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ABSTRACT 
A carefully chosen indoor comfort temperature as the thermostat set-point is the key to optimizing building 
energy use and occupants’ comfort and well-being. ASHRAE Standard 55 or ISO Standard 7730 uses the 
PMV-PPD model or the adaptive comfort model that is based on small-sized or outdated sample data, which 
raises questions on whether and how ranges of occupant thermal comfort temperature should be revised 
using more recent larger-sized dataset. In this paper, a Bayesian inference approach has been used to derive 
new occupant comfort temperature ranges for U.S. office buildings using the ASHRAE Global Thermal 
Comfort Database. Bayesian inference can express uncertainty and incorporate prior knowledge. The 
comfort temperatures were found to be higher and less variable at cooling mode than at heating mode, and 
with significant overlapped variation ranges between the two modes. The comfort operative temperature of 
occupants varies between 21.9 and 25.4°C for the cooling mode with a median of 23.7°C, and between 20.5 
and 24.9°C for the heating mode with a median of 22.7°C. These comfort temperature ranges are similar to 
the current ASHRAE standard 55 in the heating mode but 2-3°C lower in the cooling mode. The results of 
this study could be adopted as more realistic thermostat set-points in building design, operation, control 
optimization, energy performance analysis, and policymaking. 
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Nomenclature 

Abbreviations  

ASHRAE The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

𝑐𝑐𝑐𝑐𝑐𝑐 (Icl) Clothing insulation 

Eq. Equation 

ℎ (g/g dry air) Humidity 

ISO International Standard Organization 

kWh kilowatt hour 

MCMC Markov Chain Monte Carlo 

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚) Metabolic rate 

𝑛𝑛 Number of observations 
⁰C Degree Celsius 

PMV (1) Predicted Mean Vote 

PPD (%) Predicted Percentage Dissatisfied 

RH (%) Relative humidity 
sd Standard deviation 
Std. Err. Standard Error 



TA (1) Thermal acceptability 

TC (1) Thermal comfort 

TP (1) Thermal preference 

TS (1) Thermal sensation 

US United States 

𝑣𝑣 (m/s) Air speed 

  

Subscripts/superscripts 

𝑇𝑇𝑎𝑎 (°C) Air temperature 

𝑇𝑇𝑖𝑖 (°C) Temperature for the ith observation 
𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑛𝑛  (°C) Neutral temperature 
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛𝑜𝑜  (°C) Observed temperature 

𝑇𝑇𝑜𝑜𝑛𝑛𝑛𝑛 (°C) Outdoor temperature 
𝑇𝑇𝑛𝑛 (°C) Mean radiant temperature 
𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛𝑜𝑜 (°C) Observed thermal sensation 

𝑇𝑇𝑇𝑇𝑖𝑖 (°C) Thermal sensation vote for the ith observation 

  

Greek symbols  

𝛽𝛽 (Estimated) coefficient 
𝜀𝜀𝑖𝑖 Prediction error for the ith observation 
λ Prior variance of the estimated coefficient 
σ2 Variance of the prediction error 
𝑁𝑁(𝜇𝜇,𝛴𝛴) Normal distribution with a mean value of 𝜇𝜇 and standard deviation of 𝛴𝛴 

  

  



1 Introduction 
Buildings consume a large proportion of energy and emit a substantial amount of greenhouse gas to maintain 
a comfortable thermal environment [1], [2] for occupants’ comfort, satisfaction [3], productivity [4], health 
[5] and well-being. The approaches to curtail building energy consumption while improving environmental 
quality not only include applying energy efficient technologies [6] and materials [7], enhancing building 
sensing, prediction [8], [9] and control [10], but also rely on a better understanding of occupants’ behaviors 
and their true demands. A key research question to understand occupants’ thermal demand is what is the 
suitable indoor temperature set-point that could satisfy occupants’ comfort need at affordable energy 
consumption level [11]. The answer to this question is the basis for building design, performance simulation, 
cooling technology selection and operation [12], control optimization, prediction-based analysis and 
policymaking [13].  
 
Up to date, thermal comfort standards and researchers have proposed two major frameworks to determine 
the proper temperature set-points: the PMV-PPD (Predicted Mean Vote – Predicted Percentage Dissatisfied) 
approach and the adaptive comfort approach. 
 

