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Abstract 

The large-scale deployment of distributed energy resources will produce reverse power 

flows, voltage, and congestion problems in the distribution networks. This paper proposes 

a novel optimization model to support distribution system operators planning future 

medium voltage distribution networks characterized by high penetration of behind-the-

meter distributed energy resources. The optimization model defines the optimal mix, 

placement, and size of on-load tap charger transformers and energy storage devices with 

the objectives of mitigating network technical problems and minimizing both investment 

and operation costs. The proposed optimization model relaxes the non-convex 

formulation of the optimal power flow to a constrained second-order cone programming 

model and exactly linearizes the non-linear model of the on-load tap changer transformer 

via binary expansion scheme and big-M method. These two transformations reduce the 

computational burden of the optimization allowing it to be applicable to real-scale 

distribution grids, as demonstrated by the results. The numerical results also show that 

the joint optimization of energy storage devices and on-load tap changer transformers 

produces a more affordable and flexible planning strategy than the individual 

optimization of the technologies. 

Keywords: Energy storage; on-load tap changer transformer; optimal power flow; 

second-order cone programming; planning. 

Nomenclature 

Abbreviations 

DSO  distribution system operator 

EV  electric vehicle 

HV  high voltage 

LV  low voltage 

MV  medium voltage 

OLTC  on-load tap changer 

OPF  optimal power flow 

PV  photovoltaic unit 

SOCP  second-order cone programming 

Indices and sets 

𝑖, 𝑗, 𝑘  buses 
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(𝑖, 𝑗) ∈ 𝑁𝐿 collection of lines from bus 𝑖 to bus 𝑗 

𝑡 ∈ 𝑇  time intervals (h) 

𝑁𝐵  set of buses 

𝑁𝑂  set of buses with either existing or possible MV/LV OLTC transformers 

𝑁𝑆  set of candidate buses to place energy storage 

𝑛 ∈ 𝑁𝑇 length of the binary tap representation {1,2, … } 

𝑛𝑟𝑒𝑓  tap position that corresponds to 1 p.u. of turn ratio 

𝑑 ∈ 𝑁𝐷 selected days 

𝑇𝐵 ⊂ 𝑇 subset of periods that set the beginning of the day 

𝑇𝐸 ⊂ 𝑇 subset of periods that set the ending of the day 

Parameters 

𝑆̅   maximum capacity of the branch (p.u.) 

𝑆𝑏  base power (kVA) 

𝑟  resistance (p.u.) 

𝐼 ̅  maximum current (p.u.) 

𝑥  reactance (p.u.) 

𝜆𝑆̇  fixed investment price of energy storage (€) 

𝜆̇𝑂  fixed investment price of MV/LV OLTC transformer (€) 

𝜆𝑆̈  variable investment price of energy storage (€/kWh) 

𝜆𝑂̈  variable investment price of MV/LV OLTC transformer (€/kVA) 

𝜆𝐸  energy price (€/kWh) 

𝜆𝑂⃛  tap changing prices of HV/MV and MV/LV OLTC transformers (€/tap) 

𝜂+, 𝜂−  charging, discharging efficiencies  

∆𝑡  duration of the time interval 𝑡 (1 ℎ) 

∆𝜑  turn ratio change per tap (p.u.) 

Δ𝛼  turn ratio change associated to a binary tap position 

𝜑, 𝜑  minimum, maximum turn ratios (p.u.) 

𝛾  self-discharge rate of energy storage  

𝛽𝑆, 𝛽𝑆  maximum, minimum size of energy storage (kWh) 

𝛽𝑂  size of the installed transformer without OLTC capabilities (kVA) 

𝜙̅  total number of taps  

𝜍  minimum state-of-charge 

𝜌  power to energy ratio of the energy storage 

𝜓  reactive to active power ratio of the energy storage 

𝑊  weight of the daily profile 

𝑉̅, 𝑉  maximum, minimum voltages (p.u.) 

𝑃𝐼 , 𝑄𝐼 , 𝑆𝐼 inflexible active, reactive, apparent power (p.u.) 

𝑀  arbitrarily large number 

Variables 

𝐼  current (p.u.) 

𝐿  squared current (p.u.) 

𝑉, 𝑉̃  voltage (p.u.) 
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𝑈, 𝑈̃, 𝑈̂  squared voltage (p.u.) 

𝜃𝑆    binary investments in energy storage devices 

𝜃𝑂  binary investments in MV/LV OLTC transformers 

𝜑  turn ratio of the OLTC transformer (p.u.) 

𝜙  integer tap position of the OLTC transformer 

𝑆𝑂𝐶  state-of-charge (kWh) 

𝑃+, 𝑃−  charging, discharging active power (kW) 

𝑄+/−  reactive power of the energy storage (kVAR) 

𝑃𝐹 , 𝑃̂𝐹  active power flow (p.u.) 

𝑄𝐹, 𝑄̂𝐹  reactive power flow (p.u.) 

𝛿+, 𝛿−  number of tap changes in the positive, negative directions 

𝛽𝑆, 𝛽𝑂  size of energy storage (kWh), MV/LV OLTC transformer (kVA) 

𝛼  binary representation of the tap positions 

𝑚, 𝑥, 𝑦  auxiliary variables 

1. Introduction 

1.1. Motivation 

The emission targets of Paris climate agreement will require two major 

transformations in the electricity sector: 1) increasing the generation from renewable 

energy sources at the distribution level; 2) electrifying the transportation sector, namely 

by replacing internal combustion engine vehicles by electric vehicles (EVs). However, 

this revolution at the edge of the electricity system brings new challenges to the planning 

and operation of distribution networks, such as reverse power flows along with voltage 

and congestion problems, which will require a significant upgrade of grid assets as well 

as optimization-based tools for economically plan and operate them. Grid-connected 

energy storage and on-load tap changer (OLTC) transformers will play an important role 

in this infrastructure upgrade, as they are flexible control mechanisms that are becoming 

economically competitive. Thus, the optimal placement and sizing of energy storage 

systems and OLTC transformers will be vital to reduce investment and operation costs of 

distribution system operators (DSOs). 

1.2. Related work 

Electricity system planning methodologies have started to consider energy storage 

for different purposes including frequency regulation [1], energy arbitrage [2], microgrid 

applications [3], voltage regulation [4], and alleviate grid congestions [5]. At the 

transmission level, Dvorkin et al. [2] proposed a bi-level optimization model to size and 

place an energy storage device to perform energy arbitrage. In a later work [1], the 

application of the energy storage was extended to the provision of frequency regulation 

services. In the microgrid paradigm, several optimization models under the form of 

mixed-integer linear problems have been proposed to size and place energy storage 

devices for the provision of multiple services, such as energy arbitrage [6,7], peak 

shaving, and reliability services to ensure the safe operation of the microgrid in grid-

connected and islanded modes [8]. At medium voltage (MV) distribution level, planning 

methodologies consider energy storage as an instrument to perform voltage regulation 

[4,9] and alleviate network congestions [5,10]. Yang et al. [9] presented a heuristic based 

on power flows to size energy storage, while Alnaser et al. [5] addressed the same 
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problem by presenting an optimization model with the non-convex formulation of the 

optimal power flow (OPF). Both works are exclusively focused on the sizing problem. 

