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ABSTRACT: Transportation is the fastest-growing source of greenhouse gas
(GHG) emissions and energy consumption globally. While the convergence
of shared mobility, vehicle automation, and electrification has the potential to
drastically reduce transportation impacts, it requires careful integration with
rapidly evolving electricity systems. Here, we examine these interactions
using a U.S.-wide simulation framework encompassing private electric
vehicles (EVs), shared automated EVs (SAEVs), charging infrastructure,
controlled EV charging, and a grid economic dispatch model to simulate
personal mobility exclusively using EVs. We find that private EVs with
uncontrolled charging would reduce GHG emissions by 46% compared to
gasoline vehicles. Private EVs with fleetwide controlled charging would
achieve a 49% reduction in emissions from baseline and reduce peak charging
demand by 53% from the uncontrolled scenario. We also find that an SAEV
fleet 9% the size of today’s active vehicle fleet can satisfy trip demand with only 2.6 million chargers (0.2 per EV). Such an SAEV
fleet would achieve a 70% reduction in GHG emissions at 41% of the lifecycle cost as a private EV fleet with controlled charging.
The emissions and cost advantage of SAEVs is primarily due to reduced vehicle manufacturing compared with private EVs.

■ INTRODUCTION

The transportation sector represents the fastest-growing
segment of the world’s GHG emissions, accounting for 23%
of global energy-related carbon dioxide emissions in 2014,1

with car sales set to more than double by 2050.2 In the U.S.,
transportation has become the single greatest source of
emissions, accounting for almost one-third of carbon dioxide
emissions nationwide.3 EVs have grown to more than 5
million (M) vehicles worldwide in 2019,4 driven in part by
rapidly falling battery costs,5 but represent a tiny fraction of
personal mobility. Prior research has proven the capability of
EVs to meet the travel needs of the majority of drivers in the
U.S.6,7 Coupled with clean electricity, EVs have the potential
to dramatically reduce the GHG intensity of private
transportation.8,9 However, adoption of EVs has been limited
by factors including a sparse charging network, slow charging,
short vehicle range, and higher capital costs compared to
other types of vehicles.10−13

The global proliferation of ride-hailing, micromobility, and
other shared mobility services alongside the prospect of
widespread vehicle automation14 has the potential to trans-
form the transportation sector. Indeed, automated vehicles are
already serving U.S. passengers without a backup human
driver.15 There is growing consensus that, without sharing
rides (i.e., more than one party or passenger per vehicle),
vehicle automation could lead to increases in vehicle miles

traveled, congestion, energy consumption, and emissions.16−19

However, synergy between sharing, automation, and elec-
trification17,20 could result in deep reductions in GHG
emissions.14

Centrally managed SAEVs could offer services similar to
those provided by current ride-hailing companies, but at much
lower cost and GHG intensity.21 Because each SAEV only
needs enough battery range for the trip requested and
charging can be split over many short periods between trips,
shared mobility could reduce requirements for battery range.
This shift could overcome barriers of slow charging speeds
and high capital costs while reducing GHG emissions.14,22,23

Public charging infrastructure is critical to accelerating EV
adoption.24−26 However, the business case for private sector
investment in chargers is weak in the context of personally
owned EVs.27 EV charging also introduces significant new
loads to electricity systems already challenged both by peak
electricity demand and increasing levels of intermittent
renewable generation.28,29
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Many studies have assessed the benefits to electricity grids
of controlled EV charging,30−33 which can provide benefits of
decarbonizing transportation and lowering costs of renewable
integration and energy storage.34−37 Preliminary investigations
of the potential for SAEV-grid integration highlighted this
potential.38,39 However, only a handful of studies simulate EV-
grid interactions at a national (or multinational) level in
Australia40 or western Europe.41−45

The current study expands upon prior work46 using a
hybrid modeling framework (Grid-integrated Electric Mobility
or GEM) that combines individual vehicle trips, parametrized
agent-based model outputs, a cost model for vehicles and
charging behavior, and a national-level electricity production
cost model. GEM co-optimizes the allocation of SAEV
vehicles and charging infrastructure along with charge
scheduling and economic dispatch of grid generators to find
the minimal cost combination of vehicles, chargers, and
operations to satisfy a given demand for trips. The result
includes optimized EV fleets and associated charging infra-
structure spanning both urban and rural areas, which serve the
mobility needs of the entire U.S. population under various
assumptions about automation, sharing, and charging
strategies. We use GEM to explore how these parameters
affect hourly electric load patterns, peak power demand, EV
battery capacity, fleet size requirements, charger power levels
and quantity, total cost of fleet ownership, renewables
curtailment, and GHG emissions, in a future personal
transportation system composed of any combination of
privately owned EVs and centrally managed SAEVs.