1.1 PMV-PPD approach 
The PMV-PPD approach was originally proposed by Fanger in 1970s [14]. The PMV-PPD approach is a 
physical-based heat-balance model, which develops the relation between the Predicted Mean Vote (PMV) 
with four environmental factors and two personal factors, as shown in Table 1. Then the mapping from PMV 
to the Predicted Percentage Dissatisfied (PPD) was identified from chamber experiments, rather than in real 
building environments. Last, by setting the objective for PMV and assuming the value of clothing insulation 
and metabolic rate for indoor occupants, the temperature set-point was found. 
 
As the first paradigm of thermal comfort studies, the PMV-PPD approach was adopted in the US [15] and 
international [16] thermal environment standards for buildings. However, the accuracy of PMV-PPD model 
depends on the dedicated calibration of input parameters. Additionally, the complexity of the heat-balance 
model limits its applicability in practice. In addition to the air and radiant temperature, which we are 
interested in, there are four other parameters that need to be considered in the PMV-PPD model. Accordingly, 
the PMV-PPD model is unable to provide an explicitly recommended indoor temperature set-point, because 
the comfortable temperature range predicted by the PMV-PPD model depends on other factors such as 
humidity, air speed, metabolic rate and clothing insulation [15]. In other words, the building operator and 
controller might not know what the temperature set-point should be, as the humidity or air speed is usually 
not measured in real practice. 
 
Additionally, even if the environmental parameters of air speed and humidity were measured, the uncertainty 
of the predicted suitable indoor temperature set-point is still high, since it is difficult to accurately estimate 
the clothing insulation and metabolic rate of inhabitants [17]. The most widely used way to estimate these 
two factors is the Table Lookup Method. However, Brager et al. found that the calculated clothing insulation 
value might differ by 20% if different sources of tables and algorithms were used [18]. Kingma and van 
Marken Lichtenbelt argued the metabolic rates listed in the current standard need to be recalibrated [19]. As 
a result, Ribeiro et al. claimed that the uncertainty of PMV calculation might be as large as 0.5 scale unit on 
the seven-point standard scale [20]. 
 

1.2 Adaptive comfort approach 
The adaptive comfort approach was proposed by de Dear and Brager in late 1990s [21], and confirmed by 
Nicol and Humphreys [22] in the early 2000s. In contrast to the physical-based PMV-PPD approach, the 
adaptive comfort model was developed through data-driven approach from the ASHRAE Global Thermal 
Comfort Database I. The key idea behind the adaptive comfort model is occupants would actively adapt to 
the ambient through behavioral, physiological and psychological adjustment, and accordingly should not be 
considered as static as they are assumed in the PMV-PPD model. For instance, the clothing insulation might 
vary from time to time, as occupants would adjust their clothing to make themselves thermally comfortable 
[23]. The major mathematical assumption of the adaptive comfort model is the outdoor temperature should 
be a good proxy of the adaptive behaviors [22]. Based on this assumption, it is further assumed that the 
comfortable temperature is linearly related to the outdoor temperature[15]. A summary and comparison 
between the PMV-PPD and the adaptive comfort approach are presented in Table 1. 



 
Compared with the PMV-PPD approach, the simplicity of adaptive comfort approach makes it popular 
among the building industry. However, the validity of the adaptive comfort model triggers concerns of the 
model oversimplification as most data supporting the model were from occupants in naturally ventilated 
buildings. Additionally, the assumption that ‘indoor comfort temperature is a linear function of outdoor 
temperature’ was challenged by researchers from time to time [24]. 

 
Table 1 Summary of two major approaches to determining the indoor temperature set-point 

 PMV-PPD approach Adaptive Comfort approach 
Thermal metrics Predicted Percentage Dissatisfied Thermal Acceptable Rate 
Influential 
factors 

Indoor temperature 𝑇𝑇𝑖𝑖𝑛𝑛 
Air speed 𝑣𝑣 
Humility ℎ 
Clothing insulation 𝑐𝑐𝑐𝑐𝑐𝑐 
Metabolic rate 𝑚𝑚𝑚𝑚𝑚𝑚 

Indoor temperature 𝑇𝑇𝑖𝑖𝑛𝑛 
Outdoor temperature 𝑇𝑇𝑜𝑜𝑛𝑛𝑛𝑛  

Models 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑓𝑓(𝑇𝑇𝑎𝑎 ,𝑇𝑇𝑛𝑛 ,𝑣𝑣, ℎ, 𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚) 
𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑔𝑔(𝑃𝑃𝑃𝑃𝑃𝑃) 

𝑇𝑇𝑎𝑎 = 𝑘𝑘𝑇𝑇𝑜𝑜𝑛𝑛𝑛𝑛 + 𝑏𝑏 

Objective Predicted Percentage Dissatisfied less 
than 10% 

Thermal Acceptable Rate above 80% or 
90%  

Advantages • Heat balance model, clear physical 
implication 

• Simple input, easy to use 
• Consider adaptive behavior 

Disadvantages • Model is complex, requiring six 
parameters as input. Some inputs are 
difficult to measure in practice.  