Placement involves representing the network constraints, which has been addressed by 

other authors either using second-order cone programming (SOCP) [10,11], 

metaheuristics [4] or linear models [12,13]. Placement and sizing were simultaneously 

addressed in [14,15] with optimization models based on the SOCP-OPF. In fact, as 

discussed in previous works [16,17], the OPF relaxation via SOCP convexifies the power 

flow equations, allowing the OPF model to be applicable to large-scale problems. 

OLTC transformers have been traditionally used by DSOs to automatically control 

voltages at the HV/MV substations [18,19]. However, the installation of OLTC at the 

MV/LV transformer is becoming more common with the increasing adoption of 

distributed energy resources by low voltage (LV) consumers. This can be seen in recent 

studies considering OLTC transformers in distribution network planning and operation 

[20,21]. Armendáriz et al. [20] proposed a network optimization model to place MV/LV 

OLTC transformers and later [21] the author presented a coordinated planning strategy to 

demonstrate the benefit of OLTC transformer investments in microgrid/utility boundary 

locations. Hosseinpour and Bastaee [22] included network equations and solved the 

problem of OLTC transformer placement, applying the non-convex formulation of the 

OPF, while using a metaheuristic to solve the non-linear problem. In a later work, Xie et 

al. [23] solved the problem of optimal placement of OLTC transformers using SOCP-

OPF. 

1.3.   Contributions 

This paper proposes a novel optimization model to support DSOs in the planning of 

MV distribution networks. The aim is to improve the network operation and mitigate 

possible network problems, such as undervoltages and overvoltages that may arise from 

the high integration of distributed energy resources at the LV level. Two smart grid 

technologies are considered in the planning problem: energy storage devices to perform 

energy arbitrage and voltage regulation; and OLTC transformers to perform voltage 

regulation. 

The proposed optimization model defines the optimal mix, placement, and sizing of 

energy storage devices and MV/LV OLTC transformers that mitigate network technical 

problems and minimize overall investment and operation costs. Investment costs include 

fixed and variable components of new energy storage devices and MV/LV OLTC 

transformer installations while operation costs include network energy losses, energy 

storage arbitrage and tap changes of OLTC transformers located at HV/MV and MV/LV 

substations. The non-convex formulation of the OPF is relaxed to a constrained SOCP 

model, while the non-linear OLTC model is exactly linearized via binary expansion 

scheme and big-M method.  These two transformations make the optimization problem 

solvable via mixed-integer quadratically constrained programming. 

In the scope of distribution network planning, the proposed optimization model 

improves the state-of-the-art in the following points: 

1. it considers the joint sizing and placement of energy storage devices and MV/LV 

OLTC transformers, which differs from approaches only focused on energy 

storage devices [9,14] or OLTC transformers [20,21]. The joint optimization of 

these two technologies produces a more affordable planning strategy than the 
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individual optimization of the technologies, as shown in the results section. To the 

authors’ knowledge, no paper in the literature has presented an optimization 

formulation targeting planning problems that simultaneously consider OLTC 

transformers and energy storage devices; 

2. it exploits a SOCP-OPF model constrained by the LinDistFlow formulation [24] 

to ensure that the OPF solutions have physical meaning for extreme scenarios of 

network operation characterized by undervoltages and overvoltages. The 

solutions of the classic SOCP-OPF [15] may lose physical meaning in the 

mentioned scenarios, as discussed in [25]. This paper analyzes scenarios of 

undervoltages, overvoltages, and reverse power flows;  

3. it is applicable to real-scale MV distribution grids, as demonstrated in the results 

section for a 118-bus test system. Alternative approaches to real-scale distribution 

grids exploit linear OPF models [12,13] and metaheuristics [4,22]. However, the 

linear models and metaheuristics present drawbacks. The metaheuristics do not 

ensure the global optimality of the OPF problem and the linear models may 

produce technically infeasible solutions, as shown in the results section.  

In short, the proposed optimization model improves the planning of real-scale MV 

distribution grids by defining a more affordable and flexible plan for the placement and 

sizing of energy storage devices and MV/LV OLTC transformers. 

1.4. Paper organization 

The remaining paper is organized as follows: section 2 reviews the non-convex 

formulation of the OPF for distribution grids with OLTC transformers; sections 3 and 4 

present the methodology for the optimal sizing and placement of energy storage devices 

and OLTC transformers; the case study and results are described in sections 5 and 6; 

section 7 is the conclusion. 

2. Non-convex formulation of the optimal power flow for radial 

distribution networks  

This section reviews the non-convex formulation of the OPF for radial networks with 

OLTC transformers.   

2.1. Branch flow model for radial networks 

The non-convex formulation of the OPF in the form of branch flow is formulated in 

equations (1)-(7) [24]. The objective function (1) minimizes the energy network losses. 

𝑀𝑖𝑛 ∑ 𝑟𝑖,𝑗𝐼𝑖,𝑗
2

(𝑖,𝑗)∈𝛽

 (1) 

The first two constraints (2) and (3) set the active 𝑃𝑖,𝑗
𝐹  and reactive 𝑄𝑖,𝑗

𝐹  power flows 

between buses 𝑖 and 𝑗. The parameters are the inflexible active power 𝑃𝑗
𝐼, inflexible 

reactive power 𝑄𝑗
𝐼, resistance 𝑟𝑖,𝑗 and reactance 𝑥𝑖,𝑗. The variable 𝐼 is the current between 

buses. The inflexible power is positive for load and negative for generation. Note that the 

buses 𝑖, 𝑗, 𝑘 are oriented as described in Figure 1. 
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𝑃𝑖,𝑗
𝐹 =  𝑃𝑗

𝐼 + ∑ 𝑃𝑗,𝑘
𝐹

𝑘:𝑗→𝑘

+ 𝑟𝑖,𝑗𝐼𝑖,𝑗
2 , ∀ (𝑖, 𝑗) ∈ 𝑁𝐿 (2) 

𝑄𝑖,𝑗
𝐹 =  𝑄𝑗

𝐼 + ∑ 𝑄𝑗,𝑘
𝐹

𝑘:𝑗→𝑘

+ 𝑥𝑖,𝑗𝐼𝑖,𝑗
2 , ∀ (𝑖, 𝑗) ∈ 𝑁𝐿 (3) 

Constraints (4) and (5) define the voltage in each bus 𝑗 ∈ 𝑁𝐵 and its limits [𝑉𝑗, 𝑉̅𝑗]. 

The slack bus is represented by bus 0 and the voltage is fixed. Constraints (6) and (7) set 

the current and the ampacity limits 𝐼𝑖̅,𝑗 of the branches. 

𝑉𝑗
2 = 𝑉𝑖

2 − 2(𝑟𝑖,𝑗𝑃𝑖,𝑗
𝐹 + 𝑥𝑖,𝑗𝑄𝑖,𝑗

𝐹 ) + (𝑟𝑖,𝑗
2 + 𝑥𝑖,𝑗

2 )𝐼𝑖,𝑗
2 , ∀ (𝑖, 𝑗) ∈ 𝑁𝐿 (4) 

𝑉𝑗 ≤ 𝑉𝑗 ≤ 𝑉𝑗̅, ∀  𝑗 ∈ 𝑁𝐵 (5) 

𝐼𝑖,𝑗
2 𝑉𝑖

2 = 𝑃𝑖,𝑗
𝐹 2

+ 𝑄𝑖,𝑗
𝐹 2

, ∀ (𝑖, 𝑗) ∈ 𝑁𝐿 (6) 

0 ≤ 𝐼𝑖,𝑗 ≤ 𝐼𝑖,𝑗, ∀ (𝑖, 𝑗) ∈ 𝑁𝐿 (7) 

This optimization problem is non-convex. However, it can be relaxed to a convex 

problem using second-order cone constraints. Section 3 presents a constrained SOCP-

OPF. 

