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Abstract

One of the reasons for the emerging adoption of behind-the-meter distributed energy resources (DERs),
particularly photovoltaic (PV) and storage, is the impressive decrease in technology costs over the last
years together with favorable policy and regulatory environments that created early-stage incentives to the
proliferation of these assets. However, when looking at the next decade, the evolution of the regulatory
framework and the trajectory of technology costs are difficult to predict. This uncertainty poses a new
challenge to prosumers and microgrid owners who are trying to find the best moment to invest in these DERs.
In particular, unpredictable changes in the conditions of the investments may translate into economic risks to
potential DER adopters, which raises the need for new risk-mitigation methods to support their investment
decisions. To address this issue, this paper proposes a multi-period DER investment model with economic
risk constraints, considering technology costs and regulatory uncertainties. A case study, involving a large
building in California, is used to show that different types of economic risk constraints can affect not only
the size, but also the optimal timing of these investments in a multi-year planning horizon with significant
DER technology costs and regulatory uncertainties.

Keywords: Distributed Energy Resources, DER Planning, Risk Mitigation, Microgrids, Solar

Compensation Mechanisms.
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DER Distributed Energy Resource
1Y% Solar Photovoltaic
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B Set of electricity storage options, B € €, indexed by b

¢ Set of continuous DER options for investment, indexed by ¢

D Set of discrete DER options for investment, indexed by d

J Set of periods where investments are allowed, with size J, J < T, indexed by 4

X Set of scenarios, with size K, indexed by k

T Set of periods in the planning horizon, with size T, indexed by ¢

Y Set of years in the planning horizon, with size Y, indexed by y

Variables

bei Yes/no decision whether to invest in continuous technology ¢ in period i (binary)

caaq: Available capacity of DER d at the end of period ¢t (kW or kWh)

carg  Remaining capacity of DER d ($)

dy Depreciation cost incurred in year y ($)

fuqg:r Amount of fuel needed for generator d in period ¢ (kWh)

h, hy, 2k, 2,y Auxiliary variables needed for CVaR constraints

Tp,t Power input to storage b in period ¢t (kW)

Nd,i Number of units of discrete generation technology d invested in period ¢ (integer)
Od,t Power output of DER d in period ¢ (kW)

socp; Energy amount stored in storage b in period ¢ (kWh)

Uy Electricity demand imported from utility in period ¢ (kW)

UL Power exported to utility in period ¢ (kW)

Teyi Capacity to invest in continuous technology ¢ in period i (kW or kWh)
Stochastic Parameters

¢ = (CV,FU,TI, TE) Vector of uncertainty parameters

CV.,; Investment variable cost of continuous technology ¢ in period i ($/kW or $/kWh)

FU, Fuel cost in period ¢ ($/kWh)



TE, Export tariff in period ¢ ($/kWh)

TI;  Import tariff in period ¢ ($/kWh)

Deterministic Parameters

@ Confidence level in the CVaR constraint for entire planning horizon

Oy Confidence level in the CVaR constraint for operating year y

Ay Length of period ¢ (hours)

Yd Salvage factor for technology d (portion of the investment in DER, d salvaged at the end of its lifetime)
I Fuel conversion efficiency of DER d

CCap, Total investment capacity restriction for continuous DER ¢ (kW, kWh)

DCap, Total investment capacity restriction for discrete DER d (kW)

Risk  Risk tolerance level for entire planning horizon

my Risk tolerance level for operating year y

p Annual discount rate for calculating the present value

CAP,; Capacity of discrete technology d (kW)

CDy; Investment cost of 1 unit of discrete technology d in period i ($)

CE;, Charging efficiency of storage b

CF.; Fixed cost to install continuous technology ¢ in period ¢ ($)

CMF,; Fixed maintenance cost per unit of capacity of DER d in period ¢ ($/kW,$/kWh)
CMVy,; Variable maintenance cost per unit of power output of DER d in period ¢ ($/kW)
DE,  Discharging efficiency of storage b

ED; Electricity demand for period ¢ (kW)

Lqg Lifetime of technology d (hours)

MC, Maximum power charged ratio at the defined A time step of storage b (kW/kWh)
MD;, Maximum power discharged ratio at the defined A time step of storage b (kW /kWh)

PCF.; Power conversion factor for DER c in period ¢



Pry Probability of scenario k

Ry Ramping factor for discrete technology d
SD,  Self-discharged coefficient of storage b
y(i)  The year containing period ¢

SC,  Minimum state of charge of storage b

A note on the nomenclature: By “in period ,” we mean “at the beginning of period i.” By “technology/DER,/storage

d,” we mean “technology/DER/storage of type d.”

1. Introduction

1.1. Motivation

The adoption of behind-the-meter Distributed Energy Resources (DERs) in power distribution grids has
been fast increasing during the last decades, with potential impacts in terms of grid operational costs, loss
reduction, reliability and security of supply, provision of ancillary services at the distribution level, emissions
reduction, and deferral of transmission and distribution network upgrades [I]. This private adoption of
DERs, namely PV and storage, has been motivated by a significant decrease in technology costs [2] combined
with important changes in tariff policies and solar compensation mechanisms, such as net-metering schemes
[3, 4, 5] or feed-in remunerations [0 [7], which made DER economically viable for medium size consumers
and microgrid owners.

