PATHWAYS TO ATMANIRBHAR BHARAT (SELF-RELIANT INDIA)

Harnessing India’s Renewable Edge for Cost-Effective Energy Independence by 2047

Dr. Nikit Abhyankar*, Priyanka Mohanty, Shruti Deorah, Dr. Nihan Karali, Umed Paliwal, Jessica Kersey, Dr. Amol Phadke

*Corresponding author: nabhyankar@lbl.gov

Lawrence Berkeley National Laboratory
March 2023
India can achieve energy independence and near-zero emissions by 2047

- Given the dramatic reduction in clean energy costs, India can economically:
 - Nearly eliminate oil imports with transport electrification
 - Achieve inflation proof, yet dependable, electricity by meeting new demand with renewable energy
 - Eliminate coal imports from industry by using green hydrogen and electrification
 - **Energy independence and near-zero emissions by 2047**

- Given the high economic growth, India still has a 10-15 years of lead time to manage a just and equitable transition
 - Domestic fossil fuel production and tax revenue is not impacted significantly until mid-2030s
 - New clean energy investments & consumer savings (>3T) could generate significant additional jobs

- A policy ecosystem that ensures that most of the new assets are clean, while incentivizing domestic manufacturing, is critical
India has a unique opportunity to leapfrog to a clean energy infrastructure

- India lags ~$1-2 trillion in energy assets
- Clean energy is getting increasingly competitive
- Fossil fuel supply is increasingly risky in terms of supply and price
- Political-economic alignment for the energy transition is happening
Dropping clean energy costs can create a more stable, sustainable economy.

- **Energy Security**: Shifting to electric vehicles can avoid 90% of India’s oil imports (~150 billion in 2021).
- **Cost Effectiveness**: The LCOE of renewables is cheaper than building new fossil fuel assets, operating at low-capacity factors.
- **Inflation proofing energy supply**: Renewables and EV batteries are capital assets, inflation proofing freight movement and industrial energy supply.
- **Industrial competitiveness**: EV manufacturing and green steel/cement production will be critical in maintaining industrial exports and global competitiveness.
The study focuses on the three largest energy consuming sectors in India – power, transport and industry – which collectively account for more than 80% of the country’s energy consumption and energy-related CO₂ emissions. We model two scenarios:

The Reference Scenario projects historical and recent trends in clean energy deployment, assuming progress on existing targets and commitments at the current pace of deployment.

- **Power**: >350 GW non-fossil capacity and 60% clean grid by 2047.
- **Transport**: 45% electrified new vehicle sales by 2035 for two-wheelers, 24% for passenger cars and 12% for medium and HDVs.
- **Industry**: Industrial production continues to be dominated by fossil fuels.

The CLEAN-India (CLEan Energy for Aatma-Nirbhar-India) scenario incorporates the potential for rapid and cost-effective clean energy deployment.

- **Power**: Achieving the current 2030 targets (>500 GW non-fossil capacity), 80% clean generation by 2040 and 90% by 2047.
- **Transport**: Nearly 100% electrified new vehicle sales by 2035 in all vehicle categories.
- **Industry**: Green H₂ based and electrification-based iron and steel, cement, and fertilizer/chemical/petrochemical production.
In the CLEAN India scenario, fossil fuel imports reduces by over 90%, with oil imports decreasing below 30 mtoe and industrial coking coal imports reducing to below 5 mtoe. Domestic coal production peaks in the late 2030s, and domestic oil production is not impacted until mid-2040s because most of India’s oil is imported.
The CLEAN India pathway can achieve energy independence by 2047 by significantly decreasing the amount of oil imported for road transportation and coal imported for industry and power sectors. By 2047, crude oil imports reduce by ~90% ($240 billion/year), compared to the Reference case.
Lithium demand could be met by domestic resources

Cumulative lithium demand in the CLEAN India pathway (~1.9 million tons by 2040 and ~3.9 million tons by 2050) could be met by newly discovered lithium resources (5.9 million tons of inferred reserves).