Our goal is both to compare private and shared fleet
electrification, as well as the interaction between these fleets
and a future grid with higher penetrations of nondispatchable
energy sources. The interactions between power generation
on the grid and charging behavior of private and shared
vehicles are complex. There are substantial cost savings that
can be achieved by managing the charging patterns of EV
fleets, but it would not be practical for these to come at the
cost of decreased mobility. Therefore, our model must be
capable of quantifying the temporal flexibility of charging the
fleets in a manner that still satisfies mobility as well as resolve
how this flexibility will align with low cost generation on the
grid.
Furthermore, there is flexibility that can be added to the

system by overbuilding, for example, by manufacturing more
vehicles or increasing their range or adding more chargers or
higher power charging. There are trade-offs inherent in the
decision to build more flexibility into the system, they require
upfront investment but yield operational benefits by accessing
lower cost energy. Our methodological approach is to model
all of these factors endogenously to capture these trade-offs in
both the system design and operation.

■ METHODS
We leverage previous work46 where the authors developed an
optimization model that examines SAEVs in the context of
temporally varying electricity prices. In this study, we have
extended the model to jointly optimize mobility (both SAEVs
and private EVs), charging scheduling, and the power sector

Figure 1. Sources of data (blue), data processing (dark red), models (light red), intermediate data (gray), and model outputs (yellow) in the
overall modeling and processing workflow.
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for the entire U.S. by coupling our previous model to the Grid
Operation Optimized Dispatch (GOOD) U.S.-wide electricity
model.47 This combined Grid-integrated Electric Mobility
(GEM) model treats the size of the SAEV fleet and the
amount of charging infrastructure as continuous decision
variables (relaxing the problem from mixed-integer to
quadratic), allowing for heterogeneous vehicle ranges and
charger levels. The model minimizes operational costs by
choosing the timing of fleet recharge while requiring that
mobility demand be served, energy is conserved, and
generation assets on the grid are dispatched in merit order.
The future electricity capacity grid mix is an exogenous input
into GEM and is based on NREL’s Renewable Energy Futures
study.48 SAEV fleet planning costs are simultaneously
minimized by amortizing the cost of the fleet and charging
infrastructure to a daily time period.
In addition to extending the optimization model, we

curated a set of empirically derived inputs and assumptions
for the model application (details in subsequent sections and
the Supporting Information). Several of our assumptions were
also developed through detailed, agent-based simulation
modeling using the Routing and Infrastructure for Shared
Electric vehicles (RISE) model23 and from simulations
completed by the National Renewable Energy Laboratory
using EVI-Pro.49

In Figure 1, we illustrate the source of all major model
inputs and assumptions including intermediate modeling and
analysis used in their derivation. Each model input is
described in further detail below, beginning with the
specification of the optimization model.
The GEM model is publicly available as open-source

software under a permissive license.50 Readers are encouraged
to review the code-base, run their own simulation studies, and
provide feedback or make contributions to the ongoing
project. A snapshot of the exact code used to produce the
results in this manuscript is also available.51

The dimensions of the model include time t, mobility
region r, grid region i, vehicle battery size b, charger level l,
trip distance d, and electricity generator g. The model is a
quadratically constrained program and can be efficiently
solved with a second-order cone programming solver.
Objective Function. The objective function minimizes

the amortized daily cost of fleet and infrastructure capital, and
fleet and electricity grid operations.
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where Ctr
d is the demand charge or capacity cost to use the

grid and Ctr
m is vehicle maintenance cost in hour t and mobility

region r, Cr
c is the amortized daily charging infrastructure

capital cost, Cr
v is the amortized daily fleet capital cost, n is the

number of days in the simulation time horizon, Gg is the
electricity produced by generator g, Cg

g is the cost of producing
a unit of energy by generator g, Ti,t,i′ is the electricity
transmitted from grid region i to grid region i′, and Ci,t,i′

t is the
marginal cost of transmission.
The system minimizes the objective function across a large

number of decision variables: the energy to charge and
consumed by vehicles at different points in time, Pbtl̂r and Ebdtr̂,

respectively; demand charge costs, Ctr
d ; vehicle maintenance

costs, Ctr
m; maximum power demand, Pr

max; size of the SAEV
fleet and capital cost of the fleet, Vbr* and Cr

v; the number of
vehicles charging, moving and idle: Vbdtl

c , Vbdtr
m , and Vbtr

i ,
respectively; the number of chargers and capital cost of the
infrastructure: Nlr and Cr

C; demand allocation by battery type,
Dbdtr; temporal power profile of private vehicles, Ptr

private;
generation by power plants, Ggt; and transmission of power
between regions, Titi′
The optimization is subject to a number of constraints that

enforce realistic operations, as described in the Supporting
Information.