 

Figure 1. Representation of one feeder. 

2.2. On-load tap changer transformer model 

The introduction of HV/MV and MV/LV OLTC transformers into the OPF model 

requires replacing one existing constraint and adding four new ones. In this case, 

constraint (5) is replaced by constraint (8) to exclude buses with OLTC transformers.  

𝑉𝑗 ≤ 𝑉𝑗 ≤ 𝑉𝑗̅, ∀  𝑗 ∈ 𝑁𝐵\{𝑁𝑂} (8) 

Constraints (9)-(12) are added to the initial formulation. Constraint (9) sets the 

voltage on the MV side of the network. The voltage 𝑉̃𝑗 is fixed (e.g., 1 p.u.) if the bus has 

an HV/MV OLTC transformer (i.e., slack bus). In case of the bus having a MV/LV OLTC 

transformer, the variable 𝑉̃𝑗 defines the voltage in the secondary side of the transformer. 

Constraint (10) defines the turn ratio 𝜑𝑗 of the OLTC transformer. The parameters 𝜑𝑗 and 

∆𝜑𝑗 are the minimum turn ratio and turn ratio change per tap, respectively. The integer 

variable 𝜙𝑗 represents the actual tap position of the OLTC. Constraint (11) limits the tap 

positions [0, 𝜙𝑗
̅̅ ̅]. Constraint (12) ensures the voltage limits in the secondary side of the 

transformer. 

𝑉𝑗 = 𝑉̃𝑗𝜑𝑗 , ∀ 𝑗 ∈ 𝑁𝑂 (9) 

𝜑𝑗 = 𝜑𝑗 + ∆𝜑𝑗 ∙ 𝜙𝑗 , ∀ 𝑗 ∈ 𝑁𝑂 (10) 

0 ≤ 𝜙𝑗 ≤ 𝜙𝑗
̅̅ ̅, ∀ 𝑗 ∈ 𝑁𝑂 (11) 

𝑉𝑗 ≤ 𝑉̃𝑗 ≤ 𝑉𝑗̅, ∀ 𝑗 ∈ 𝑁𝑂 (12) 

i j

𝑃𝑖 ,𝑗
𝐹  , 𝑄𝑖 ,𝑗

𝐹  

𝑟𝑖 ,𝑗 + 𝑗𝑥𝑖 ,𝑗  

𝑃𝑗 ,𝑘
𝐹  , 𝑄𝑗 ,𝑘

𝐹  

k
𝑃𝑗

𝐼  , 𝑄𝑗
𝐼  
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The OLTC model (9)-(12) is non-linear. However, it can be transformed into a set of 

mixed integer linear constraints via binary expansion scheme and big-M method. Section 

3 presents an exact linearization of the OLTC transformer model incorporated into the 

constrained SOCP-OPF. 

3. Optimization model for sizing and placement of energy storage 

devices and on-load tap changer transformers 

The aim of this optimization model is to support DSOs in the planning of the MV 

distribution networks. The model defines the optimal mix, size, and placement of energy 

storage devices and MV/LV OLTC transformers in MV distribution networks by 

minimizing the overall investment and operation costs. The investment costs include the 

placement and sizing of energy storage devices and MV/LV OLTC transformers. The 

operation costs consider energy network losses and costs associated with the coordinated 

management of energy storage devices and OLTC transformers located and placed at the 

HV/MV and MV/LV substations. 

3.1. Time horizon 

The optimization horizon 𝑡 ∈ 𝑇 covers the period of 1 year and is modeled by design-

days and critical-days. The design-days model typical conditions of operation. The 

critical-days model extreme scenarios of operation characterized by overvoltages and 

undervoltages. The total investment and operation costs are annualized. The investment 

costs are annualized based on the expected lifetime of the technologies. 

3.2. Objective function 

The optimization model is formulated as a minimization problem. The objective 

function (13) minimizes the annualized costs of sizing, placing and operating the energy 

storage devices, OLTC transformers and distribution network. The objective function 

(13) can be divided into the following terms: 

1. investment cost terms: the first two terms 𝜃𝑗
𝑆𝜆𝑆̇ + 𝛽𝑗

𝑆𝜆𝑆̈ and 𝜃𝑗
𝑂𝜆𝑂̇ + 𝛽𝑗

𝑂𝜆𝑂̈ 

represent the annualized investment costs, i.e., the fixed and variable annualized 

costs of installing energy storage devices and MV/LV OLTC transformers. 

Specifically, 𝜃𝑗
𝑆𝜆𝑆̇ and 𝜃𝑗

𝑂𝜆𝑂̇ represent the fixed costs of placing energy storage 

devices and MV/LV OLTC transformers in a given location, while the 𝛽𝑗
𝑆𝜆𝑆̈ and 

𝛽𝑗
𝑂𝜆𝑂̈ are the variable costs associated with the technology size. The binary 

variables 𝜃𝑗
𝑆 and 𝜃𝑗

𝑂 represent the investment decision in each node 𝑗, while the 

continuous variables 𝛽𝑗
𝑆 and 𝛽𝑗

𝑂 define the size of the devices. The fixed and 

variable cost components are given by 𝜆𝑆̇, 𝜆𝑂̇ , 𝜆𝑆̈ and 𝜆𝑂̈;  

2. operation cost terms: the last three terms model the annual operating costs 

associated with network energy losses 𝜆𝑡
𝐸𝑟𝑖,𝑗𝐿𝑡,𝑖,𝑗𝑆𝑏, energy storage arbitrage, 

𝜆𝑡
𝐸𝑃𝑡,𝑗

+ − 𝜆𝑡
𝐸𝑃𝑡,𝑗

− , and tap changes of HV/MV and MV/LV OLTC transformers, 

(𝛿𝑡,𝑗
+ + 𝛿𝑡,𝑗

− )𝜆𝑗
𝑂⃛. This formulation assumes that the DSO can use energy storage 

devices to buy and sell energy at wholesale prices 𝜆𝑡
𝐸. Here, 𝑆𝑏 is the base apparent 

power,  ∆𝑡 is the time step and the tap changing price is described by 𝜆𝑗
𝑂⃛. Variables 
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in this part of the formulation include the squared current 𝐿𝑡,𝑖,𝑗, charging power 

𝑃𝑡,𝑗
+ , discharging power 𝑃𝑡,𝑗

− , and number of tap changes in the positive 𝛿𝑡,𝑗
+  and 

negative 𝛿𝑡,𝑗
−  directions. 