However, these two factors (technology costs and DER, regulatory schemes) are constantly changing and
there is a significant uncertainty about their evolution in the near future. For example, when planning
behind-the-meter DER, investments for the next 15 or 20 years, it is difficult to anticipate deterministic
trends of evolution of PV and storage asset costs. In fact, there is a significant uncertainty about the future
prices of these technologies, as they typically depend on multiple aspects, such as raw material costs, the
level of maturity of underlying technologies, tax incentives, and rebates, etc. Even assuming that these prices
tend to decline with time, the uncertainty about the “pace” of reduction is a challenge for prosumers and
microgrid owners looking for the optimal time to invest in DERs.

Similarly, there is uncertainty from the side of the DER policies that determine the revenue streams
associated with these technologies. As an example, the fast adoption of DERs has initiated a regulatory
discussion around solar compensation mechanisms, such as the role of net-metering policies and time-of-use
tariffs or the ability of utilities to recover fixed costs in distribution grids with high penetration of DERs
[8, O, T0]. Therefore, it is expected that this discussion may lead to sudden regulatory changes in DER
interconnection and compensation policies, such as the transition from net-metering to net-billing schemes
[I1]. As shown in [12], even small variations in solar compensation mechanism significantly impact the

adoption of PV and storage technologies.



It is clear that the evolving changes in DER technologies and policy will create a new uncertainty
environment in which DER adopters will plan their investments. From their perspective, postponing the
procurement and installation of DERs may allow taking advantage of the decreasing trajectories of technology
costs. However, while waiting for "the best moment to invest”, these potential investors might be losing
important benefits and incentives coming from a favorable (DER friendly) regulatory framework. Thus,
these long-term uncertainty in DER technology costs and policy trajectories introduce a new economic risk
to potential DER adopters, which raises two main research questions: (i) how to plan DERs under this
uncertainty environment? (i) how to control the corresponding economic risk in the planning stage?

This paper aims to address these questions by proposing a multi-period DER investment model with

economic risk constraints, considering technology costs and regulatory uncertainties.

1.2. Literature Review

This work expands on existing literature on behind-the-meter DER investment and planning models,
traditionally used to determine the optimal portfolio and sizing of DERs assets in a building or a microgrid
site, considering different costs and revenue streams [I3]. Although there are some non-linear exceptions
(e.g. [14]), these models are typically based on Mixed Integer Linear Programming (MILP) formulations
[13L 15l 16] and have evolved over the last decade to address new challenges of DER planning and economics.
Important additions to the original formulations of these investment models include the time resolution of
the dispatch [I7], the role of thermal loads in the optimal sizing [18], the optimal operation of multiple energy
vectors [19], the security aspects of the design of electricity [20] and thermal [21I] generation systems, the
integration of electricity storage degradation models [22] 23], as well as the consideration of environmental
objectives in the DER infrastructure planning [24].

Some of these models were also expanded to consider different types of uncertainty, such as the PV
generation [25], the wind speed or the load demand [26], capturing the short-term uncertainty related to
DER operations in the planning phase. The long-term aspects of planning are typically addressed through
multi-period models, which determine not only the optimal portfolio and size of technologies, but also
optimal timing of the investments within a planning horizon. In the context of DER investments, two
multi-period planning models were presented in [27] and [28], considering deterministic evolution of load and
prices throughout the horizon of investment. Stochastic models for DER planning were also proposed in the
context of microgrid design, using a two-stage approach [29] and particle swarm optimization [30]. In both
cases, these models focus on the long-term uncertainty exclusively associated with the load growth. The
multi-period technology costs and regulatory uncertainties are not considered.

An additional objective of this paper is to approach uncertainty from the risk perspective. An approach
to risk in multi-year investment problems, presented in several papers that show the economic benefits
of deferring the investments/upgrades till a later time in the planning horizon, is known as the “real
options approach”. For example, in the DER investment case, the high volatility of fuel and electricity

prices encourage the deferment of higher capacity assets [31], [32]. However, as pointed out in [32], the real



options approach cannot analytically consider multiple risk factors, which may be a limitation in practical
applications. Alternatively, another form of dealing with uncertainty in this context is quantifying multiple
economic realizations using a risk measure, and guaranteeing that it falls below a specified threshold [33] [34].
Conditional Value-at-Risk (CVaR), due to its linear property, has been widely used to capture risk in various
DER optimization problems. For example, on DER operations, [35] seeks to minimize a microgrid operational
cost in addition to a corresponding CVaR component. In [36], CVaR is used to limit the risk associated
with the operational cost of a scheduling problem for a wind-integrated smart multi-carrier energy hub,
considering wind generation, electrical, and thermal demands as uncertainty parameters. In the context
of power generation investment and planning, [37] uses a CVaR constraint to limit total investment and
operational costs, considering fossil fuel prices and hydrological inflows as potential risk sources, while [38]
employs CVaR to control the imbalance between energy generation and demand caused by uncertainty from
wind and solar output and demand. Specifically in DER planning, CVaR has been used to capture risk
where the uncertainty comes from electricity and gas prices [39]. The authors consider two different types of
hedges: physical hedge (DER on-site investment) and financial hedge (gas/electricity futures). However, the
model only captures investment at the beginning of the planning horizon, which does not allow the study of

multi-year long-term uncertainties, such as the ones associated with DER technology costs and regulation.