Lithium Reserves and Cumulative Lithium Demand

Additionally, between 25-50% of this lithium demand could be met by recycling by 2050.

Annual Lithium Demand and Annual Lithium Recycling Potential
Electric Vehicles Would Save Consumers $2.5 Trillion between 2023-2050

- Due to transport electrification, consumers save a total of $2.5 trillion (~average $85 billion/year), even after accounting for the higher upfront costs of electric vehicles.

- Consumer benefits far outweigh the loss in the fossil tax revenue

- Large consumer savings would lead to significant induced jobs
The impact on fossil tax revenue would be manageable

Fossil fuel taxes/duties/royalties + electricity duty contribute significantly to the state + central government exchequer (~$80 billion/year or ~12% of total government revenue).

In the CLEAN India case, fossil fuel + electricity tax revenue does not reduce below the 2020 levels until 2035, assuming the same tax regime continues. By 2050, the fossil tax revenue would be ~50% of the 2020 level, which is ~2-3% of the projected total government revenue).

Given the large economic growth and increasing tax base, several opportunities to recover such tax losses (~2-3% of the projected total government tax + non-tax revenue) would exist.

Most of the fuel tax revenue comes from the petroleum sector (~$68 billion/yr)
In the CLEAN-India case, a five-fold increase in electricity demand is expected by 2050.

In the CLEAN India case transport and industrial electrification as well as green hydrogen production would add significant load onto the grid – (3000 TWh by 2030 and 7200 TWh by 2050). Total electricity demand will increase five-fold between 2020 and 2050.

Future electricity load growth will be ~10% p.a., which is comparable to historical growth.
India's energy-related CO\textsubscript{2} emissions will peak in the early 2030s, before dropping to under 500 million tons/year by 2047.

Due to the significant reduction in fossil fuel consumption, over 4 million premature deaths related to air pollution could be avoided between 2022 and 2047.
End-use electrification + a clean power grid would require massive RE scale-up

Thermal investments:
- Continue with the coal power plants that are already under construction. (2030 coal capacity = ~230GW)
- But no new coal/gas power plant beyond 2027/2028.

RE capacity:
- ~500 GW total by 2030 (capacity addition of 40 GW/yr through 2030)
- ~2700 GW total by 2050 (capacity addition of ~100GW/yr between 2030 and 2050)
- Offshore wind resources (>400GW by 2050) will be critical for rapid and cost-effective RE expansion

Storage: Battery storage capacity of ~60-70GW (~250 GWh) by 2030 and ~500GW (~2500 GWh) by 2050
Electrification is critical for cost-effective, energy independent, & clean transport

Transport sector fossil fuel use and emissions need to peak by 2030, ~70% of which will be from HDVs.

Although EVs have higher capital costs, their TCO is already lower or comparable with ICE vehicles and they achieve upfront price parity by 2030.

Priority policies focus on aggressive near / medium term vehicle electrification (focused on HDVs and fleets) and expanding EV manufacturing to maintain the global competitiveness of the Indian auto industry.
Industrial decarbonization will need significant technology and policy innovation

- Industrial emissions peak by early 2030 but significant non-energy emissions would remain by 2050.
- Technology innovation + scale + policy innovation is critical for cost-effective industrial decarbonization.

Electrification and green hydrogen are the key strategies for industrial decarbonization.