• The mapping between PMV and PPD 
was regressed from limited samples 
in a climate chamber rather than from 
real built environments. 

• The assumption of linear relation between 
the comfort temperature and the outdoor 
temperature lacks theory support 
• The mapping between the comfort and 
outdoor temperature was regressed mainly 
from naturally ventilated buildings. Their 
use for mechanically cooled buildings need 
further justification.  

1.3 Objectives 
This study aims to derive and discuss the proper indoor temperature set-point for U.S. office buildings. The 
Bayesian-based data-driven approach would be used to address the limitations of the heat balance model and 
the adaptive comfort model. The key advantage of this method lies in its ability to deliver an explicit 
temperature set-point without compromising the model’s capability to take into account personal 
characteristics and preferences.  
 
This study focuses on the context of U.S. office buildings. According to the 2012 Commercial Building 
Energy Consumption Survey, office buildings have the largest building stocks of more than one million in 
the U.S. compared with other usage types of buildings, taking footage of 16 billion square feet (15 billion 
square meters) and consuming energy of 1.2 quadrillion Btu (352 billion kWh) per year [25]. A properly 
chosen temperature set-point would benefit the design and operation of U.S. office buildings in an energy-
efficient way, which has a substantial effect on building energy conservation and greenhouse gas emission 
reduction in the U.S.      
 
The remaining of this paper starts with an introduction to the methodology, including data, terminology, 
assumption, and Bayesian Inference method (Section 2). In Section 3, the results of applying Bayesian 
Inference to the ASHRAE Thermal Comfort Data are presented (Section 3.1), and compared with the existing 
standards (Section 3.2). Section 4 discusses this paper’s contribution (Section 4.1) and limitations (Section 
4.2). Conclusions are drawn in Section 5. 
 

2 Methodology 

2.1 Data 
As a global effort to build up an open-source data platform, the ASHRAE Global Thermal Comfort Database 
II collected 81,846 sets of data combining both the objective indoor climatic observations and ‘right-now-
right-here’ subjective evaluations [26]. The ASHRAE Global Thermal Comfort Database II was released in 



2018. Along with the ASHRAE Thermal Comfort Database I [27], which was released in 1998 and collected 
22,000 data points, a combined thermal comfort database containing 103,846 observations is now available. 
To achieve a larger sample size, the dataset combining Database I and II has been analyzed in this study, and 
would be referred to as ASHRAE Global Thermal Comfort Database in this paper. 
 
In the ASHRAE Global Thermal Comfort Database, 45 attributes were measured and reported, covering 
information about the physical environment, subject’s response, and the characteristics of the building and 
respondents. Thanks to the great efforts to clean and organize the data in a consistent format, the ASHRAE 
Global Thermal Comfort Database becomes a good resource to apply machine-learning techniques to study 
research questions on the building thermal environment and occupants’ thermal comfort. 
 
Focusing on the context of US office buildings, we filtered 11,600 data points from the original database 
with more than 103,000 measurements. These data were collected from 10 cities across the country, including 
Berkeley, San Francisco, Alameda, Philadelphia, San Ramon, Palo Alto, Texas1 , Walnut Creek, Grand 
Rapids, and Auburn. 
 

2.2 Terminology 
Before explaining the statistical methods used in this study, it is necessary and beneficial to clarify the 
terminology first. Thermal comfort study is basically about how occupants respond to the physical thermal 
environment. Therefore, there are two sets of temperature-related terminologies used in thermal comfort 
studies: one for the objective thermal environment, and the other for the subjective occupant response, as 
shown in Figure 1.    
 