𝑀𝑖𝑛    [ ∑ (𝜃𝑗
𝑆𝜆𝑆̇ + 𝛽𝑗

𝑆𝜆𝑆̈) + ∑ (𝜃𝑗
𝑂𝜆𝑂̇ + 𝛽𝑗

𝑂𝜆𝑂̈)

𝑗∈𝑁𝑂\{0}𝑗∈𝑁𝑆

]

+ [∑ 𝑊𝑡 ( ∑ 𝜆𝑡
𝐸𝑟𝑖,𝑗𝐿𝑡,𝑖,𝑗𝑆𝑏

(𝑖,𝑗)∈𝛽

+ ∑ (𝜆𝑡
𝐸𝑃𝑡,𝑗

+ − 𝜆𝑡
𝐸𝑃𝑡,𝑗

− )∆𝑡

𝑗∈𝑁𝑆𝑡∈𝑇

+ ∑ (𝛿𝑡,𝑗
+ + 𝛿𝑡,𝑗

− )𝜆𝑗
𝑂⃛

𝑗∈𝑁𝑂

)] 

(13) 

The HV/MV substation is the slack bus and has an OLTC transformer. The candidate 

buses for placing energy storage devices 𝑗 ∈ 𝑁𝑆 and MV/LV OLTC transformers 𝑗 ∈ 𝑁𝑂 

are selected by the DSO. The parameter 𝑊𝑡 weights critical-days and design-days. 

3.3. Energy storage constraints 

The sizing of energy storage consists of defining the energy capacity/size 𝛽𝑗
𝑆. 

Constraint (14) bounds the size of the energy storage [𝛽𝑆, 𝛽𝑆] when placed 𝜃𝑗
𝑆 in node 𝑗.  

𝛽𝑆𝜃𝑗
𝑆 ≤  𝛽𝑗

𝑆 ≤ 𝜃𝑗
𝑆𝛽𝑆, ∀ 𝑗 ∈ 𝑁𝑆 (14) 

Storage operation is defined by constraints (15)-(20). Constraints (15) and (16) set 

the range of the charging 𝑃𝑡,𝑗
+  and discharging 𝑃𝑡,𝑗

−  active power [0, 𝛽𝑗
𝑆𝜌]. The parameter 

𝜌 is the ratio between charging/discharging active power and storage’s size. Constraint 

(17) defines the range of the reactive power 𝑄𝑡,𝑗
+/−

 capable of being absorbed and injected 

by the power electronic converter connected to the energy storage. The parameter 𝜓 

defines the ratio between the reactive power and active power.  

𝑃𝑡,𝑗
− + 𝑃𝑡,𝑗

+ ≤ 𝛽𝑗
𝑆𝜌, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑆 (15) 

𝑃𝑡,𝑗
− , 𝑃𝑡,𝑗

+ ≥ 0, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑆 (16) 

−𝜓 ∙ 𝛽𝑗
𝑆 ∙ 𝜌 ≤ 𝑄𝑡,𝑗

+/−
≤ 𝜓 ∙ 𝛽𝑗

𝑆 ∙ 𝜌, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑆 (17) 

Constraints (18) and (19) set and bound the state-of-charge 𝑆𝑂𝐶. The parameters 

𝜂+ and 𝜂− are the efficiencies of the charging and discharging processes, 𝛾 is the rate of 

self-discharge and 𝜍 is the minimum 𝑆𝑂𝐶 level. Constraint (20) imposes the 𝑆𝑂𝐶 at the 

end of the day 𝑇𝑑
𝐸 equal to the 𝑆𝑂𝐶 at the beginning of the day 𝑇𝑑

𝐵. The index 𝑑 defines 

the day. 

𝑆𝑂𝐶𝑡+1,𝑗 = 𝑆𝑂𝐶𝑡,𝑗(1 − 𝛾) + ∆𝑡 (𝑃𝑡,𝑗
+ 𝜂+ −

𝑃𝑡,𝑗
−

𝜂−
) , ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑆 (18) 

𝛽𝑗
𝑆𝜍 ≤ 𝑆𝑂𝐶𝑡+1,𝑗 ≤ 𝛽𝑗

𝑆, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑆 (19) 

𝑆𝑂𝐶𝑇𝑑
𝐵,𝑗 = 𝑆𝑂𝐶𝑇𝑑

𝐸,𝑗, ∀ 𝑑 ∈ 𝑁𝐷 ,   𝑗 ∈ 𝑁𝑆 (20) 

3.4. Radial network constraints 
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In this model, we relax the branch flow equations for radial networks (2)-(7) using 

second-order cones [25]. This is done by replacing 𝐼2 and 𝑉2 with the variables 𝐿 and 𝑈, 

respectively, and by transforming the equality constraint (6) into the inequality constraint 

(25). These result in the relaxed SOCP model given by equations (21)-(25). 

𝑃𝑡,𝑖,𝑗
𝐹 =  𝑃𝑡,𝑗

𝐼 +
𝑃𝑡,𝑗

+ − 𝑃𝑡,𝑗
−

𝑆𝑏
+ ∑ 𝑃𝑡,𝑗,𝑘

𝐹

𝑘:𝑗→𝑘

+ 𝑟𝑖,𝑗𝐿𝑡,𝑖,𝑗, ∀ 𝑡 ∈ 𝑇,   (𝑖, 𝑗) ∈ 𝑁𝐿 (21) 

𝑄𝑡,𝑖,𝑗
𝐹 =  𝑄𝑡,𝑗

𝐼 +
𝑄𝑡,𝑗

+/−

𝑆𝑏
+ ∑ 𝑄𝑡,𝑗,𝑘

𝐹

𝑘:𝑗→𝑘

+ 𝑥𝑖,𝑗𝐿𝑡,𝑖,𝑗 , ∀ 𝑡 ∈ 𝑇,   (𝑖, 𝑗) ∈ 𝑁𝐿 (22) 

𝑈𝑡,𝑗 = 𝑈𝑡,𝑖 − 2(𝑟𝑖,𝑗𝑃𝑡,𝑖,𝑗
𝐹 + 𝑥𝑖,𝑗𝑄𝑡,𝑖,𝑗

𝐹 ) + (𝑟𝑖,𝑗
2 + 𝑥𝑖,𝑗

2 )𝐿𝑡,𝑖,𝑗 ,      ∀ 𝑡 ∈ 𝑇,   (𝑖, 𝑗) ∈ 𝑁𝐿 (23) 

𝑉𝑗
2 ≤ 𝑈𝑡,𝑗 ≤ 𝑉𝑗̅

2
, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝐵\{𝑁𝑂} (24) 

𝐿𝑡,𝑖,𝑗𝑈𝑡,𝑖 ≥ (𝑃𝑡,𝑖,𝑗
𝐹 )

2
+ (𝑄𝑡,𝑖,𝑗

𝐹 )
2

, ∀ 𝑡 ∈ 𝑇,   (𝑖, 𝑗) ∈ 𝑁𝐿 (25) 

The OPF problem is now convex. However, this formulation may often lead to 

solutions that do not satisfy the original constraint (6), i.e. to solutions that do not have 

physical meaning, as discussed in [25]. This may happen in extreme scenarios of network 

operation characterized by high voltages close to the upper-bounds of the buses. To 

ensure solutions with physical meaning, we define a set of ancillary variables {𝑈,̂ 𝑃̂𝐹 , 𝑄̂𝐹} 

and constraints (26)-(28) derived from the LinDistFlow formulation [24]. Constraints 

(26)-(28) upper-bound the voltages of the SOCP-OPF model. Constraint (26) forces the 

slack bus voltage levels in both non-linear and linear models to be equal, connecting the 

SOCP model to the LinDistFlow model. Constraint 𝑈𝑡,𝑗 ≤ 𝑉𝑗̅
2
 in (24) becomes redundant 

after imposing (28) since 𝑈̂𝑡,𝑗 ≥ 𝑈𝑡,𝑗.  