NHTS Data. We applied the model at a national level
based on estimates of hourly demand for private vehicle trips
derived from the 2017 National Household Transportation
Survey (NHTS).52 NHTS respondents log trip distance,
timing, and vehicle type for all household members on a
specified day. The responses are weighted according to
demographics to yield typical daily mobility profiles, by
distance and trip start time. We computed these profiles by
day type (weekday vs weekend), geographic region, and
season, across the entire U.S.
To produce our trip-demand model inputs, we partitioned

the country into 13 broad geographic regions, made up of the
nine U.S. Census Divisions: New England (NE), Mid-Atlantic
(MAT), South Atlantic (SAT), East-North-Central (ENC),
West-North-Central (WNC), East-South-Central (ESC),
West-South-Central (WSC), Mountain (MTN), and Pacific
(PAC). In addition, the four largest states (California, Florida,
New York, and Texas) are separated into their own individual
regions. We refer to these regions as the Census-Division-
Large-State (CDLS) partition. In addition, we subdivided the
trips into “urban” and “rural” subregions (see Supporting
Information for details). This yields a total of 26 regional data
sets: 13 CDLS regions, each with urban and rural subregions.
Because mobility demand varies throughout the year, both

in terms of the number of trips and their distribution by
distance, it was important to capture seasonal variation in trip
demand in addition to the hourly and regional distributions.
We thus divided the data into four three-month blocks:
December−February (winter), March−May (spring), June−
August (summer), and September−November (autumn). The
final output of this analysis was a set of hourly mobility-
demand profiles, over the course of a typical day, subdivided
by trip distance, day type, geographic region, and season.

Correction Factors Using RISE. Some of the parameters
in the optimization model were determined using a spatially
explicit, agent-based simulation tool. The parameters included
deadheading ratios (the ratio of empty vehicle miles traveled
to miles traveled with passengers), as well as oversizing
requirements due to spatial mismatch (i.e., more chargers are
needed in a region than the maximum coincident demand for
charging; likewise extra battery capacity is required to access
charging stations and for contingencies). To do this, we
coupled trip data obtained from StreetLight Data with an
agent-based fleet simulation framework called Routing and
Infrastructure for Shared Electric vehicles (RISE) model,
originally described in Bauer et al.23 StreetLight Data is a
company that aggregates data from cell phones and GPS
devices to produce transportation metrics such as travel times
and volume of travel. The resulting trip data sets spanned nine
combined statistical areas (CSAs) throughout the U.S.
covering distinct census divisions and population densities.
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For full details of the preprocessing methodology, see the
Supporting Information.
Simulations were conducted for each city with 20k, 40k,

100k, 200k, 400k, and 800k trips, and with both 15 kW and
50 kW charging power. Locations of chargers were
determined by k-means clustering of trip origins and
destinations, which was determined to work as effectively as
the siting algorithm described in Bauer et al.23

The model proceeds chronologically over 1 day of data,
repeating until the fleet’s aggregate battery capacity at the end
of the day is within 5% of that at the beginning of the day. In
each minute, trips are assigned to the nearest vehicle, and idle
vehicles are routed to charge or rebalanced in anticipation of
future demand (see reference for details). Travel times and
distances between each taxi and trip or charging point are
imputed by drawing random values from the corresponding
distribution obtained from StreetLight Data. To ensure a
reasonable relationship between time, distance, and speed for
each trip, distances are resorted in order to best match the
relationship between draws for duration and speed. If a trip
can only be served by a vehicle with insufficient battery
capacity, the vehicle’s range is increased by 50-mi increments
until capacity is adequate. If no vehicle can serve a trip within
a 10 min wait time, a new vehicle is added to the fleet. Thus,
both battery range and fleet size increase organically over the
course of the simulation, providing estimates of the minimum
values required to serve demand. Vehicles serving trips that
end outside the CSA are removed from the fleet; trips starting
outside the CSA are served by new vehicles that are then
added to the fleet.
For each simulation, we recorded the empty distance and