 
Figure 1: Temperature related terminologies in thermal comfort studies  

 
Four metrics are widely used to characterize the objective indoor environmental conditions [15]. Air 
temperature is defined as the temperature of the air at a point [15]. The mean radiant temperature (MRT) is 
defined as the temperature of a uniform, black enclosure that exchanges the same amount of heat by radiation 
with the occupant as the actual surroundings [15]. Air temperature and mean radiant temperature characterize 
the heat exchange between human subjects and the ambient environment through convection and radiation 
process. Operative temperature is defined as the uniform temperature of an imaginary black enclosure, and 
the air within it, in which an occupant would exchange the same amount of heat by radiation plus convection 
as in the actual non-uniform environment [15]. Therefore, operative temperature considers the sensible heat 
exchange, including both the convection and radiation. Globe temperature, also referred to as the Wet-bulb 
Globe Temperature (WBGT), is a measure of heat stress, which takes both the sensible and latent heat 
                                                   
1 The Database has not specified the data was collected from which city or cities in Texas. 



exchange (through sweat evaporation) into account [15]. In this research, we considered the neutral air and 
operative temperatures, rather than the globe temperature for two reasons. First, the indoor air and operative 
temperature are most widely used in thermal comfort studies (as shown in Table 2) and building controls, 
and could be a direct input into building simulation tools such as EnergyPlus [28] for thermal loads 
calculation and energy performance simulation. Second, in office settings, the sweat evaporation would not 
vary too much since office buildings have a moderate and close-to-neutral thermal environment. 
 
As for the measurement of subjective occupant thermal responses, there are three metrics widely used: the 
preferred, neutral, and comfort temperature. The preferred temperature is measured by allowing subjects to 
freely adjust the ambient temperature based on their preference, and then recording the average temperature 
during a given period of time. The neutral temperature is measured by regressing the temperature with 
thermal sensation, and then finding the temperature corresponding to neutral thermal sensation (Thermal 
Sensation equals to 0). The comfort temperature has a relatively ambiguous definition, corresponding to the 
temperature that makes occupants feel comfortable. 
 
In ASHRAE Global Thermal Comfort Database, the air, radiant, operative and globe temperatures were 
recorded, as shown in Table 2. Contrarily, the preferred, neutral and comfort temperatures were not recorded, 
as these three subjective metrics could not be directly measured.  
 

Table 2 Temperature metrics recorded in the ASHRAE Global Thermal Comfort Database 
 Heat exchange considered Missing data rate in ASHRAE Database 

Whole database U.S. offices 
Air temperature Convection 7.1% 0.1% 

Radiant temperature Radiation 52.0% 8.0% 
Operative temperature Convection and radiation 46.1% 3.9% 

Globe temperature Convection, radiation and latent 75.8% 7.9% 
 

2.3 Assumption 
2.3.1 Criteria to determine temperature set-point 
In order to select the proper temperature set-point, the first question needs to be clarified is which thermal 
metrics should be used to define occupants’ thermal satisfaction. Four thermal metrics were recorded in the 
ASHRAE database: thermal sensation, thermal comfort, thermal acceptance and thermal preference. These 
four thermal metrics are designed for varying purposes [29], but they all could be used to set up the criteria 
to determine the temperature set-points, as shown in Table 3.  
 

Table 3 subjective thermal metrics recorded in ASHRAE Global Thermal Comfort Database 
 Scale in ASHRAE 

Database 
Criteria to select 
temperature set-point 

Missing rate in ASHRAE 
Database 
Whole 
database 

Data for US 
offices 

Thermal sensation 
(TS) 

-3 (cold) to +3 (hot) -0.5 < TS < +0.5 2.9% 21.5% 

Thermal comfort 
(TC) 

1 (very uncomfortable) to 6 
(very comfortable) 

TC >= 4 (Slightly 
comfortable) 

67.9% 30.1% 

Thermal 
acceptability (TA) 

0 (not acceptable), 1 
(acceptable) 

TA = 1 42.0% 47.7% 

Thermal preference 
(TP) 

'cooler', 'no change', 
'warmer' 

TP = 'no change' 20.5% 43.2% 

 



  
(a) -0.5 < Thermal sensation < +0.5           (b) Thermal comfort >= 4 

 
(c) Thermal acceptability = acceptable  (d) Thermal preference = no change 

Figure 2: Preferred/satisfied temperature distribution for different criteria  
 
Figure 2 plots the distribution of the preferred temperature when different thermal metrics and criteria were 
adopted. The criteria of thermal sensation, thermal comfort and thermal acceptability give similar shapes of 
preferred temperature distribution; however, the criterion of thermal preference equals to ‘no change’ gives 
a more concentrated and less variant temperature range. If we choose ‘thermal preference is no change’ as 
our goal, the recommended temperature set-point range would be narrower than the range recommended 
from the other three metrics. 
 