1.8. Contribution

To the best of our knowledge, there is no multi-period planning model for behind-the-meter DERs
which explicitly addresses technology costs and regulatory uncertainties. As discussed above, such model is
key to help prosumers and microgrid owners plan their investment strategies in an increasing uncertainty
environment around DER policy and regulation as well as around technology maturity and costs of DER
assets, particularly PV and storage technologies. To fill this gap, this paper presents a muti-period investment
and planning model with economic risk constraints that is able to generate consistent DER procurement
strategies in this uncertainty environment. Specifically, the proposed model calculates the optimal investment
in PV, batteries, and conventional distributed generation assets in each year of a planning horizon, taking
into account the uncertainty in technology costs of solar and storage technologies, as well as in fuel pries
and solar compensation policies. Finally, the model allows the investor to impose economic risk constraints
to the problem, both in an annual basis and in the horizon of the investments. The paper uses a case
study, comprising investments in a large building in California, to show how different types of economic risk

constraints can affect the size of DER assets as well as the optimal schedule of the investments.

1.4. Structure
This paper is structured as follows. Section 2 presents the formulation of the model to determine an
optimal portfolio for electricity generation subject to cost-risk balance. Section 3 presents a case study and

discusses the numerical results. Section 4 concludes and proposes directions for future work.



2. Methodology

The optimization model considers 3 types of long-term uncertainty: (i) trajectories of electricity and
fuel prices, describing the uncertainty associated with the evolution of the energy markets; (ii) scenarios
of technology costs, representing the uncertainty around the maturation of PV and storage technologies;
(iii) scenarios of evolution of the DER regulation policies, in particular the magnitude and structure of
the solar compensation mechanisms. Considering the multiple combination of these scenarios together with
deterministic technical parameters of DERs, the model outputs the optimal multi-period DER investment
strategy that maximizes the expected revenue of the investor, while guaranteeing a maximum level of

economic risk. Figure [I| provides an illustration of the methodology overview.

electricity and
fuel price scenarios

technology Risk-constrained
cost scenarios Optimization

solar compensation
policy scenarios

DER tech

parameters

Figure 1: Methodology overview

It is important to stress that the optimization method presented in this paper is conceived to plan
behind-the-meter DER assets and to support adoption decisions by medium and large-scale private consumers.
In line with the literature on behind-the-meter DER, economic planning [I3]-[24], the model is designed to
represent the investor interests, the objective function aims at maximizing their revenue, and the system-wide
benefits and costs are assumed to be reflected in the prices, tariffs and solar compensation mechanisms. The
impact of this adoption on the grid is out of the scope of this paper. Such analysis can be found in other works
that study, for example, the impact of DER adoption on distribution grid reliability [40] and operational
security [41], or that proposes environmental incentives to guide DER adoption [42].

This section presents a mathematical formulation for an investment and planning problem of DERs
in a multi-period setting. We model the stochastic parameters with scenarios. Specifically, we use |K]|
trajectories, each of which consists of realizations for each of the uncertainties: import tariff, export tariff,

technology prices (PVs and batteries), and fuel prices for each operating and investment period.

2.1. Objective Function

The objective function aims to minimize net present cost of the DER investments and operations for the

entire planning horizon. The detailed form of its components is given below.



. Investment cost for continuous technology. Similar to [I3] and [I9], this represents the cost of technologies
whose size of investments can be approximated by continuous variables, such as PV and storage assets.
In this case, the size of the asset is represented by a quantity z.; (in kW or kWh), while the decision

of having it included in the portfolio is represented by the binary variable b, ;.

CFcz bcz"'c‘/cz Le i
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The exponent in the denominator is y(i) — 1 instead of y(i) because the investment is made at the

beginning of year i.

. Investment cost for discrete technology. These costs are applied to DER technologies that are procured

in integer quantities, nq;, such as thermal generators. The cost per unit invested is given by CDg;.
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. Remaining value of investment which has not expired at the end of the planning horizon:
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Some of the above components are functions of the stochastic parameters CV.;, FU;, T1;, and TE;,

which represent investment variable cost, fuel cost, import tariff, and export tariff, respectively. Regarding

the notation, for a stochastic parameter W, W* denotes a realization of W in scenario k. For example, F Utk

denotes the fuel cost in period ¢ and scenario k. We assume we know the values of these parameters in the

first period, that is, C'V, 1, FU;, T1;, and TE; are known. The objective function minimizes the expectation

of the sum of components f and the negative of components @ and .
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Considering uncertainty in technology costs of PV and storage assets, solar compensation policies as well

as energy and fuel prices, the objective function is to minimize E[f].

2.2. Energy Balance Constraints

Energy balance constraints ensure that the amount of produced energy is equal to the amount of consumed
energy. Energy balance for the system is presented in , which enforces that energy flow equality is satisfied
for each operating period t € 7.

Uy + 2 Od,t = UTt + EDt + Z ib,t (8)
deCuD beB

Note that o4, where d is a storage device, indicates the amount of energy discharged from the battery.

2.3. Investment Restriction Constraints

To comply with regulations or physical limits to the DERs investment capacity, we enforce constraints

(9) and to restrict the capacity installations of each technology.