time traveled to each passenger pick-up and charging event to
determine the average empty-to-occupied trip ratios for each
city, often referred to as the “deadheading” ratio. As shown in
Figure 3 in the Supporting Information, we found that
deadheading ratios increase roughly with the square root of
area per trip. Given that vehicle speeds are different when
empty and when serving trips, we estimated separate ratios for
time spent empty and energy consumed while empty. These
results were used to correlate key system deadheading ratios
and oversizing requirements to travel demand spatial density,
which were then extrapolated to each region in GEM. The
extrapolated values for the six parameters are listed in a table
in the Supporting Information.
Private EV Fleet. Electric load from private EVs and its

associated flexibility is an exogenous input to GEM. We
prepared these load profiles by analysis of simulated individual
charging sessions from the EVI-Pro infrastructure planning
model. This tool, developed by the California Energy
Commission and the National Renewable Energy Laboratory,
is based on travel diaries from the California Household
Travel Survey and can simulate the mobility and charging
behavior of vehicles over a variety of electric vehicle types,
charging infrastructure levels, and assumptions about traveler
preferences (e.g., preferences for home charging vs workplace
charging). Each run of EVI-Pro produced daily charging
sessions covering approximately 50 000 travelers. Using a
sampling tool developed by the Schatz Energy Research
Center at Humboldt State University, we constructed regional
fleets of private EVs that match the size of the simulated
private fleets in GEM, as well as the average daily mileage of
these fleets consistent with the NHTS data.

The individual charging sessions contained plug-in, charging
completion, and plug-out times. Using the virtual battery
approach,53 we aggregated these sessions into constraints that
represented the maximum and minimum power and energy
that must be delivered to the private fleet in each hour of the
day. The constraints were constructed so that, if satisfied, it
was possible to meet the energy demands of every individual
charging session by the plug-out time. Finally, we para-
metrized the creation of the constraints to assess the impact of
partial flexibility in the private charging demand. In other
words, if the flexibility parameter was set to 0%, then
uncontrolled charging was assumed and the lower cumulative
energy bound (eq 22 in Supporting Information) was equal to
the upper cumulative energy bound (eq 23 in Supporting
Information). If flexibility was set to 100%, then we assumed
all charging sessions could be delayed to the maximum
possible moment while still delivering the original energy to
the fleet. Any value between 0% and 100% was a direct scaling
of the degree of flexibility between the two extremes;
quantitatively, this meant the lower cumulative energy
bound is proportionally closer to the upper bound than the
100% scenario.

Electricity Grid Modeling. The electricity grid model in
GEM is developed based on an economic dispatch model
known as the Grid Operation Optimized Dispatch (GOOD)
model.47 The GOOD model simulates the operation of power
generators across the country by dispatching specific
generation assets to meet demand load, the order of which
is determined by a “bidding” process, where the lowest cost
generation on the margin is the next to participate in
providing power. The model also includes transmission
between regions on a substate basis, which is then aggregated
up to the CDLS regions used in GEM. Within a region,
generators are aggregated by their fuel type, variable costs, and
CO2 emissions rates.
The data regarding the generators to model the electricity

grid are combined from the EPA NEEDS (v5.15) and eGrid
2016 databases. These contain a large number of attributes for
every generator, including capacity, fuel costs, operations and
maintenance (O&M) costs, emissions rates, and heat rates.
These attributes allow us to characterize the operations of
each generator in the dispatch model. We employ
representative hourly profiles across a full year for wind and
solar resources disaggregated by the substate regions and
aggregated by the weighted capacity in each region. These
data are not averaged solar and wind profiles, which would
smooth out intermittency. The transmission between each
region has an associated capacity (not always bidirectional)
that includes wheeling costs in certain pairwise regions. The
dispatch model has been validated against generation and
emissions from the power sector in 2018.47

While the mobility side of GEM provides an endogenous
“input” into the electricity grid side of the optimization via the
electricity demand associated with vehicle charging, this is in
addition to an exogenously specified baseline demand from all
other non-EV loads. This baseline is obtained from EPA
NEEDS (v5.15) and contains electricity load demand on an
hourly basis throughout the year in all substate regions across
the U.S. Once again, these loads are aggregated to the CDLS
regions used in GEM. The economic dispatch portion of
GEM simultaneously fulfills charging demand from the
baseline load and from the EV charging load; it is therefore
able to influence the mobility-system decision making process
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under the assumption that the costs associated with charging
would be real-time costs. To the extent that the system can
reduce costs by promoting charging at certain times of the
day, GEM considers this decision among the suite of cost
trade-offs contained in the optimization formulation.
Key Assumptions. In Table 1, we list key assumptions

used for the Base scenario of the optimization model.