In this study, the first assumption is ‘thermal sensation close to neutral’ would be used as the rule to 
determine temperature set-point for three reasons. First, the current ASHRAE [15] and ISO [16] standards 
adopted this rule to determine the comfortable temperature range. Second, the temperature distribution shape 
given by these metrics is similar to that given by thermal comfort and thermal acceptability. Third, the 
thermal sensation is the most widely used metrics in thermal comfort surveys and has the lowest missing 
rate in ASHRAE Database, as shown in Table 3.  
 
Figure 3 plots the relation between the temperature and thermal sensation for US office buildings. A 
statistically significant correlation could be observed, with the temperature increasing, subjects’ thermal 
sensation shifts towards the warm side. The distribution of the thermal sensation, air and operative 
temperature all passed the Shapiro-Wilk test with the p-value very close to one, indicating the samples of 
thermal sensation, air and operative temperature all follow the Gaussian distribution. One reason behind this 
close-to-normal distribution of the thermal sensation, air and operative temperature might be the large sample 



size of this dataset. 

  

  (a) Thermal sensation with air temperature          (b) Thermal sensation with operative temperature 
Figure 3: Data overview of observations for US office buildings 

 
2.3.2 Linear relation between the thermal sensation and temperature 
Another major assumption for this study is the thermal sensation and temperature are linearly correlated, as 
shown in Eq. 1. This assumption could be justified from the classical PMV model that thermal sensation is 
linearly correlated with PMV, while PMV is linearly correlated with the air temperature given other factors 
stay constant [14]. The linear relation between the temperature and thermal sensation was also applied in the 
existing studies [30], [31], [32], [33], [34], [35]. Lastly, this assumption was found to match well with both 
the ASHRAE Thermal Comfort Database and Fanger’s pioneer experiment [14], as shown in Figure 4. It is 
worthwhile to point out that this linear relation might only hold in the moderate thermal environment. As the 
built environment would unlikely be either too hot or too cold, it is reasonable to expect this assumption 
holds in buildings. 
 
𝑇𝑇𝑖𝑖  ~ β0 + β1 ∗ 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝜀𝜀𝑖𝑖                 Equation 1 
 

 
  (a) ASHRAE Thermal Comfort Database (update)          (b) Fanger’s experiment (priori) 

Figure 4: Linear relation between thermal sensation and temperature 
 
 



2.4 Bayesian inference  
2.4.1 Motivation 
Linear regression is a useful and straightforward way to illustrate how the indoor temperature influences 
occupants’ thermal sensation. However, linear regression could only inform us about the ‘average’ behavior 
of a group of people, and could not provide any insights about the inter-individual variabilities in thermal 
comfort needs. Additionally, univariate linear regression could not consider the adaptive behaviors that 
occupants might take in varying indoor environments. Therefore, linear regression might be too simple to 
determine the comfort temperature.  
 
Bayesian Inference is the tool selected in this study to infer the temperature set-point for HVAC control for 
the following three reasons. First, Bayesian Inference can quantify the uncertainty or variability in the 
estimated model parameters. Under the context of this study, the Bayesian Inference provides a useful and 
powerful tool to quantify occupants’ thermal adaptive behaviors and inter-individual variabilities in thermal 
comfort demands, both of which need to be taken into account in selecting comfort temperature. Additionally, 
Bayesian approach can easily account for hidden variables [36] such as metabolic rate, clothing, 
individualized preference [37], which are difficult to measure but important in thermal comfort studies. 
Thirdly, Bayesian Inference facilitates active learning, allowing the controller to update the set-point based 
on new observations. Bayesian approach is data efficient and flexible in this regard, as it could seamlessly 
combine new observations once they are available [36]. If no new observations are available, the prior 
distribution could be used to determine the thermostat set-point and to facilitate the control.  
 
2.4.2 Literature review 
Though Bayesian Inference has successful applications in the fields of education, science, medicine, 
engineering, it has not been extensively applied in the built environment field, which might be due to the 
relatively small sample size and relatively large computational resources it requires. In the thermal 
environment field, Lee et al. applied Bayesian Inference to predict an individual’s thermal preference 
through a two-step approach. First, the occupants are clustered into different groups. Then, Bayesian 
Inference was applied to predict the thermal preference of each cluster based on environmental and 
behavioral parameters [38]. Bayesian approach has also been used to account for the modeling uncertainty 
associated with difficult-to-measure variables [37]. Langevin et al. applied Bayesian approach to predict 
thermal sensation, acceptability, and preference based on PMV value [39]. Aoki et al. applied Bayesian 
Network to analyze how local thermal comfort would influence whole body thermal comfort level [40]. In 
the visual environment area, Lindelöf used the Bayesian approach to estimate the visual discomfort 
probability as a function of the illuminance under the office settings [41]. Sadeghi et al. applied Bayesian 
classification and inference models to develop probability distributions of occupants’ preference about the 
visual environment (prefer darker, brighter, or no change) [42]. Additionally, Sadeghi et al. developed a 
hierarchical Bayesian approach to model occupants’ behavior and interactions with shading and lighting 
system in private offices [43]. 
 