𝑈𝑡,0 = 𝑈̂𝑡,0, ∀ 𝑡 ∈ 𝑇 (26) 

𝑈̂𝑡,𝑗 = 𝑈̂𝑡,𝑖 − 2(𝑟𝑖,𝑗𝑃̂𝑡,𝑖,𝑗
𝐹 + 𝑥𝑖,𝑗𝑄̂𝑡,𝑖,𝑗

𝐹 ), ∀ 𝑡 ∈ 𝑇,    (𝑖, 𝑗) ∈ 𝑁𝐿 (27) 

𝑈̂𝑡,𝑗 ≤ 𝑉𝑗

2
, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝐵\{𝑁𝑂} (28) 

The power flow variables of the LinDistFlow formulation 𝑃̂𝑡,𝑖,𝑗
𝐹  and 𝑄̂𝑡,𝑖,𝑗

𝐹  denote the 

sum of the power injections at the buses downstream node 𝑗 (inclusive). Figure 2 

illustrates the calculation of variables 𝑃̂𝑡,𝑖,𝑗
𝐹  and 𝑄̂𝑡,𝑖,𝑗

𝐹 . 

 

Figure 2. Illustration of 𝑃̂𝑡,𝑖,𝑗
𝐹  and 𝑄̂𝑡,𝑖,𝑗

𝐹 . The shaded region contains all power injections 

downstream node 𝑗 (inclusive). 

i j

𝑃̂𝑖,𝑗
𝐹  , 𝑄̂𝑖,𝑗

𝐹  

k𝑃𝑗
𝐼  , 𝑄𝑗

𝐼  𝑃𝑘
𝐼  , 𝑄𝑘

𝐼  

𝑃𝑘
+, 𝑄𝑘

+/−
 

𝑃𝑘
−, 𝑄𝑘

+/−
 

𝑃̂𝑖,𝑗
𝐹 = 𝑃𝑗

𝐼 + 𝑃𝑘
𝐼 +

𝑃𝑘
+ − 𝑃𝑘

−

𝑆𝑏
 𝑄̂𝑖,𝑗

𝐹 = 𝑄𝑗
𝐼 + 𝑄𝑘

𝐼 +
𝑄𝑘

+/−

𝑆𝑏
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The constrained SOCP-OPF (21)-(28) reduces the feasibility space of the OPF, 

eliminating points close to the voltage upper limits. However, this conservative approach 

guarantees that all solutions have physical meaning. 

3.5. On-load tap changer transformer constraints 

The non-linear OLTC model (9)-(12) is exactly linearized via a binary expansion 

scheme and big-M method. The turn ratio 𝜑𝑡,𝑗 of the OLTC transformer can be 

represented by the binary expansion scheme (29)-(30). The parameter ∆𝛼𝑗,𝑛 represents 

the turn ratio change enabled by each binary variable 𝛼𝑡,𝑗,𝑛. The length of the binary 

representation is defined by 𝑛 ∈ 𝑁𝑗
𝑇. Constraint (30) ensures that the OLTC only has one 

tap position activated. This binary representation replaces the former formulation given 

by equations (10)-(11). 

𝜑𝑡,𝑗 = 𝜑𝑗 + ∑ 𝛼𝑡,𝑗,𝑛 ∙ ∆𝛼𝑗,𝑛

𝑛∈𝑁𝑗
𝑇

, ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂 
(29) 

∑ 𝛼𝑡,𝑗,𝑛

𝑛∈𝑁𝑗
𝑇

≤ 1, ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂 
(30) 

The squared voltage 𝑈𝑡,𝑗 in the buses with OLTC transformers is defined by equation 

(31). The variable 𝑈̃𝑡,𝑗 represents (𝑉̃𝑡,𝑗)
2
 and is bounded by [𝑉𝑗

2, 𝑉𝑗̅
2

].  

𝑈𝑡,𝑗 = 𝑈̃𝑡,𝑗𝜑𝑡,𝑗
2 , ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂 (31) 

𝑉𝑗
2 ≤ 𝑈̃𝑡,𝑗 ≤ 𝑉𝑗̅

2
, ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂 (32) 

Constraint (31) is non-linear and makes the problem non-convex. This nonlinearity 

can be addressed by applying the big-M method twice. Constraints (33)-(38) replace 

constraints (29) and (31). Constraint (34) results from multiplying both sides of the 

equation (29) by 𝑈̃𝑡,𝑗. On the other hand, constraint (33) is obtained by multiplying both 

sides of the equation (29) by 𝑚𝑡,𝑗. Three new variables are defined 𝑚𝑡,𝑗 = 𝑈̃𝑡,𝑗𝜑𝑡,𝑗,

𝑦𝑡,𝑗,𝑛 = 𝛼𝑡,𝑗,𝑛𝑚𝑡,𝑗 and 𝑥𝑡,𝑗,𝑛 = 𝑈̃𝑡,𝑗𝛼𝑡,𝑗,𝑛. Constraints (35)-(38) exactly linearize variables 

𝑚𝑡,𝑗, 𝑦𝑡,𝑗,𝑛 and 𝑥𝑡,𝑗,𝑛 using a big-M. 

𝑈𝑡,𝑗 = 𝜑𝑗𝑚𝑡,𝑗 + ∑ 𝑦𝑡,𝑗,𝑛 ∙ ∆𝛼𝑗,𝑛

𝑛∈𝑁𝑗
𝑇

, ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂 
(33) 

𝑚𝑡,𝑗 = 𝜑𝑗𝑈̃𝑡,𝑗 + ∑ 𝑥𝑡,𝑗,𝑛 ∙ ∆𝛼𝑗,𝑛

𝑛∈𝑁𝑗
𝑇

, ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂 
(34) 

0 ≤ 𝑈̃𝑡,𝑗 − 𝑥𝑡,𝑗,𝑛 ≤ (1 − 𝛼𝑡,𝑗,𝑛)𝑀, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑂 , 𝑛 ∈ 𝑁𝑗
𝑇 (35) 

0 ≤ 𝑥𝑡,𝑗,𝑛 ≤ 𝛼𝑡,𝑗,𝑛𝑀, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑂 , 𝑛 ∈ 𝑁𝑗
𝑇 (36) 

0 ≤ 𝑚𝑡,𝑗 − 𝑦𝑡,𝑗,𝑛 ≤ (1 − 𝛼𝑡,𝑗,𝑛)𝑀, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑂 , 𝑛 ∈ 𝑁𝑗
𝑇 (37) 

0 ≤ 𝑦𝑡,𝑗,𝑛 ≤ 𝛼𝑡,𝑗,𝑛𝑀, ∀ 𝑡 ∈ 𝑇,   𝑗 ∈ 𝑁𝑂 , 𝑛 ∈ 𝑁𝑗
𝑇 (38) 

Now, the OLTC model is represented by the mixed integer linear constraints (30), 

(32)-(38). This model is applied to HV/MV and MV/LV OLTC transformers. 