■ RESULTS
Our results reveal the tremendous impact that vehicle
electrification can have on the transportation system. Private
EVs with uncontrolled charging would reduce GHG emissions
by 46% from a baseline of 1134 million metric tons CO2-
equivalent (MtCO2eq) per year associated with a fleet of
personally owned gasoline-fueled vehicles54 (including vehicle
manufacturing emissions). Private EVs with fleetwide
controlled charging would achieve a 49% reduction in
emissions from baseline and reduce peak charging demand

by 53% from the uncontrolled scenario, achieving a 38%
reduction in total cost of ownership from a gasoline baseline.
If SAEVs serve all mobility currently served by light-duty

vehicles, GHG emissions would be reduced by 70% from a
gasoline baseline. Moreover, the total cost of ownership
($1.570 trillion/year or $4800 per capita) would decrease
74%, and peak electricity demand from an SAEV fleet would
be 47% lower than the peak from a private EV fleet with
uncontrolled charging. In other words, over 80 GW of
generation capacity (or demand-side flexibility)greater than
half of current standalone U.S. natural gas combustion turbine
capacity55would not be needed to support full electrifica-
tion.
We present our results as functions of two key parameters

that are observed to have the largest impacts: the fraction of
trips served by SAEVs, denoted by S (with the remaining
fraction served by private EVs) and the fraction of private EVs
that engage in controlled charging, denoted by C. Note that
simulations assumed all SAEV charging was controlled based
on the presumption that all aspects of automated fleet
operations will likely be centrally managed.

Time Series of EV Charging and Vehicle State. Figure
2 depicts a reference scenario,where half of nationwide light-
duty mobility is served by SAEVs (S = 50%) and the other
half is served by privately owned EVs with no controlled
charging (C = 0%). Panel a shows charging load versus time
over 12 representative days consisting of 1 weekend day and
two weekdays from each of four months spaced throughout
the year to reflect seasonal variability. In this scenario, we see
large differences between the temporal patterns of SAEV and
private EV charging. While private EV charging load peaks
sharply in the evening, with a much smaller secondary peak in
late morning (on weekdays) and the lowest demand in early
morning, SAEV charging loads are spread over many more
hours of the day, with a broad peak during daytime hours and
almost no charging during the private EV evening peak. To
satisfy demand, private EV charging is composed of 20% level
1 (1.5 kW) and 80% level 2 (6.7 kW), whereas the cost-
minimizing SAEV charging profile is fulfilled by 4% 10 kW,
38% 20 kW, and 56% 50 kW charging, with less than 3%
fulfilled by faster levels (100−250 kW).
Panel b shows vehicle activity (charging, moving, or idle)

disaggregated by battery range for SAEVs, and panel c shows
aggregate vehicle status for private EVs. Note that we have not
included trips of distances greater than 300 mi. in this study,
as such trips are exceedingly rare, making up <0.1% of all
trips. Our model also neglects complications from trips that
are longer in distance than the highest range vehicle (225
mi.). Trips longer than 225 miles make up 0.17% of all trips.
In reality some number of longer range vehicles would be
necessary, or vehicles would need to recharge en-route to
serve all trips.
Panels b and c indicate that there are over ten times more

private vehicles than SAEVs; overall, SAEVs are moving 38%
and charging 17% of the time, whereas private EVs are moving
4% and charging 40% of the time. The private EVs follow a
typical uncontrolled load shape, with a very high peak in the
evening associated with plug-in events happening after the
evening commute. There is an analogous smaller peak in the
midmorning on weekdays as drivers arrive to work and use
workplace charging. We see that very few SAEVs are idle
between early morning and early evening, with the highest
fraction of moving vehicles after daytime charging ends

Table 1. Key Modeling Assumptions Used to Define the
Base Scenario

input symbol values

charger types and power γl L010 = 10 kW
L020 = 20 kW
L050 = 50 kW
L100 = 100 kW
L250 = 250 kW

charger capital cost ϕl
c L010 = $5k

L020 = $11k
L050 = $31k
L100 = $77k
L250 = $305k

charger lifetime Lc 10 years
charger distribution factor δl 1.0 for all types
demand charge price βr $7.7/kW/month
annual discount rate r 0.05
sharing factor σd 1.5
vehicle capital cost ϕv $30 000 (includes cost of automation)
vehicle daily fixed O&M ϕom

v $1.64
vehicle per-mile O&M βv $0.09
battery capital cost ϕb $150/kWh
vehicle/battery lifetime Lv 2 years