2.4.3 Method 
The Bayesian approach considers model parameters as random variables from some priori probability 
distributions, and then updates the prior distributions with measured data using Bayes Theorem [44]. To be 
more specific, the parameters to be identified in this study is the intercept (β0) and slope (β1) of Equation 1. 
The identified intercept β0 is the inferred neutral temperature, as it is the temperature corresponding to the 
neutral thermal sensation. 
 
Considering that the regression error is always unavoidable, we added a prediction error of 𝜀𝜀𝑖𝑖 to the linear 
regression, as shown in Eq.1. This prediction error might result from the variability of clothing insulation, 
metabolic rate, inter-individual difference on thermal demands, etc.  
 
If we assume the prediction error follows the Gaussian distribution with a variance of σ2 as Eq.2, then the 
relation between temperature and thermal sensation could be rewritten as Eq. 3.  
 
𝜀𝜀 ~ 𝑁𝑁(0,σ2)                          Equation 2 
𝑇𝑇 ~ 𝑁𝑁(𝑋𝑋𝛽𝛽,σ2𝐼𝐼)                        Equation 3 (likelihood distribution) 



𝑋𝑋 =  �
1 𝑇𝑇𝑇𝑇1
⋮ ⋮
1 𝑇𝑇𝑇𝑇𝑛𝑛

 �                        Equation 4 

 
 
Where 𝑇𝑇  is an n dimension vector, and n is the number of observations. 𝑋𝑋  is an n*2 matrix with the 
elements in the first column all equaling to 1, and the element in the second column equaling to the measured 
Thermal Sensation in each observation, as shown in Eq.4. 𝛽𝛽  is a two-dimensional vector with the first 
element equal to the intercept term β0 and the second element equal to the slope term β1 in Eq.1. Eq. 3 
quantifies the relation between temperature and thermal sensation if the coefficient vector 𝛽𝛽 is given, and is 
also called the likelihood distribution. 
 
In Bayesian linear regression, we also need to know the prior distribution of 𝛽𝛽. Assuming 𝛽𝛽 follows the 
Gaussian distribution as Eq. 5, we need to find the prior value for 𝛽𝛽0, 𝛽𝛽1 and their variances. Eq. 5 is also 
called the prior distribution. To estimate the prior value of 𝛽𝛽0 and 𝛽𝛽1, we used the Fanger’s laboratory data 
for the development of the PMV-PPD model. The raw data was recorded in Table 14 of [14], and Langevin 
et al. have reorganized it in Table 1 of [39]. As for the prior variances λ of β, we could not find any sources 
to estimate it, and therefore assume them to be 1. 
 
𝛽𝛽~ 𝑁𝑁(𝛽𝛽𝑝𝑝𝑛𝑛𝑖𝑖𝑜𝑜𝑛𝑛 , λ𝑝𝑝𝑛𝑛𝑖𝑖𝑜𝑜𝑛𝑛𝐼𝐼)                     Equation 5 (priori distribution) 
 
Given the likelihood distribution and the prior distribution, we could generate the posterior distribution, as 
shown in Eq. 6. What we need to do now is to use the observed pairs of (𝑇𝑇,𝑇𝑇𝑇𝑇) to update the prior distribution 
of 𝛽𝛽 (both the value and the variance). On the right side of the equation, 𝑃𝑃(𝛽𝛽) is the priori distribution (Eq.5), 
𝑃𝑃(𝑇𝑇|𝛽𝛽,𝑇𝑇𝑇𝑇) is the likelihood distribution (Eq.3); on the left side of the equation, 𝑃𝑃(𝛽𝛽|𝑇𝑇,𝑇𝑇𝑇𝑇) is the posterior 
distribution based on the new observations of (T, TS). 
𝑃𝑃(𝛽𝛽|𝑇𝑇,𝑇𝑇𝑇𝑇) = 𝑃𝑃�𝑇𝑇�𝛽𝛽,𝑇𝑇𝑇𝑇�∗𝑃𝑃(𝛽𝛽)

∫𝑃𝑃�𝑇𝑇�𝛽𝛽,𝑇𝑇𝑇𝑇�∗𝑃𝑃(𝛽𝛽)∗𝑜𝑜𝛽𝛽
             Equation 6 (update for the posterior distribution) 

 
Given the above assumptions and the observed pairs of (𝑇𝑇,𝑇𝑇𝑇𝑇), the analytical distribution of 𝛽𝛽 could be 
calculated with Eq. 7.  
 