The number of tap changes of the OLTC transformers is computed by constraint (39). 
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𝛿𝑡,𝑗
+ − 𝛿𝑡,𝑗

− = ∑ (𝛼𝑡,𝑗,𝑛 − 𝛼𝑡−1,𝑗,𝑛)𝑛

𝑛∈𝑁𝑗
𝑇

, ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂 
(39) 

𝛿𝑡,𝑗
+ , 𝛿𝑡,𝑗

− ≥ 0, ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂 (40) 

The sizing and placement of MV/LV OLTC transformers require two additional 

constraints (41) and (42). Constraint (41) defines the size of the MV/LV OLTC 

transformers based on the maximum capacity 𝛽𝑗
𝑂̅̅ ̅̅  of the existing transformer and on the 

peak apparent power 𝑆𝑡,𝑗
𝐼  from the LV side. Constraint (42) defines the placement, setting 

the transformer turn ratio to 1 p.u. when no OLTC is placed (𝜃𝑗
𝑂 = 0). The index 

𝑛𝑟𝑒𝑓corresponds to the binary position of the OLTC when the turn ratio equals to 1 p.u. 

Note that the number of taps is predefined. 

𝛽𝑗
𝑂 ≥ 𝜃𝑗

𝑂 max
 

[max
𝑡∈𝑇

(𝑆𝑏 ∙ 𝑆𝑡,𝑗
𝐼 ) , 𝛽𝑗

𝑂̅̅ ̅̅ ] , ∀ 𝑗 ∈ 𝑁𝑂\{0} (41) 

𝛼𝑡,𝑗,𝑛𝑟𝑒𝑓 ≥ 1 − 𝜃𝑗
𝑂 , ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂\{0} (42) 

Constraint (43) ensures the physical meaning of the SOCP-OPF, both when MV/LV 

OLTC transformers are placed or not. 

𝑈̂𝑗,𝑡 ≤ 𝑉𝑗

2
(1 − 𝜃𝑗

𝑂) + 𝜃𝑗
𝑂𝜑

𝑗

2
𝑉𝑗

2
, ∀ 𝑡 ∈ 𝑇, 𝑗 ∈ 𝑁𝑂\{0} (43) 

The full formulation of the optimization model proposed in this work is given by 

equations (13)-(28), (30), (32)-(43). This formulation is solvable via mixed-integer 

quadratically constrained programming. 

4. Candidate buses, critical-days, and design-days 

4.1. Candidate buses 

Part of the candidate buses to place energy storage devices and MV/LV OLTC 

transformers can be manually selected by the DSO based on decision constraints. 

However, even with this pre-selection, the planning problem can end up with hundreds 

of candidate buses for each technology penalizing the computational efficiency of the 

optimization problem. Thus, the authors propose a heuristic method to reduce the 

candidate buses based on selective power flow evaluations that explore the control space 

of the HV/MV OLTC transformer. The reduction of the number of candidate buses 

reduces the size of the optimization problem in terms of variables and constraints, and 

consequently the computational time without affecting the quality of the planning 

solution. This reduction also makes the optimization problem feasible and scalable for 

real-scale distribution networks.   

The sequential steps of the heuristic algorithm are presented in Figure 3. The heuristic 

algorithm identifies candidate buses by running a series of power flows for the entire 

control space of the HV/MV OLTC. Candidates buses are those with undervoltage and 

overvoltage problems that the HV/MV OLTC cannot solve. The heuristic algorithm is 

repeated for each hour of the analyzed period (e.g., 1 year). 

4.2. Critical-days 

The critical-days represent net-load profiles of 24 h and are selected based on the 

results of the heuristic algorithm. The days with the highest overvoltage or undervoltage 

per bus are considered critical-days. The weight of each critical-day is 1.  
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4.3. Design-days 

The design-days represent average net-load profiles of 24 h and model typical 

conditions of operation. The weight of each design-day is defined by the number of 

design-days. For instance, if the DSO sets the number of design-days equal to 1, the 

weight of the design-day is 365 – nº of critical-days. In this case, the design-day is 

represented by an average annual net-load profile of 24 h. 

 

Figure 3. Flowchart of the heuristic algorithm. 

5. Case study 

5.1. General description  

The proposed optimization model is tested using the MV distribution network 

described in Figure 4. Two scenarios of integration of distributed energy resources are 

evaluated: 

1. scenario 1: considers the integration of 14,937 EVs in Area 2 (see Figure 4). It is 

assumed that 50% of the consumers in Area 2 have one EV. The EVs are not 

controlled by any market agent or DSO. 

2. scenario 2: considers the integration of 59 MWp of photovoltaic units (PVs) in 

Area 1. It is assumed that each consumer in Area 1 has 1 PV with a peak power 

between 1 and 2 kWp.  

5.2. Network data  

The 11-kV distribution network has 118 buses, 117 branches, 1 HV/MV OLTC 

transformer and 117 loads. The resistance 𝑟 and reactance 𝑥 of the branches can be found 

in [26]. The bounds of the voltage magnitudes are 0.9 and 1.1 p.u. The loads are divided 

into three types and their main characteristics are described in Table 1. The annual hourly 

profiles were taken from an urban residential area in Portugal. The profiles define the 

base load of the system. 

Begin

Run a power flow (setting the 

voltage in the HV/MV OLTC 

transformer equal to 1 p.u.)

Voltage 

problems?

No
Stop

Run power flows (exploiting 

the voltage tap positions of the 

HV/MV OLTC transformer)

Voltage 

problems 

solved?

Yes
Stop

No

Save candidate 

buses

The candidate buses are the nodes with voltage problems for the 

tap position with the lowest number of buses with problems

Stop

Yes
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Table 1. Main characteristics of the loads. 

Loads 
Peak 

(kW) 

Annual energy 

(MWh) 

Transformer 

(kVA) 

Nº of 

clients 

Nº of 

loads 

Profile 1 142 522 630 224 71 

Profile 2 582 1975 1260 678 22 

Profile 2 898 2829 1260 998 24 

 

Figure 4. Medium voltage distribution network of 118 buses. 

5.3. Charging profiles of the electric vehicles 

The charging profiles of the EVs were computed by a discrete-time-space Markov 

chain [27]. This method uses traffic patterns from a residential area of the northern region 

of Portugal to generate the individual charging profile of each EV for the period of 1 year. 

The EV profiles were distributed by the network nodes of Area 2 in scenario 1, according 

to the ratio of 0.5 EV/client. Figure 5 illustrates the aggregated charging profile of 112 

EVs located at bus 75. The load profile suggests that the EVs usually start charging at 

night (between the 18th and 21st hours) after the drivers arrive at home.  

5.4. Photovoltaic generation profiles 

The annual PV profiles were generated based on data collected from a set of 

generation units located in the northern region of Portugal [28]. In scenario 2, each client 
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of Area 1 has 1 PV with a peak power that can range from 1 to 2 kWp. Figure 5 illustrates 

the aggregated generation profile of 224 PVs located at bus 45. 

 

Figure 5. EV profile of bus 75 and PV profile of bus 45 for an illustrative week. 

All the load and generation profiles of the electricity network can be provided upon 

request.  