Z z.,; < CCap,, for c € C, (9)
el
Z CAP, - ng; < DCapy, for d e D. (10)
el

In addition, we need constraints (11)) to relate capacity investment decision ;. and binary investment
decision b; .. If an investment in technology c is made in period 4, that is, ; . > 0, then the corresponding

binary decision variable b; . will be equal to 1, and hence a fixed cost has to be paid, otherwise it is O:
ZTei S M -bey,forceCiel, (11)

where M is a large number.



2.4. Generation Constraints

For each continuous generation technology c, its output in each operating period ¢ is restricted by its
available capacity times its power conversion factor in that period. For example, in the case of solar, PC'F'. ;

would represent the hourly productivity profile.

0ct < caacy - PCF 4. (12)

Discrete generation constraints are imposed on diesel/gas generators and are based on the amount of fuel

used by each generator d as in .

1
fuar =04 Ay - /7’ forteTJ. (13)
d

Additionally, a generator’s output is constrained to not exceed its available capacity:
04t < caaqy, for te 7. (14)
It is also important to take into account the ramping rate for generators using constraints and .

04t — 0dt—1 < Rg-0q4—1, for de D,t e T\{1}. (15)

0d,t—1 — 0dt < Rq-044-1, for de D,t e T\{1}. (16)
Constraint ensures that the energy exported to the utility only comes from renewable generators:

> 041 <EDy, forteT. (17)
deD

2.5. Battery Storage Constraints

For each storage technology b € B and each operating period t € T, we enforce the following set of
constraints. This represents well-known first-order storage reservoir model with technical limit constraints,
used in several DER investment models, e.g., [4I]. For the sake of simplicity, and to keep the focus on the
specific contribution of this paper, the storage degradation factors were not considered. It is important to

stress that such expansion is straightforward, using the linearized model presented in [22].

socpr =Tyt Ay - CEy —0p g - Ay - DLE;, + socp—1 - (1 —SDy), (18)
ov,t <MDy, - caay, (19)
ipt < MGy - caap ¢, (20)

socyr = SCy - caap. ¢, (21)

S0Cpt < Cap ¢, (22)

socy1 = 0, (23)
op,1 = 0. (24)
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2.6. Available and Remaining Capacity Constraints

Variables available capacity and remaining capacity are functions of the investment decision variables
bai,xq,i, and ng ;. Available capacity of each type of DER indicates the capacity of that DER available for
use at the beginning of period t. For continuous technology c, it is defined as

t

Calct = 2 T (25)

i=max{l,t—L.+1}

For discrete technology d, its available capacity is defined as

t
caaqt = Z CAPd *Nd - (26)
i=max{1,t—Lg+1}

Remaining capacity of each type of DER indicates the amount which would have not expired by the end of

the analysis, i.e., period T. For continuous technology c:

T+1 CV. =, Tei 1—~. —
c,T+1 c Ve .
. = E —_— |- (1— T+1— , 27
car ((1 + p)y(7+1) ) ( L ( + Z>> ( )

— c
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Similarly, for discrete technology d:

e CDy7y1 - Nd.i 1= = ,
carg = Z <> . (1 -7 (T+1- z)) (28)

T+1
i=max{1,T—Lg+2} (1 T p)Y( ) d

We assume all technology lifetimes, Lg4, are whole numbers of hours and Ly > 1. For all DER d, we set
bai, x4, and ng,; to 0 when i = T+ 1. We need this condition to enforce the definition for remaining capacity
of technology whose lifetime is Ly = 1 (so they will have a remaining value of 0).

In , the first term of the product inside the summation is the evaluation made right after the end

of the analysis of the period-i investment in DER ¢. In the second term of the product, «. represents the

portion of the investment in DER ¢ salvaged at the end of its lifetime, so represents the portion of ¢

1=
L.

used in each of its operating years. T + 1 —i is the number of years the DER would have been in use by the

end of the analysis. Therefore, the second term of the product represents the remaining portion which would

have not been used by the end of the analysis. A similar rationale is used in for discrete technologies.

2.7. Risk Constraints

The purpose of risk constraints is to limit undesirable consequences of the uncertainty realization.
Roughly speaking, a CVaR risk measure quantifies the right tail of the risk distribution, which constitutes
the worst case scenarios. The risk distribution is induced by the underlying distribution of the stochastic
parameters. The size of this right tail is determined by the corresponding VaR. One of the earliest papers
on the use of CVaR in portfolio optimization is [43], which shows how CVaR can be used in either the
objective function or constraints, and gives conditions under which the corresponding formulations yield the

same efficient frontier. Specifically, for all convex risk measures, which includes CVaR, and convex cost f of

11



decision x, if the decision set X is convex and the constraints f(x) < v and CVaR®(x) < p have internal

points, the following three formulations yield the same efficient frontier as we vary their parameters u,v

and p:
(P1) mini;nize CVaR*(x) + uf(x)
subject to rzeX,u=0.
(P2) miniwmize CVaR"(x)
subject to zeX, f(x)<v
(P3) miniwmizc flx)
subject to xz € X,CVaR®(z) < p.

