response Surfaces John Wiley

and Sons: New York, 1987.

[24] Cloutman, L. D. “Coyote: A computer program for 2D reactive flow simulation”, Technical

Report UCRL-ID-103611, Lawrence Livermore National Laboratory, 1990.

[25] Brown, P. N.; Byrne, G. D.; Hindmarsh, A. C. SIAM J Sci Stat Comput 1989, 10, 1038-1051

Also, LLNL Report UCRL-98412, June 1988.

[26] Kee, R. J.; Rupley, F. M.; Meeks, E.; Miller, J. A. “Chemkin-III: A Fortran Chemical

Kinetics package for the analysis of gas-phase chemical and plasma kinetics”, Technical Report

SAND96-8216, UC-405, Sandia National Laboratory, 1996.

[27] Frenklach, M.; Wang, H.; Goldenberg, M.; Smith, G. P.; Golden, D. M.; Bowman, C. T.;

Hanson, R. K.; Gardiner, W. C.; Lissianski, V. “GRI-Mech—An Optimized Detailed Chemical

Reaction Mechanism for Methane Combustion”, Technical Report GRI-95/0058, Gas Research

Institute, 1995 http://www.me.berkeley.edu/gri mech/.

33

[28] Cloutman, L. D. “The LUVD11 Large Eddy Simulation Model”, Technical Report UCRL-ID-

107128, Lawrence Livermore National Laboratory, 1991.

34

List of Tables

1 Dependence of accuracy on variation of operational parameters. Concentration bin is
log10 of concentration, e.g., 0.5 implies a bin width of half an order of magnitude. T
bin is in Kelvin. The ∆ quantities are relative errors, i.e. ((PRISM - Exact)/Exact)
and are taken for temperature, one major species and one minor species. The tem-
perature enters the polynomials as a reciprocal in all cases except line 8 for which it
is linear. 36

2 Location in the value of ND that resulted in a cost minimum, for several common
analytical forms of the reuse distribution f(N). 37

3 Listing of the reactions and Arrhenius parameters in the hydrogen mechanism used
for the simulations. 38

4 Summary performance comparison for the laminar, premixed turbulent, and non-
premixed turbulent cases, each of which was run in 4 modes: (i) ODE-only, (ii) PRISM (with-
out VTr or DPC), (iii) VTr (trajectory velocity), (iv) DPC (deferred polynomial con-
struction). Shown are the number of hypercubes for which polynomial construction
occurred, the mean reuse of those hypercubes, the accumulated CPU time (chemistry
only), and the accumulated CPU time (CFD + chemistry). 39

35

Table 1:
number of bin width accuracy (x 103)
data points log10(conc) T (K) ∆T ∆H2O ∆OH

1 87 0.5 20 1.02 6.34 9.46

2 87 0.25 20 0.15 1.09 1.86
3 87 1.0 20 2.89 40.64 41.35

4 87 0.5 10 1.00 6.44 11.06
5 87 0.5 40 1.13 7.03 9.49

6 151 0.5 20 0.79 4.70 9.12
7 55 0.5 20 3.00 23.71 38.74

8 87 0.5 20 1.29 6.35 9.46

9 151 0.25 20 0.091 0.658 0.678

36

Table 2:
f(N) Cost minimum
1 f(N) = k no minimum found
2 f(N) = a0e

−N/N0 no minimum found
3 f(N) = −mN + k ND = Nmax - 2NB

4 f(N) = k
N ND = NB

log(Nmax
ND

)

5 f(N) = k
N3 ND = N3

D
N2

max
− 2NB

37

Table 3:
forward rate coefficienta

reaction A n E

2O+M ⇀↽ O2+M 1.2×1017 -1.00
O+H+M ⇀↽ OH+M 5.0×1017 -1.00
O+H2 ⇀↽ H+OH 5.0×104 2.67 6290.
O+HO2 ⇀↽ OH+O2 2.0×1013

O+H2O2 ⇀↽ OH+HO2 9.63×106 2.00 4000.
H+O2+M ⇀↽ HO2+M 2.8×1018 -.86
H+2O2 ⇀↽ HO2+O2 3.0×1020 -1.72
H+O2+H2O ⇀↽ HO2+H2O 9.38×1018 -.76
H+O2 ⇀↽ O+OH 8.3×1013 14413.
2H+M ⇀↽ H2+M 1.0×1018 -1.00
2H+H2 ⇀↽ 2H2 9.0×1016 -.60
2H+H2O ⇀↽ H2+H2O 6.0×1019 -1.25
H+OH+M ⇀↽ H2O+M 2.2×1022 -2.00
H+HO2 ⇀↽ O+H2O 3.97×1012 671.
H+HO2 ⇀↽ O2+H2 2.8×1013 1068.
H+HO2 ⇀↽ 2OH 1.34×1014 635.
H+H2O2 ⇀↽ HO2+H2 1.21×107 2.00 5200.
H+H2O2 ⇀↽ OH+H2O 1.0×1013 3600.
OH+H2 ⇀↽ H+H2O 2.16×108 1.51 3430.
2OH(+M) ⇀↽ H2O2(+M) 7.4×1013 -.37
2OH ⇀↽ O+H2O 3.57×104 2.40 -2110.
OH+HO2 ⇀↽ O2+H2O 2.9×1013 -500.{