5.5. Energy storage and on-load tap changer transformers 

Table 2 presents the investment and operation prices of energy storage devices, 

HV/MV and MV/LV OLTC transformers [21,29,30]. In the optimization model, the 

investment prices 𝜆𝑆̇,   𝜆̇𝑂, 𝜆𝑆,̈ 𝜆𝑂̈ are annualized, based on the expected lifetime of the 

technologies. The operation prices include tap change prices 𝜆𝑂⃛ and Iberian wholesale 

prices 𝜆𝐸 collected from the ENTSO-E Transparency Platform [30,31]. The energy 

absorbed and injected by the energy storage devices is valued at wholesale prices. 

Table 2. Investment and operation prices of energy storage systems and OLTC 

transformers. 

 Energy storage  MV/LV OLTC HV/MV OLTC 

𝜆𝑆̇ (€) 10000 - - 

𝜆̇𝑂 (€) - 20000  - 

𝜆𝑆̈ (€/kWh) 400 - - 

𝜆𝑂̈ (€/kVA) - 20 - 

𝜆𝑂⃛ (€/tap) - 0.043 0.043 

𝜆𝐸 (€/kWh) wholesale prices - - 

Lifetime 10 years 30 years - 

The parameters defining energy storage systems and OLTC transformers are shown 

in Table 3 and Table 4. Technology degradation is not considered in this paper. 

Table 3. Parameters of the OLTC transformers. 

 𝜑 (p.u.) 𝜑 (p.u.) 𝜙̅ ∆𝜑 (p.u.) ∆𝛼 (p.u.) 

HV/MV OLTC 0.9 1.1 11 0.02 [0.02, … ,0.2] 

MV/LV OLTC 0.95 1.05 5 0.025 [0.025, … ,0.1] 

Table 4. Parameters of the energy storage systems. 
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6. Results 

6.1. Identification of candidate buses for placing energy storage devices and on-load 

tap changer transformers  

Table 5 presents the candidate buses for placing MV/LV OLTC transformers and 

energy storage devices. The number of candidate buses is reduced but is still much higher 

than the final number of buses with placed technologies (see Figure 8).  

Table 5. Candidate buses to place MV/LV OLTC transformers and energy storage 

devices. 

 Scenario 1  Scenario 2 

Buses selected by the heuristic algorithm [69, 76]  [47, 53], 61 

Buses manually selected by the DSO 10, 35, 110 10, 35, 71, 110 

Nº of candidates 11 12 

Figure 6 presents the voltage violations identified in scenario 1. The voltage 

violations were identified by the heuristic algorithm. The integration of EVs generates 

undervoltages in Area 2 (see Figure 4). The bus 76 presents the lowest voltage value (0.84 

p.u.) and the highest number of undervoltages (78).  

 

Figure 6. Voltage violations identified in scenario 1. 

Figure 7 presents the voltage violations identified in scenario 2. The integration of 

PVs generates overvoltages in Area 1. The bus 76 presents the highest voltage value (1.13 

p.u.) and the highest number of overvoltages (7). 

 

Figure 7. Voltage violations identified in scenario 2. 
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are average hourly profiles computed based on the time series of 1 year. The weight 𝑊𝑡 

of each critical-day and design-day is also presented in Table 6. 

Table 6. Critical-days and design-days for scenarios 1 and 2. 

 Critical-days Design-days 

Scenario 1 January 7th  (𝑊𝑡 = 1) 1 winter day (𝑊𝑡 = 89) 

1 spring day (𝑊𝑡 = 92) 

1 summer day (𝑊𝑡 = 94) 

1 autumn day (𝑊𝑡 = 89) 

Scenario 2 July 20th  (𝑊𝑡 = 1) 1 winter day (𝑊𝑡 = 90) 

1 spring day (𝑊𝑡 = 92) 

1 summer day (𝑊𝑡 = 93) 

1 autumn day (𝑊𝑡 = 89) 

6.3. Joint versus individual optimization of technologies  

This section compares the joint optimization of energy storage devices and MV/LV 

OLTC transformers to the individual optimization of each technology. Three possibilities 

are considered: 

1. joint optimization of energy storage devices and MV/LV OLTC transformers 

(named joint); 

2. individual optimization of energy storage devices (named individual 1); 

3. individual optimization of MV/LV OLTC transformers (named individual 2). 

Scenario 2 is used to perform this analysis. 

6.3.1. Optimal sizing and placement of technologies 

Figure 8 presents the location and size of the MV/LV OLTC transformers and energy 

storage devices. The three possible combinations of technologies solve the overvoltage 

problems detected in scenario 2. 

The individual 2 placed 6 MV/LV OLTC transformers. This suggests that the joint 

optimization of the tap positions in both HV/MV and MV/LV OLTC transformers is 

enough to mitigate all overvoltage problems. The size of the transformers in buses 49, 51 

and 52 was unmodified, while transformers in buses 48, 50 and 53 were replaced by larger 

OLTC transformers. 

The individual 1 placed 2 energy storage devices. The energy storage in bus 53 has 

309 kWh of capacity, 103 kWh of maximum active power and 103 kVAR of maximum 

reactive power. The energy storage device in bus 71 has 124 kWh of capacity, 41 kWh 

of maximum active power and 41 kVAR of maximum reactive power. The energy storage 

devices together with the HV/MV OLTC transformer regulate the voltage. The energy 

storage devices exploit the volt/VAR compensation functionality enabled by the power 

electronic converter to regulate voltage.  

The joint optimization placed 1 MV/LV OLTC transformer and 1 storage device. The 

transformer of bus 53 was replaced by a larger OLTC transformer. The energy storage 

has 124 kWh of capacity, 41 kW of maximum active power and 41 kVAR of maximum 

reactive power.     
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Figure 8. Location and size of the MV/LV OLTC transformers and energy storage 

devices in scenario 2. 

6.3.2. Annual investment and operation net costs  

Table 7 shows the annual investment and operation net costs for the three 

combinations of technologies. Positive values are costs and negative values are revenues. 

The joint optimization presents the lowest total annual investment and operation cost 

of 197.1 k€ followed by individual 2 and individual 1 with total annual costs of 198.2 k€ 

and 204.8 k€. In addition, the joint optimization presents the cheapest investment 

planning strategy of 8.1 k€. Therefore, the joint optimization of technologies produces a 

more affordable planning strategy than the individual optimization of the technologies.   

Table 7. Annual investment costs and operation net costs for scenario 2. 

Type of cost Cost terms Joint Individual 1 Individual 2 

Investment (k€) 
Energy storage 6.0 19.3 0 

MV/LV OLTC 2.1 0 9.6 

Operation (k€) 

Energy losses 189.3 186.5 188.4 

Energy storage -0.4 -1.2 0 

MV/LV OLTC ~ 0 0 ~ 0 

HV/MV OLTC 0.1 0.1 0.1 

Total (k€) 197.1 204.8 198.2 

The individual 1 presents the lowest annual operation cost of 185.5 k€ followed by 

individual 2 and joint optimization with annual operation costs of 188.6 k€ and 189.0 k€. 

The deployment of energy storage devices generates revenues through arbitrage and 

consequently reduces operating costs. However, investing only in energy storage is 

expensive and not cost-effective at current prices. Nonetheless, the expected reduction of 

the prices promises to turn energy storage into a very competitive technology.  