Lb

battery capacity Bb 75 mi range = 19.7 kWh,
150 mi range = 41.1 kWh
225 mi range = 64.4 kWh
300 mi range = 89.4 kWh
400 mi range = 124.0 kWh

conversion efficiency ηb 75 mi range = 310 Wh/mi
150 mi range = 324 Wh/mi
225 mi range = 338 Wh/mi
300 mi range = 351 Wh/mi
400 mi range = 353 Wh/mi

speed by distance bins νdtr 0−2 mi = 18 mph
2−5 mi = 22 mph
5−10 mi = 32 mph
10−20 mi = 38 mph
20−30 mi = 40 mph
30−50 mi = 45 mph
50−100 mi = 48 mph
100−300 mi = 48 mph
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around 4 p.m. SAEV movement drops to nearly zero after
midnight, followed by a resumption of charging activity.
However, at most 27% of total SAEVs (1.7 M out of 6.2 M)
are charging at any given time, indicating there is sufficient
charging capacity to allow the majority of vehicles to be
available. The two peak moving periods on weekdays
correspond to the morning and evening commutes. During
the evening peak period, the SAEV fleet is nearly fully utilized,
aside from a small fraction of vehicles that are charging (more
SAEVs are charging during the morning than the evening
commute peak).
The temporal charging load patterns change dramatically as

S and C change. Figure 3 shows 3 days of charging load from
each of a set of model scenarios, where S and C each range
from 0% to 100%. The highest peak loads are found in the
upper left panel (a) due to exclusively uncontrolled private EV
charging, with a peak of 162 GW, slightly more than the
current total U.S. capacity for standalone natural gas

combustion turbines.55 As either S or C increases, peak
loads diminish, approaching a minimum level of 71 GW in
panels l and p, where load is nearly evenly spread throughout
the day. With no shared vehicles (panels a−d), charging load
profiles are smoothed as C increases from 0% to 100%,
leading to an increase in the load factor from EVs (the
maximum power divided by the average power), which
steadily increases from 41% to 85%. Over the course of a year,
electricity demand from vehicle charging is ∼540 TWh or
nearly 80% of total renewable generation including hydro-
power and accounts for 13.5% of total projected electricity
demand including EVs. In panel l, the 71 GW peak constitutes
a little over 11% of the peak demand in the U.S. (∼620 GW),
though these peaks are not coincident. In panel q, when S =
100%, the peak load is 45% lower than that of the panel a
peak and is spread over many more hours, peaking
approximately at midday with a sharp minimum in late
afternoon coinciding with a peak in vehicle travel. Of note,

Figure 2. Reference scenario for S = 50% and C = 0% (half of all trips are satisfied by SAEVs, and half by private EVs with uncontrolled
charging), showing (a) charging load by power level, (b) EV state (charging, moving, or idle) by battery range for SAEVs, and (c) EV state
(charging, moving, or idle) for private EVs. The scenario was run over 12 days: three consecutive daysSunday, Monday, and Tuesdayin each
season.
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scenario S = 100% does not result in the smoothest load, a
result that is explained further in the discussion of Figure 4c.

Annual Average Results. Figure 4 shows results for key
outputs averaged over time and geography, displayed across

Figure 3. Three days (1 weekend day, followed by two weekdays) of simulated EV charging load as functions of SAEV trip fraction (S) and
private EV controlled charging fraction (C), disaggregated by charger level, for both private EVs and SAEVs. Each panel is labeled by the value for
S and C used in the simulation. Panels a−d: S = 0%, C = 0−100%. Panels e−h: S = 25%, C = 0−100%. Panels i−l: S = 50%, C = 0−100%. Panels
m−p: S = 75%, C = 0−100%. Panel q: S = 100% (value of C is irrelevant as there are no private EVs).

Figure 4. (a) Fleet size, (b) numbers of chargers, (c) peak power demand, (d) total cost of ownership, and (e) consequential GHG emissions vs
fraction of SAEV trips (S) with C = 0%.
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the full range of S, for C = 0% (uncontrolled private EV
charging). This slice focuses on the impact of SAEVs because
they show the greatest variation in outcomes. In the
Supporting Information, we present results analogous to
Figure 4 but for a private EV fleet (with S = 0%), varying C
across its range to show how controlled EV charging
influences system outcomes.
Figure 4a shows the fleet size, which decreases by an order