𝑃𝑃(𝛽𝛽|𝑇𝑇,𝑇𝑇𝑇𝑇) = 𝑁𝑁(𝜇𝜇,𝛴𝛴)              
𝜇𝜇 = (𝜆𝜆𝜎𝜎2𝐼𝐼+ 𝑋𝑋𝑇𝑇𝑋𝑋)

−1
𝑋𝑋𝑇𝑇𝑇𝑇                   Equation 7 

𝛴𝛴 = (𝜆𝜆𝐼𝐼 + 𝜎𝜎−2𝑋𝑋𝑇𝑇𝑋𝑋)
−1

              
 
After inferring the distribution of 𝛽𝛽 with the data in ASHRAE Database, the next step is to calculate the 
distribution of neutral temperature by setting 𝑇𝑇𝑇𝑇 = 0 with Eq.8, where 𝑃𝑃(𝛽𝛽) is the posterior distribution 
of 𝛽𝛽 calculated from Eq. 7 based on new observations of (T, TS). 
𝑃𝑃(𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑛𝑛|𝑇𝑇𝑇𝑇 = 0) = ∫𝑃𝑃(𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑛𝑛|𝛽𝛽,𝑇𝑇𝑇𝑇 = 0) ∗ 𝑃𝑃(𝛽𝛽) ∗ 𝑑𝑑𝛽𝛽     Equation 8 
 
In addition to the analytical solution, we could use the Markov Chain Monte Carlo (MCMC) method to 
approximate the distribution of neutral temperature. There is a Python package called PyMC3 Bayesian 
inference library implementing the MCMC in Python. 
 

3 Results 

3.1 Inferred comfort temperature 
Though the operative temperature could more comprehensively characterize the thermal environment of an 
indoor space since it considers the effect of longwave radiation from interior surfaces on occupants, the air 
temperature is actually more widely used in practical building controls. Because of this, we developed two 
models, one for operative temperature, and the other for air temperature. The estimated β and σ for Eq. 3 
are presented in Table 4. Compared with the linear regression, which only estimates the value of parameters, 
the Bayesian approach estimates the variance of parameters as well.  
  

Table 4: Inferred parameters 



 β0 β1 σ 
mean sd mean sd mean sd 

Operative 
temperature 

Whole dataset 23.15 0.02 0.45 0.02 1.38 0.01 
Cooling only 23.61 0.04 0.25 0.03 1.09 0.02 
Heating only 22.69 0.04 0.30 0.04 1.36 0.03 

Air 
temperature 

Whole dataset 23.11 0.02 0.59 0.02 1.72 0.01 
Cooling only 23.72 0.03 0.27 0.03 1.19 0.02 
Heating only 22.81 0.05 0.29 0.05 1.87 0.04 

 
With the estimated β and σ, we could infer the distributions of the neutral air and operative temperature in 
general, cooling, and heating conditions, which are presented in Figure 5. To facilitate the comparison, the 
priori distribution of neutral temperature deduced from Fanger’s experiment [14] is presented as the dotted 
grey line in Figure 5. The inferred neutral temperature is 2.5°C lower than that calculated from Fanger’s 
experiment [14], confirming the necessity of updating the model based on new observations. 
 
In addition to inferring the temperature set-point for the whole dataset (purple line), we differentiated cooling 
(red line) and heating (blue line) conditions to find the suitable set-point for each case. The reason to 
differentiate cooling and heating conditions is the preliminary linear regression found a significant difference 
between the neutral temperature of heating and cooling. This behavior is also predicted by the adaptive 
comfort theory [21]. However, we did not separate the dataset by other factors such as sex/gender, as 
preliminary linear regression and the existing studies [45] did not find a statistically significant difference in 
neutral temperature between males and females. 
 