6.4. Operation of the energy storage device and on-load tap changer transformers 

The optimization model emulates the operation of the energy storage devices and 

OLTC transformers in order to evaluate the economic and technical viability of deploying 

and operating these technologies. This section analyzes the operation of the energy 

storage and OLTC transformers optimized by the joint approach in scenario 2. 

6.4.1. Energy storage device 

Figure 9 describes the operation of the energy storage device during the critical day. 

The energy storage device installed at bus 71 injects reactive power throughout the day 
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to increase the voltage in Area 2 (includes buses 62-112, see Figure 4). The objectives 

are two. The first objective is to reduce energy losses. The second is to maintain the 

voltages of Area 2 above 0.9 p.u. when the HV/MV OLTC transformer moves the tap 

down to compensate the high voltage values observed in Area 1 (see Figure 11). In 

addition, the energy storage device absorbs active power at 2nd and 3rd hours and injects 

active power at 18th and 19th hours in order to profit from price arbitrage. In the Iberian 

market. the wholesale prices are typically low in the early hours of the day and high at 

evening [32,33].  

 

Figure 9. Operation of the energy storage device during the critical-day. Positive power 

values mean charging/absorbing. Negative power values mean discharging/injecting.  

6.4.2. On-load tap changer transformers 

Figure 10 and Figure 11 describe the operation of the MV/LV and HV/MV OLTC 

transformers along the critical day. The MV/LV OLTC transformer installed at bus 53 

maintains the same tap position of 0.95 p.u. along the day, in order to keep the voltage on 

the LV side of the transformer within the technical limits. On the other hand, the HV/MV 

OLTC transformer moves the tap up and down according to the voltage conditions of the 

network. At 12th and 13th hours, the HV/MV OLTC transformer moves down the tap to 

0.96 p.u., in order to keep the voltages of buses 47-53 and 61 below 1.1 p.u. This behavior 

is coordinated with the operation of the energy storage device. At the same hours, the 

energy storage injects active and reactive power to increase and keep the voltages of Area 

2 above 0.9 p.u. 

 

Figure 10. Operation of the MV/LV OLTC transformer during the critical-day.  
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Figure 11. Operation of the HV/MV OLTC transformer during the critical-day. Positive 

and negative tap changes represent the movement of the tap in the positive (up) and 

negative (down) directions, respectively.  

Figure 12 shows that the coordinated operation of the energy storage device with the 

OLTC transformers keeps the voltages of Area 1 (buses 1-61) below 1.1 p.u. and the 

voltages of Area 2 (buses 62-117) above 0.9 p.u. during the hours of high integration of 

PV generation (i.e., between the 9th and 17th hours). In the remaining hours of the day, the 

distribution network is operated at high voltages to reduce energy losses. The HV/MV 

OLTC transformer sets the voltage at slack bus equal to 1.1 p.u., as shown in Figure 11. 

 

Figure 12. Voltages during the critical-day. 

6.5. Constrained SOCP-OPF versus LinDistFlow 

This section compares the proposed optimization model based on the constrained 

SOCP-OPF to the LinDistFlow formulation of the problem. Scenario 1 is used to perform 

this analysis. 
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Figure 13 presents the location and size of the MV/LV OLTC transformers and 

energy storage devices. The constrained SOCP-OPF placed 8 MV/LV OLTC 

transformers and 1 energy storage device. The transformers of buses 70-71 and 73-76 

maintained the same size, while the transformers of buses 69 and 72 were replaced by 

larger OLTC transformers. The energy storage selected in this scenario has 284 kWh of 

capacity, 95 kW of maximum active power and 95 kVAR of maximum reactive power. 

Energy storage is included in the solution as OLTC transformers. OLTC transformers 

only solve nodal voltage problems, while energy storage improves voltage profiles across 

different buses. The LinDistFlow formulation placed only MV/LV OLTC transformers.  

 

Figure 13. Location and size of the MV/LV OLTC transformers and energy storage 

devices in scenario 1. 

6.5.2. Physical meaning of solutions 

The LinDistFlow formulation places fewer technologies than the SOCP-OPF, which 

results in lower investment costs, as demonstrated in the next subsection. However, the 

LinDistFlow formulation may compute infeasible solutions, i.e. solutions that do not 

solve voltage problems, as shown in Figure 14. These undervoltage violations were 

verified after the deployment of the technologies with the LinDistFlow.  

The SOCP-OPF only computes solutions with physical meaning, even for scenarios 

with reverse power flows. The deployment of the energy storage device in bus 76 

produced reverse power flows in lines 73-74, 74-75 and 75-76.  

 

Figure 14. Voltage violations after technology deployment with the LinDistFlow. 
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annual investment cost of 22.3 k€. The LinDistFlow formulation presents the lowest 
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Table 8. Annual investment and operation net costs for scenario 1. 

Type of cost Cost terms Constrained SOCP-OPF LinDistFlow 

Investment (k€) 
Energy storage 12.3 0 

MV/LV OLTC 10.0 8.3 

Operation (k€) 

Energy storage -0.8 0 

MV/LV OLTC 0.4 ~ 0 

HV/MV OLTC ~ 0 ~ 0 

Total (k€) 21.9 8.3 

6.5.4. Computational performance 

The optimization models based on the constrained SOCP-OPF and LinDistFlow 

formulation were implemented in Python and solved by the IBM CPLEX 12.7 optimizer 

on a machine with 256 GB RAM and an Intel(R) Xeon(R) CPU E7-4820 CPU clocked at 

2.0 GHz. The size and execution time of the resulting optimization problems are presented 

in Table 9. Numerical results show fast execution times for the size and complexity of the 

planning problems.  

Table 9. Size of the problems and execution times. 

 Constrained SOCP-OPF LinDistFlow 

Continuous variables 118,110 61,830 

Binary variables 5,059 5,059 

Linear constraints 165,327 122,127 

Quadratic constraints 14,040 0 

Execution time  2.9 h 9.8 min 

7. Conclusion 

The widespread integration of distributed energy resources will produce reverse 

power flows, overvoltage and undervoltage problems in the distribution grids. This paper 

proposes a new optimization model to plan MV distribution networks characterized by a 

high integration of distributed energy resources. The optimization model defines the 

optimal mix, size, and placement of energy storage devices and MV/LV OLTC 

transformers with the objectives of mitigating network technical problems and 

minimizing both operation and investment costs. 

The proposed optimization model based on the constrained SOCP-OPF computes 

only feasible solutions with physical meaning, even for extreme scenarios of operation 

characterized by overvoltages and undervoltages. Conversely, the LinDistFlow 

formulation produces infeasible solutions in scenarios with undervoltage problems. Both 

approaches present reasonable execution times compatible with real-scale distribution 

networks. This shows that the proposed methodology for sitting and sizing is applicable 

to real-size grids with significant improvements in accuracy when compared to linearized 

approaches.  

The numerical results show that the joint optimization of energy storage devices and 

MV/LV OLTC transformers produces a more affordable planning strategy than the 

individual optimization of the technologies. Both technologies are capable of regulating 

the voltage. For this purpose, the OLTC is a more cost-effective technology at the current 

prices. However, the consideration of other additional services, such as arbitrage, 
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frequency regulation, and congestion management may turn the energy storage in a very 

competitive technology. 

Future work consists of incorporating additional features in the planning problem, 

such as technology degradation and network reconfiguration. 
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