One major difference between having a CVaR term in the objective function (as in (P1)) and enforcing a
CVaR constraint (as in (P3)) is that the former would have the same feasible set as in the risk neutral case
(i.e., without adding the CVaR term). The meanings, however, are interpreted differently, given the choice
of parameters p in the objective function of (P1) and v in the risk constraint of (P3). In this paper, we
impose two types of CVaR constraint: one for the entire planning horizon, and the other for each operating
year within the planning horizon.

For the entire planning horizon, we enforce one CVaR constraint to restrict the total investment and
operation cost f of the worst 1 — a cases:

<I>a(f)—h+7ZPrk Y — h]* < Risk, (29)
keX

where [-]* = max{-,0}, h is an auxiliary variable, and ¢ = (CV, FU,TI, TE) represents the vector of

stochastic parameters.

We can relax by the following set of linear constraints:

ht — Z Pry - z, < Risk, (30)
keﬂ(

2 = f(€F) —h, for k € X, (31)

zp =0, for k € X, (32)

where z;, are auxiliary variables, and

('z b(‘z+ovk' CD g Ngg FU]C q u
Z Z (14 ppy@-1 Z Z (1 +d d Tt Z (tl +Zc)l§£)j—tld’t
i€J ceC p i€ deD ’0 teT p
CMFd t * Caaqd. ¢ + CMVd t° Od + Ut - At . TItk
+ 2 Z 1 + p)y(t) 1 Z (1 + p)y(t)—l
teT deCuD teT
TE A
= # N cara.
teT ( + P deCuD

12



Risk and «, specified by the planner, together determine the trade-off between risk and cost. Investors
typically have a predetermined investment budget so it is natural that they want to make sure even in the
1 — « worst case scenarios the total cost still falls under this budget. Note that we can shape the distribution
of f by enforcing multiple CVaR constraints. They would have the same form as but with different
values of o and Risk.

For each operating year in the planning horizon, we impose one CVaR constraint. The “risk” considered
is the running stream for that year. A year’s running stream is defined as the difference between its running

cost and its export revenue. Let us first define the depreciation cost for each operating year y:

¢
d, = Z Z 1 Z CFei-bei +CVey-me n Z CDa,i - na,i . (33)

i) —1
teTy i=max{1l,t—Lq+1} 1+ p)y(z) cee Le deD La

The inner summation of sums up all investments which have been invested and not expired by the
end of operating period t. Note that we assume the investments have a salvage value of 0 at the end of
their lifetime, i.e., salvage factor 74 = 0 for all d. The lifetime parameters Lc and Ly have the same units
as the length of each operating period t. We define the running stream f,, which is the sum of fuel cost,

maintenance cost, utility cost, depreciation cost, and the negation of export revenue, for each year as:

FU - Y gep St
fy(&) = S : o
! t;y (L+ pp-1
CMF g - caaas + CMVay - oas
' | | ’ 7 35
tezvly deé@ (14 p)yy(®-1 (35)
U - At . TIt
EACTEE (36)
tgy (1+ppy®-1

+d, (37)
TEt cUTt - At
EPIRCETiE,

teTy

where T, is the set of operating periods in year y and for y = 1,2, Y.
For each year y € Y in the planning horizon, we impose one CVaR constraint to restrict the running

stream of the worst 1 — «, cases:

1

11—«

(I)ay (.fy) = hy +

> Prg - [£,(€%) — hy ] < Risk,, (39)
Y kex

where h, are auxiliary variables. We can relax by the following set of linear constraints:

1

hy + Z Pry - Zyk S RiSky, (40)
L=ay i5

zyk = [y (E%) — hy, for k € K, (41)

Zyk =0, for k € X, (42)

where z, ;. are auxiliary variables.
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Table 1: Specifications of Discrete Technology

Type Capacity Investment Cost Lifetime Fuel Conversion Efficiency Ramping Factor

kW] [$/unit] [year]
NG_125 125 18000 20 0.32 0.5
NG_40 40 12000 20 0.29 0.5

Table 2: Specifications of Battery Technology

Minimum State of Charge 0.05
Max Power Discharged Ratio 0.3
Max Power Charged Ratio 0.3
Charging Efficiency 0.95
Discharging Efficiency 0.95
Self-discharged Coefficient 0.01
Lifetime [year] 10

Investors might also have a predetermined investment and operating budget for each year depending on
their cash flow, so it is natural that they want to make sure even in the 1 — «,, worst case scenarios of year

y the running stream still falls under this budget.

3. Case Study

This section presents a case study to illustrate how the proposed model can find the optimal multi-year
DER investment strategy, considering PV, storage and two types of natural gas generators. The program is

solved by CPLEX using a computer with 8 GB of RAM and a 2.3 GHz Quad-Core processor.

3.1. Data

The case study considers the annual electric load profile of the reference mid rise apartment building
in the climate zone of San Francisco, California, obtained from the US Department of Energy Reference
buildings database [44]. When constructing the profile, the reference cooling and space heating loads were
assumed to be electric. The annual PV productivity profile was built based on the radiation data from
Typical Meteorological Year data set [45] for the same climate zone.