of magnitude from ∼145 M vehicles in the S = 0% case (these
145 M vehicles are “active” vehicles used on a typical
weekday, and represent ∼56% of the current stock of U.S.
light-duty vehicles54) to ∼12 M vehicles in the S = 100% case.
This occurs because the utilization per SAEV is about 12
times higher than a private EV, due both to increased time
spent moving, the number of passengers per trip, and faster
recharging times. On average across the scenarios, the cost-
minimizing SAEV fleet is composed of 27% vehicles with a
range of 75 miles, 69% with 150 miles, and 4% with 225 miles.
Private EV ranges were a scenario assumption, not a result of
the optimization, so their distribution reflects a projection that
average range will increase steadily but modestly over time.
Figure 4b shows the number of chargers needed. As with

fleet size, there are far more chargers when S = 0% (195M)
than S = 100% (2.6M), reflecting much higher utilization
among SAEV chargers. These chargers consist of roughly half
lower power levels (≤20 kW) and half 50 kW DC fast
chargers, with about 1% of the network consisting of faster
100 and 250 kW chargers.
Peak power, shown in Figure 4c, also decreases substantially

as S increases: Peak demand is 161 GW at S = 0% and almost
half this (∼89 GW) when S = 100%. The dramatic increase in
SAEV contribution to peak power between S = 50% and 75%
is due to the fact that when S = 50% the SAEV loads can still
“valley fill” within the private EV load (see Figure 3, panel i vs
m), whereas when S = 75% the SAEV load becomes dominant
throughout the day. The increase in peak demand from S =
75% to 100% is driven by an increase in cost minimization
opportunities through charge scheduling available to a full
SAEV fleet that are not possible when some private EVs are
still engaging in uncontrolled charging.
Similar to peak power, the total cost of ownership for the

EV fleet shown in Figure 4d decreases by 56% as S increases

from 0% to 100%. Across this range, both energy and charger
costs are minor components of total cost, which is dominated
by vehicle purchase cost. However, because of the higher
utilization and smaller average battery sizes of SAEV fleets,
total vehicle cost for S = 100% is roughly half that of the S =
0% scenario.
Figure 4e shows the consequential GHG emissions of

charging the EV fleet. Emissions fall from ∼600 MtCO2eq in
the S = 0% case to ∼340 MtCO2eq in the S = 100% case. By
comparison, emissions from a gasoline vehicle fleet including
manufacturing is 1134 MtCO2eq. The optimization does not
directly minimize emissions (they are not in the objective
function) but an overall positive correlation between cost and
emissions leads to a reduction in fossil GHG emissions arising
from greater use of controlled charging. In addition SAEVs
consume less total energy and the vehicle manufacturing
emissions are lower because of the smaller (even though more
rapidly overturning) SAEV fleet. The result is a 43% reduction
in GHG emissions between the S = 0% and 100% cases or a
70% reduction in emissions from a gasoline-fueled baseline.

Urban versus Rural Fleets. To build intuition for how
key model results are interrelated and to examine how
infrastructure and fleet requirements might differ between
regions, we compare simulation outputs between urban and
rural geographies. Figure 5 shows national-level SAEV results
disaggregated by urban versus a rural region across the range S
= 25−100% for two parameters of interest: chargers per
vehicle (disaggregated by charging speed) and vehicles per
trip (disaggregated by battery size). These two parameters
were chosen because they showed the largest differences
between urban and rural regions and trends versus S.
We found that rural regions required a higher fraction of

chargers per vehicle than urban regions but that both fractions
decreased as S approached 100%, suggesting higher utilization
in a larger network. Moreover, rural regions required more
10−20 kW, as well as 100 kW chargers than urban regions,
which required more 50 kW chargers. These differences
became more pronounced as S progressed from 25% to 100%.
The 100 kW chargers accounted for between 10% and 14% of
energy consumption among rural vehicles, which in aggregate
accounted for about 2% of total vehicle energy consumption
and miles traveled.

Figure 5. (a) Optimal fleet size (in vehicles per trip) and (b) charging infrastructure requirements (in chargers per vehicle) disaggregated by
urban and rural regions for C = 0% and with S ranging from 25% to 100%.
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The total ratio of vehicles per trip is slightly lower in rural
versus urban regions, indicating higher utilization, a
consequence of longer-range vehicles and more, faster
chargers which combine to reduce vehicle time spent out of
service. The vehicles per trip ratio is largely invariant as S
increases in both regions. By contrast, the distributions of
battery capacities are quite distinct: there are many more
longer-range (225-mi.) vehicles in rural regions as compared
to urban, which have many more 75-mi. range vehicles and
virtually no 225-mi. range vehicles; the fraction of medium
range (150-mi.) vehicles are mostly equivalent in both regions.
Interestingly, as S increases from 25% to 100%, rural regions
shift away from the small number of 75-mi. vehicles toward
150-mi. vehicles, with the fraction of 225-mi. vehicles
remaining almost the same. A similar, though harder to
discern, trend appeared in urban regions. The increased trip
densities at higher values of S favor longer range vehicles
(which are more expensive and have lower energy efficiency),
which enable the lower charger densities discussed in panel a.
Geographic Differences in Electricity Mix and GHG