Achieving the economic viability of green hydrogen should be a priority.
The CLEAN-India Pathway will Require a Robust Policy Ecosystem

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>MANDATES</th>
<th>INCENTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Renewable Purchase Obligation / Storage Purchase Obligation</td>
<td>Long duration storage, offshore wind</td>
</tr>
<tr>
<td></td>
<td>Production Linked Incentive + Strategic Alliances for manufacturing solar panels, batteries, electrolyzers etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-sectoral least-cost investment planning</td>
<td>Safety Nets</td>
</tr>
<tr>
<td>Transport</td>
<td>Zero Emissions Vehicle Sales Mandate</td>
<td>Public EV Procurement (e.g. buses)</td>
</tr>
<tr>
<td></td>
<td>Public Fast Charging + Low-Cost Solar Charging</td>
<td>Social Dialogue</td>
</tr>
<tr>
<td>Industry</td>
<td>Clean Mandate on new Industrial Facilities and Hydrogen Production, energy and material efficiency standards (e.g. expand PAT)</td>
<td>Green hydrogen pilots, RD&D</td>
</tr>
<tr>
<td></td>
<td>Hydrogen Infrastructure and Low-Cost Solar PPAs</td>
<td>Economic Diversification</td>
</tr>
</tbody>
</table>

MILESTONES

- **2030**: >500 GW of clean power (50% clean grid), 5 MT of green hydrogen
- **2035**: no new ICE vehicle sales across vehicle categories
- **2040**: 80% clean grid (100 GW/year of clean power); 50% green steel; 50% green cement; industrial energy and material efficiency improvement 20-30%

OUTCOMES

- **2030**: 30% reduction in energy imports
- **2040**: 80% reduction in energy imports
- **2047**: 95% reduction in energy imports; 85% reduction in total emissions; over 4 million avoided premature deaths
India can achieve energy independence and near-zero emissions by 2047

- Given the dramatic reduction in clean energy costs, India can economically:
 - Nearly eliminate oil imports with transport electrification
 - Achieve inflation proof, yet dependable, electricity by meeting new demand with renewable energy
 - Eliminate coal imports from industry by using green hydrogen and electrification
 - **Energy independence and near-zero emissions by 2047**

- Given the high economic growth, India still has a 10-15 years of lead time to manage a just and equitable transition
 - Domestic fossil fuel production and tax revenue is not impacted significantly until mid-2030s
 - New clean energy investments & consumer savings (>2T) could generate additional jobs

- A policy ecosystem that ensures that most of the new assets are clean, while incentivizing domestic manufacturing, is critical
Thank You!
You can read the full report [here](#).

Dr. Nikit Abhyankar,
Priyanka Mohanty

CONTACT:
nabhyankar@lbl.gov,
pmohanty@lbl.gov
Additional Material
Clean energy prices have dropped by over 80-90% in the last 10 years.

India has achieved lowest solar and wind prices globally.

Battery price reductions have arrived much earlier than anticipated.
Key Policy Assumptions