As mentioned above, the set of DER investments considered in this case study include PVs, batteries,
and generators. Two types of natural gas generators, with different nameplate capacity sizes, listed in Table
were taken into account. The storage parameters used in this simulation are presented in Table

Regarding the technology costs, we assume the reference energy storage price in period 1 to be 563

$/kWh. This price is based on a 13.5 kWh Tesla Powerwall, which is quoted $7,600 [46]. According to
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Table 3: Hourly Import Tariff for the First Year of the Planning Horizon [$/kWh]

Time Summer (May — September) Winter (October — April)
10:00 AM — 1:00 PM  0.2653 0.1896
1:00 PM - 5:00 PM 0.3773 0.1896
5:00 PM - 7:00 PM 0.3773 0.2064
7:00 PM - 9:00 PM 0.2653 0.2064
All other times 0.1852 0.1896

different estimates, the energy storage technology costs are projected to decrease around 6.5% annually for
the 2019-2028 period [47], or decrease 8% annually for the 2018-2022 period [48]. We set the PV price in
period 1 to 2400 $/kW. This price is projected to decrease by 5-7 % annually for the 2019-2028 period [49].

The reference natural gas price used in this study was obtained from the Pacific Gas and Electric (PG&E)
residential gas rate in December 2019, which was 1.36907 $ per therm (approximately equivalent to 0.0467259
$/kWh) [50]. According to [51], this price is projected to increase by approximately 3.64% annually for the
20192030 period.

A time-of-use residential rate from PG&E was also assumed to define the reference import tariff in
different hours of the day, as presented in Table |3} The remuneration of PV exports was abstractly defined
in relation to the import tariff: TE; = a-T1;. Here a expresses the solar compensation policy. For example,
when a = 1, the exports are remunerated at the same rate of the imports, replicating similar conditions of
a net-metering scheme. Conversely, when a < 1, the PV injections lose value in relation to the energy costs,
replicating a net-billing scheme, which typically favours PV self-consumption and the utilization of storage
resources.

To model the uncertainty of the technology costs, we assume 3 decreasing trajectories for PV and battery
costs with different probabilities (Figure|3]). The objective is to represent pessimistic, realistic and optimistic
projections for the maturity of each technology. Similarly, we generate 5 trajectories projecting natural
gas prices until the end of the investment horizon (Figure [2)) as well as 5 scenarios of annual increase of
electricity costs (table . Additionally, we model the regulatory uncertainty around solar compensation
policies by generating 5 scenarios for the parameter a. These scenarios (Table [4]) represent sudden changes
in the regulatory framework around solar compensation, specifically the transition from net-metering to
net-billing schemes (with exports remunerated at 30% of the electricity rate) at any point in time, during
the investment horizon. Thus, the combined trajectories associated with the uncertainty of technology costs,
fuel and electricity prices, and solar compensation policy, result in a total of 1,125 scenarios k in the proposed

model.
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Table 4: Scenarios of a

Scenario 1 2 3 4 5

Probability 6.5% 24.8% 38.1% 24.6% 5.9%

Year

1 1 1 1 1 1
2 1 1 1 1 1
3 0.3 1 1 1 1
4 0.3 1 1 1 1
5 0.3 0.3 1 1 1
6 0.3 0.3 1 1 1
7 0.3 0.3 0.3 1 1
8 0 0.3 0.3 1 1
9 0 0.3 0.3 0.3 1
10 0 0 0.3 0.3 1

Table 5: Increase Rate of Import Tariff
Scenario 1 2 3 4 5

Annual rate  0.5% 1.0% 1.5% 2.0% 2.5%
Probability 6.51% 24.82% 38.09% 24.64% 5.94%
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Figure 2: Trajectories for Natural Gas Price.
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We consider a horizon of 10 years of investment and aggregate the hourly load profile into 2 design days

per month, representing a weekday and weekend. Considering the 120 months of the horizon, this results

in 5,760 hourly operating periods. In this case study, DERs can be purchased at the beginning of each

year. Given that all technologies lifetimes are greater than or equal to the study horizon of 10 years, and

investments take place only at the beginning of the first period of each year, we can simplify the depreciation

cost expression (33) as:
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For example, if y = 1, the upper bound of the summation is 1; if y = 2, the upper bound of the summation is
577; if y = 3, the upper bound of the summation is 1153. In addition, A is the number of operating periods
in a year, which is the product of number of profile days, number of hours per day, and number of months
in a year. In this case, A =2 x 24 x 12 = 576.

We assume an annual discount rate p of 2% and consider a = o, = 95% for the CVaR constraints.

3.2. Numerical Results

Here we examine the impact of CVaR constraint . First without, and then with CVaR constraints
for the yearly running stream .

8.2.1. Including investment horizon risk constraints
In this subsection, we present the results when adding risk constraints related to the overall investment
strategy. In other words, we exclude the CVaR constraints for the yearly running stream. These will be

discussed later, in the next section.