OH + H2O2

OH + H2O2

⇀↽
⇀↽

HO2 + H2O
HO2 + H2O

1.75× 1012

5.8× 1014
320.

9560.

{
2HO2

2HO2

⇀↽
⇀↽

O2 + H2O2

O2 + H2O2

1.3× 1011

4.2× 1014
−1630.
12000.

a The forward rate coefficients k = ATne−E/RT ; R is the universal gas
constant, T is the temperature in K, the units of E are cal/mol.

38

Table 4:
ODE PRISM VTr DPC

hypercubes – 5484 349 382
Laminar < reuse > – 1238 19004 17601

CPU secs (chem) 2300 850 400 350
CPU secs (total) 3100 1700 1250 1200

Premixed # hypercubes – 23120 3211 3438
Turbulent < reuse > – 1771 12411 11701
Flame CPU secs (chem) 21800 5700 3700 3700

CPU secs (total) 27800 11600 9500 9500
Non-premixed # hypercubes – 115383 5617 9751
Turbulent < reuse > – 356 6738 4206
Flame CPU secs (chem) 50200 41700 20500 18400

CPU secs (total) 56500 47700 26400 24600

39

Figure Captions

1 The temporal progress of a reaction trajectory in a 2-D chemical composition space. 41
2 A diagrammatic representation of the points about a hypercube used to generate

the polynomials. The circle is at the center and the crosses are the corners of the
hypercube. The star points are also shown. 42

3 Frequency distributions of hypercube reuse from a 2-D premixed turbulent jet (solid)
and a 1-D laminar flame (dashed), illustrating that both have the properties necessary
to make the DPC method practical, viz. a large number of hypercubes with very low
reuse and a tail at very high reuse. 43

4 (a) A scatter-plot of actual reuse NAR vs expected reuse NER for the 0-D case, with
NER ≡ trajectory length

|VTr|·∆t . There is one data point per hypercube. NAR is restricted to
integer values. The line indicates NAR = NER.
(b) A 2-D frequency distribution of NAR vs. NER of every hypercube from the laminar
flame case. NER is calculated solely using chemical information in the same way as
for the 0-D case.
(c) A 2-D frequency distribution of NAR vs. NER of every hypercube from the laminar
flame case. NER is calculated using both chemical and CFD information. 44

5 The cumulative CPU time used for the chemistry portion of the simulation vs. CFD
timestep number, for an ODE case, a normal PRISM case (“no cut,)”, PRISM with
VTr (NER > 250), and PRISM with DPC (ND = 266) for: (a) 1-D laminar flame
(b) premixed turbulent jet (the VTr and DPC curves overlap) (c) non-premixed tur-
bulent jet . 45

40

t1
t2
t3 t

Species 1

Sp
ec

ie
s

2

tn
n+1

t0

Figure 1:

41

Sp
ec

ie
s

2

Tem
pe

rat
ur

e Species 1

Figure 2:

42

10

10 2

10 3

10 4

0 1 2 3 4 5 6
Log(number of reuses)

N
um

be
r

of
 h

yp
er

cu
be

s

Figure 3:

43

0

10

20

30

0 5 10 15 20 25 30

(a)(a)

NER

N
A

R

0
1

20 2.5 5

0

500

(b)

lo
g(

N E
R

)

log(N
AR)

0

2

4
0

2
4

0

200

(c)

lo
g(

N E
R

)

log(N
AR)

Figure 4: 44

0

1000

2000

3000

0 30000 60000 90000

(a)(a)(a)(a)(a)

ODE

no cut

VTr

DPC

0

5000

10000

15000

20000

25000

0 20000 40000 60000

(b)(b)(b)(b)(b)

C
P

U
 T

im
e

in
 s

ec

ODE

no cut

VTr and DPC

0

15000

30000

45000

60000

0 20000 40000 60000

(c)(c)(c)(c)(c)

time-step

ODE

no cut

VTr

DPC

Figure 5: 45

	Brown, Nancy - Cover Page Computational Economy Improvements in PRISM. LBNL-48858
	Brown, Nancy - Computational Economy Improvements in PRISM. LBNL-48858