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>POLICY LEVER</th>
<th>REFERENCE SCENARIO</th>
<th>NET-ZERO SCENARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>EV Sales Mandate (% of new vehicle sales)</td>
<td>2W/3W: 23% by 2030, 60% by 2040, 70% by 2050
 Cars: 15% by 2030, 30% by 2040, 60% by 2050
 Taxi/TNC: 23% by 2030, 60% by 2040, 70% by 2050
 MDV/HDV: 7% by 2030, 15% by 2040, 35% by 2050</td>
<td>2W/3W: 50% by 2025, 100% by 2035
 Cars: 50% by 2025, 100% by 2035
 Taxi/TNC: 25% by 2025, 85% by 2030, 100% by 2035
 MDV/HDV: 20% by 2025, 80% by 2030, 100% by 2035</td>
</tr>
<tr>
<td>Power</td>
<td>% of carbon-free electricity generation</td>
<td>23% in 2020
 37% by 2030 (39% of native power demand)
 50% by 2040
 60% by 2050</td>
<td>23% in 2020
 46% by 2030 (50% of native power demand)
 80% by 2040
 90% by 2050
 3% Carbon Capture, Utilization and Storage (CCUS) / Direct Air Capture by 2050</td>
</tr>
<tr>
<td>Appliance energy efficiency</td>
<td>~2-3% improvement per yr 2020-2030
 ~1-2% improvement per yr 2030-2040
 ~0.5-1% improvement per yr 2040-2050</td>
<td>~4-6% improvement per yr 2020-2030
 ~2-4% improvement per yr 2030-2040
 ~1-2% improvement per yr 2040-2050 (~13% net demand reduction over Reference case by 2050)</td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>Electrified production (% of total)</td>
<td>Iron & Steel: 15% by 2050
 Cement: 0% in 2020 (actual), 15% by 2050</td>
<td>Iron & Steel: ~35% by 2050
 Cement: ~65% by 2050</td>
</tr>
<tr>
<td>Green hydrogen based production (% of total)</td>
<td>Iron & Steel: 0% in 2020 (actual), ~5% by 2050
 Cement: 0% in 2020 (actual), ~5% by 2050
 Fert & Chem & Petrochem: 0% in 2020 (actual), 25% by 2050</td>
<td>Iron & Steel: 10% by 2030, 40% by 2040, 60% by 2050
 Cement: ~15% by 2040, ~25% by 2050
 Fert & Chem & Petrochem: 50% by 2030, 100% by 2050</td>
<td></td>
</tr>
<tr>
<td>Material efficiency</td>
<td>Steel: Recycling & scrap use (~50% by 2050)
 Improve Clinker to Cement ratio by 2% per decade
 Energy Efficiency Improvement: Steel (10% bw 2020-2050), Cement (5% bw 2020-2050)</td>
<td>Steel: Recycling & scrap use (~65% by 2040, 90% by 2050)
 Improve Clinker to Cement ratio by 5% per decade
 Energy Efficiency Improvement: Steel (25% bw 2020-2050), Cement (15% bw 2020-2050), F, C, & PC (15% bw 2020-2050)</td>
<td></td>
</tr>
<tr>
<td>CCUS + DAC</td>
<td>Share of sectoral emissions</td>
<td>Power: 0.5% CCUS by 2050
 Industry: 1% CCUS by 2050
 No DAC</td>
<td>Power: 2% CCUS by 2050
 Industry: 5% CCUS by 2050
 Economy: 1% DAC by 2050</td>
</tr>
</tbody>
</table>
Power
(Optimal capacity expansion and hourly dispatch using PLEXOS)

- Achieve >500 GW of non-fossil capacity by 2030 (~50% clean);
- ~80% clean generation by 2040;
- ~90% clean generation by 2047; ~2% CCUS / DAC by 2047

Appliance / end-use efficiency: ~30% additional efficiency gain beyond market average + demand response

Transport
(LBNL’s Faster Adoption of Clean Transportation [FACT] model)

- All new vehicle sales (2W/3W, cars, trucks, including MDVs and HDVs and buses) to be electric by 2035
- Public charging infrastructure buildout, especially along highways + within cities

Industry
(LBNL’s dynamic industrial stock turnover and energy model)

- **Iron and Steel:**
 - Green H2 based direct reduction (60%) + Electrification (35%) by 2050

- **Cement:**
 - Electric rotary kiln (65%) + Green H2 rotary kiln (25%) by 2050

- **Fertilizer & Chemicals / Petrochemicals:**
 - Green H2 based production (100% by 2050)

- Material efficiency • Recycling • 5% CCUS

These strategies would achieve deep GHG emission reductions and enormous local environmental benefits
Iron and Steel, Cement, and Fertilizer/Chemical/Petrochemical Energy Consumption

Iron and Steel

Cement

Fertilizers, Chemicals, and Petrochemicals

- Coal for Captive Power
- Gas for Captive Power
- Electricity for H₂
- Electricity
- Oil
- Natural Gas
- Coal (CCUS)
- Coal
- Reference

Graphs showing energy consumption trends in Iron and Steel, Cement, and Fertilizers, Chemicals, and Petrochemicals from 2020 to 2050.
Fossil fuel consumption does not reduce below 2020 levels until early-mid 2030s

Total economy-wide coal and oil consumption would not drop below 2020 levels before 2035, allowing for a smoother and more equitable transition e.g. unlikely to lead to fossil job losses until mid-2030s.