Table 6: Comparison of Methods

No DERs Investment DERs Investment with No CVaR Constraints DERs Investment with Risk = 450, 000

Objective Function  $631,682 $365,048 $377,479
95%—-CVaR $660,181 $484,992 $449.856

As shown in Table [f] the expected cost of the system without investments is $631,682 and the 95%-CVaR
value is $660,181 (this means that only the worst 5% of cases’ costs exceed $660,181). When investments are
allowed and no risk constraint is enforced, the expected cost decreases to $365,048 and the 95%—CVaR to
$484,992. When imposing a constraint of $450,000 in the 95%—CVaR, the expected cost increases by 3.4%
to $377,479 but 95%-CVaR decreases by 7.2% to $449,856 comparing to the previous case. In other words,
this 3.4% can be seen as an additional cost paid to reduce the risk of the investor, mitigating the exposure
to the technology and regulatory uncertainties. Thus, the choice of Risk = 450, 000 is only illustrative of the
trade-off between cost and risk. In practice, decision makers would choose Risk among a set of solutions,
according to their risk tolerance and/or their budget constraints. Figure |4| presents the cost-risk Pareto

frontier to further illustrate how this trade-off relationship could be presented to decision makers.
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Figure 4: Cost-Risk Pareto Frontier (without CVaR constraints for yearly running stream).
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Table [7| presents the corresponding DER portfolios for various choices of Risk, where case Al is the least
risk averse (no CVaR constraints) and case D1 is the most risk averse (lowest possible Risk at which there
is still a solution). For all values of Risk that we run, a gas generator of 40 kW is installed in the first year,
regardless of the level of risk averse assumed in the solution. As we decrease the risk exposure by reducing
the value of Risk, solar investment decreases, while battery investment increases. In addition, a common
trend in all scenarios (including when no risk constraint is imposed) is that battery investments occur later in
the planning horizon due to the distribution of a (see Table . In fact, as time progresses, a transition from
net-metering to net-billing scheme is more likely to happen, which creates an incentive for the utilization of
storage resources at the end of the investment horizon.

To further illustrate the advantage of our model in accounting for the economic risk associated with
technology and regulatory uncertainties, we compare three approaches to DER planning (deterministic,
stochastic and risk-constrained) in a situation where the worst case scenario happens. From a DER investor’s
perspective, the worst case scenario corresponds to the highest import tariff, the lowest export tariff, the
highest natural gas price and the slowest decreasing rate in DER prices, i.e., a combination of the following:
Scenario 1 of a, Scenario 5 of Import Tariff, Scenario 4 of Natural Gas Price, Scenario 3 of Battery and PV
prices. Assuming this worst case combination of scenarios, we compare the costs of the planning solutions
obtained by the simple stochastic and risk-constrained approaches (solutions Al and D1 in Table[7)) with a
deterministic planning solution obtained for a central scenario (Scenario 3 of a and Import Tariff, Scenario 1
of Natural Gas, PV and Battery prices). The economic evaluation in Table [§[ shows that the approach with
CVaR leads to significantly better costs when the technology and regulatory conditions are unfavorable to

DER investments.
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Table 7: Comparison of Generation Portfolios (without CVaR constraints for yearly running stream)

Case Al B1 C1 D1
Risk
No CVaR
450,000 442,500 437,000
Installed Capacity (kW]
Solar 153.78 152.97 152.55 147.99
Gas Generator 40 40 40 40
Battery 262.55 273.63 278.85 282.92
Ezpected Generated Energy [kWh]
Solar 82% 72% 66% 58%
Gas Generator 18% 28% 34% 42%
Expected Cost [$] $365,028 $377,185 $386,442 $402,551
Expected Cost [%, compared to case Al] 100% 103% 106% 110%
95%—-CVaR [$] $485,205 $449,930 $442.401 $436,958
95%-CVaR [%, compared to case Al] 100% 93% 91% 90%
Installed Capacity [kW] [solar /battery/gas]
Year 1 124.6/0/40 | 118.19/0/40  104.31/0/40  79.47/0/40
Year 2 20.19/0/0 | 0/0/0 0/0/0 0/0/0
Year 3 0/0/0 0/0/0 0/0/0 0/25.16/0
Year 4 0/0/0 0/0/0 0/0/0 0/0/0
Year 5 0/0/0 0/62.99/0 0/67.65/0 0/0/0
Year 6 0/0/0 0/0/0 0/0/0 20.37/79.87/0
Year 7 0/186.89/0 | 0/52.18/0 0/0/0 0/0/0
Year 8 0/0/0 0/74.35/0 0/120.3/0 0/86.55/0
Year 9 0/0/0 0/0/0 0/0/0 0/0/0
Year 10 0/75.67/0 | 34.78/84.11/0  48.24/90.89/0 48.15/91.34/0
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Table 8: Comparison of Different Approaches for the Worst Case Scenario

Case ‘ Deterministic Planning  Stochastic Planning Stochastic Planning with CVaR
Cost [§] | $483.812 $482,354 $447,538
Installed Capacity [kW] [solar/battery/gas]

Year 1 136.03/0/40 124.6/0/40 79.47/0/40
Year 2 0/0/0/ 29.19/0/0 0/0/0

Year 3 29.07/0/0 0/0/0 0/25.16/0
Year 4 0/0/0 0/0/0 0/0/0

Year 5 0/203.15/0 0/0/0 0/0/0

Year 6 0/0/0 0/0/0 20.37/79.87/0
Year 7 0/0/0 0/186.89/0 0/0/0

Year 8 0/0/0 0/0/0 0/86.55/0
Year 9 0/0/0 0/0/0 0/0/0

Year 10 0/59.43/0 0/75.67/0 48.15/91.34/0

3.2.2. Including CVaR Constraints for the Yearly Running Stream
This subsection presents the investment results when risk constraints are added to the yearly running
stream. The addition of such CVaR constraints makes sense when investors want to limit their risk of

exceeding the annual budget for the yearly running stream. To illustrate the impact of those constraints, we

fix Risk to 450,000 and set the same Risk, for all years y. However, it is important to stress that each year
can have a different value of my depending, for example, on the investors’ cash flow restrictions. Similar
to the previous subsection, Table [J] presents different risk policy solutions: from A2 to G2, where G2 is the
most constrained investment solution.