Emissions. There was very little difference in most key
variables by geographic region, with the exception of electric
generation mix and GHG emissions. Because of much more
coal use in certain regions and much more renewable
generation in others, we expected large differences in both
of these outputs.
Additional Sensitivity Runs. The results presented above

represent two of seven parameters that we systematically
varied. In the Supporting Information, we present the results
of varying other important parameters: the sharing factor,
vehicle capital cost, battery capital cost, battery lifetime, and
vehicle energy conversion efficiency.

■ DISCUSSION
Our results paint a very different picture of the future
transportation system from the one we see today. Private EVs
with 100% controlled charging could reduce GHG emissions
by 53% compared to gasoline vehicles and reduce the total
cost of ownership by 38%. In addition, they are able to reduce
peak demand from charging by 53% from uncontrolled EVs,
which is 6 percentage point greater reduction than a system
composed entirely of SAEVs.
When all trips taken in light-duty vehicles are provided by

SAEVs, personal mobility can be fulfilled with 12 M vehicles,
9% of the active vehicles required when they are privately
owned, and with only 2.6 M chargers (0.2 per EV). From an
economic standpoint, sharing and automation provide
tremendous benefits, enabling a 74% reduction in total fleet
cost compared to gasoline vehicles today. The operation of
SAEVs and controlled charging of individual vehicles are able
to reduce peak charging load by 47% from what would
otherwise be present when S = 0% and C = 0%. This can
significantly improve both the efficiency and emissions rate of
fossil generation (by shifting to lower GHG-emitting fossil
generators) while simultaneously better utilizing solar and
wind resources (due to flexibility in charging times), resulting
in a reduction in solar curtailment by about one-third.
One of the driving forces behind our results is that vehicle

autonomy enables significantly higher utilization of any given
vehicle. Private EVs remain unused most of the time because
most people’s mobility needs can be satisfied in just a small
fraction of the day. For SAEVs, vehicles can fulfill multiple
individuals’ travel needs throughout the day, remaining highly

utilized for many hours, yet with ample time available to
relocate to new passengers or to recharge. Shared ride-hailing
trips, therefore, permit many fewer vehicles to serve the same
number of total trips and enable more efficient pooling,
further reducing fleet size, numbers of chargers, energy use,
cost, and GHG emissions.
Users of a fleet of SAEVs make no major sacrifices in their

mobility needs. All trips are still served, though the particular
attributes of trips might change. For example, on-demand
mobility entails a wait time, pooled rides could take longer
than driving oneself; but these increases could be offset by
eliminating the time spent searching for and accessing parking.
The net effect of these differences could be positive or
negative depending on the individual circumstances of each
trip, but every trip is still completed in the same hour of each
of day.
While rural regions require longer-range battery capacities

than urban regions, we find that only 4% of the total fleet
must have a range of 225 miles to satisfy all trips. By
comparison, urban regions are able to serve all trips with a
mixture of 75- and 150-mi. range vehicles, and virtually no
longer-range vehicles. It is possible that the actual fleet would
need some longer-range vehicles to serve demand during
emergency situations and holiday travel, but in most cases
these peaks in demand likely could be satisfied by shuffling
vehicles between regions.
While our results are specific to the U.S., they may be

generalizable to other regions with comparable levels of
private vehicle utilization, average driving distances, and grids
that are transitioning to renewable electricity, such as Western
Europe and, increasingly, China. More densely populated
regions will likely see higher levels of vehicle occupancy and
lower deadheading ratios, resulting in even greater impacts.
We believe that this study provides strong evidence of the
value of SAEV fleets to decarbonize personal transportation
without compromising individual mobility needs. While a fully
private EV fleet with uncontrolled charging would reduce
national GHG emissions by 47% compared to a gasoline-
fueled baseline, an additional 3 percentage points could be
reduced by employing controlled charging and a further
additional 20 percentage points could be reduced by serving
all mobility with SAEVs for an overall 70% reduction from the
gasoline baseline. If the cost of fossil generation were higher
or additional low-GHG electricity sources (e.g., from
renewables) became available, this reduction could approach
100%.
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