As shown in the table, the introduction of annual risk constraints has an impact on the objective function.
For example, when reducing the yearly CVaR limit from $42,500 to $40,000, the overall costs increase 2.36%.
On the other hand, despite a small decrease in battery investments, there is no major modifications to
the optimal portfolio of DERs. However, it is possible to observe a significant change in the multi-period
strategy of investments. In other words, the annual risk constraints have a significant impact on the way
investments are made throughout the years. For example, when looking at the lower risk solution (G2), one
can notice that some PV investments are delayed while some storage investments are anticipated. In fact,
this behavior decreases the risk in two ways: first, it spreads out the investments across the time; second, it
makes the PV and storage assets coincide earlier in the horizon, which provides more flexibility to deal with
sudden changes in solar compensation policies. Thus, this result highlights the importance of a multi-period

investment model when facing significant uncertainties in DER technology costs and regulatory policies.
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Table 9: Comparison of Generation Portfolios, Risk = 450,000

Case A2 B2 C2 D2 E2 F2 G2
Risk,
No CVaR,
‘ 42,500 42,000 41,500 41,250 41,000 40,000

Installed Capacity [kW]

Solar 152.97 152.97 152.97 153.02 152.97 152.61 152.34
Gas Generator 40 40 40 40 40 40 40
Battery 273.63 273.63 273.63 273.09 271.35 272.51 271.68
Ezxpected Generated Energy [kWh]

Solar 2% 2% 2% 2% 2% 1% 65%
Gas Generator 28% 28% 28% 28% 28% 29% 35%
Expected Cost [§] $377,185 $377,185 $377,186 $377,436 $377,822 $378,644  $386,077
Expected Cost [%, compared to case A2] 100.00% 100.00% 100.00% 100.07% 100.17% 100.39% 102.36%

Installed Capacity [kW] [solar/battery/gas]

Year 1 118.19/0/40 | 118.19/0/40  118.24/0/40  113.87/0/40  110.76/0/40  105.99/0/40  71.96/0/40
Year 2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Year 3 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 25.53/17.93/0
Year 4 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/31.19/0  0/0/0/

Year 5 0/62.99/0 0/62.99/0 0/62.21/0 0/54.91/0 0/47.37/0 0/0/0 20.14/0/0
Year 6 0/0/0 0/0/0 0/0/0 10.88/0/0 16.97/0/0 22.35/0/0  0/42.82/0
Year 7 0/52.18/0 0/52.18/0 0/52.96/0 0/82.75/0 0/94.95/0 0/99.53/0  0/0/0

Year 8 0/74.35/0 0/74.35/0 0/74.48/0 0/57.05/0 0/53.99/0 0/64.1/0 0/123.89/0
Year 9 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0

Year 10 34.78/84.11/0 | 34.78/84.11/0 34.73/83.98/0 28.27/78.37/0 25.23/75.04/0 24.27/77.7/0 34.71/87.05/0

4. Conclusion and Future Works

This paper presents a stochastic muti-period investment and planning model with economic risk constraints
facing an uncertainty environment around DER technology costs and regulatory policies. The model is
capable of generating consistent risk-constrained optimal DER investment strategies for a multi-year horizon.

As shown in the results, such strategies can be translated into ”cost vs risk” solutions to support the
decisions of prosumers and microgrids owners, who are interested in investing in DERs. In particular, the
new modeling characteristics introduced in this paper allow investors make decisions that are robust to
long-term variations of the regulatory and energy market conditions, such as variation in natural gas prices
or electricity rates.

We showed that risk-controlled solutions entail additional expected investment costs. From the investor’s
perspective, this can be seen as price to pay to be less exposed to the uncertainty in DER regulation and
technology prices.

The results also demonstrated that different types of risk constraints can impact not only the size, but
also the timing of these investments. In particular, when imposing higher risk-aversion constraints to the
problem, the optimal solutions tend to spread out the procurement of the DER assets throughout the planning
horizon. Additionally, in the presence of uncertainty about solar compensation schemes (e.g., transition from

net-metering to net-billing), lower risk strategies tend to articulate PV and storage investments, allowing
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them to coincide for longer periods, and providing more flexibility to adapt to sudden variations in solar
exports remuneration.

Thus, accounting for the economic risks associated with technology regulatory conditions of DER investments
is key, particularly for medium and large size prosumers and microgrid owners. It is important that risk-based
methodologies, such as the one developed in this paper, can be adopted by the industry and incorporated
into a new generation of DERs and microgrid planning tools to support the deployment of economically
robust portfolios of DER investments.

Finally, potential future works may include the combination of the economic risk framework presented
in this paper with other forms of risk relevant to DER planning, such as the security risk in the context of

resilience investment applications.
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