The neutral temperature in cooling conditions is on average 1°C higher and less variant than the neutral 
temperature in heating conditions. This is because, in cooling conditions, inhabitants tend to wear less and 
accordingly have less room to adjust their clothing. As for the comparison between air temperature and 
operative temperature, the mean value of the neutral air temperature (Figure 5a) and neutral operative 
temperature (Figure 5b) are close to each other; however the neutral operative temperature is less variant. 
This is because, to infer the neutral air temperature, the variable of radiation temperature is not included and 
need to be considered in the residual term and accordingly brings in extra uncertainties. 
 
The third observation from figure 5 is that the variation of the posterior air and operative temperature is 
higher than that of the priori distribution. The reason is the posterior distribution is inferred from field 
measurements, while the priori distribution is deduced from Fanger’s chamber experiment. The real building 
environment is more complex than the chamber environment in terms of occupants’ clothing, activities, etc., 
and accordingly would result in more diversified neutral temperature.   
 



 
(a) Inferred neutral air temperature 

 

 
(b) Inferred neutral operative temperature 

Figure 5: Priori (dotted gray line) and Posterior distribution under cooling (red), heating (blue) and cooling 
heating combined (purple) condition  

 
Table 5 summarized the key statistics of the neutral air and operative temperature for the cooling, heating 
conditions, and the whole dataset. We chose the 5% and 95% of the estimate as the temperature set-point 
range, since if the indoor temperature is within the 5% and 95% range, there is no evidence to reject the null 
hypothesis that the inhabitants would feel thermally non-neutral given the 10% significance level. From the 
adaptive comfort perspective, the inhabitants exposed to this temperature range could adapt themselves to 
feel thermally neutral by adjusting their clothing, expectations, or taking other adaptive measures. 



 
Table 5: Neutral temperatures (°C) 

 mean sd 5% estimate 
(Recommended lower 

boundary) 

95% estimate 
(Recommended upper 

boundary) 
Air 
temperature 

Whole  23.11 1.72 20.37 25.95 
Cooling 23.72 1.19 21.83 25.61 
Heating 22.81 1.87 19.84 25.78 

Operative 
temperature 

Whole  23.15 1.38 20.96 25.34 
Cooling 23.62 1.09 21.89 25.35 
Heating 22.69 1.36 20.53 24.85 

3.2 Comparison with the current ASHRAE Standard  
Figure 6 and Table 6 compared the temperature set-point range derived by this study and the ranges 
recommended by ASHRAE Standard 55-2017 [15]. The data in the ASHRAE Database would recommend 
a lower cooling temperature set-point and a similar heating temperature set-point compared with the 
ASHRAE Standard 55-2017.   
 
As discussed in the Introduction Section, to get an explicit temperature set-point, some assumptions need to 
be made on parameters such as the clothing insulation, Relative Humidity (RH) and the air velocity. However, 
there is no guarantee that every person would dress with exact 0.5 clo in a cooling environment and 1.0 clo 
in a heating environment as assumed in the ASHRAE Standard 55. Meanwhile, the Relative Humidity and 
air velocity are rarely controlled in practice. Therefore, in the Bayesian-based data-driven approach used in 
this paper, we do not need to make any assumptions about those parameters. The variability of those unsure 
parameters, such as clothing level, were considered in the variance of the estimated parameters, which makes 
sense in real life since the clothing level is a random variable for different subjects in the same ambient 
environment due to the individual difference [46]. 
 
Another way to interpret the comfort/neutral temperature range is that inhabitants exposed to the cooling 
temperature range of 21.9 to 25.4°C or the heating temperature range of 20.5 to 24.9°C could adapt 
themselves to be thermally neutral by taking ‘reasonable’ measures such as adjusting their clothing or using 
personal fans if available to increase local air velocity. Those adaptive measures are believed to be 
‘reasonable’ because they were ‘observed to be taken’ by subjects in the ASHRAE Database to achieve 
thermal neutrality. 
 

Table 6: Comparison with ASHRAE Standard 55-2017 (Operative temperature °C) 
 Standard Approach Conditions Lower 

limit  
Upper 
limit 

Cooling  ASHRAE 
55-2017 

PMV-PPD 0.5 clo, 50% RH, 0.1 m/s air velocity 23.9 26.8 
Adaptive  
Comfort 

30°C outdoor temp, 90% acceptability 25.1 29.5 
30°C outdoor temp, 80% acceptability 23.3 30.6 

This study Bayesian None 21.9 25.4 
Heating  ASHRAE 

55-2017 
PMV-PPD 1.0 clo, 40% RH, 0.1 m/s air speed 20.5 24.2 
Adaptive  
Comfort 

10°C outdoor temp, 90% acceptability 18.6 23.3 
10°C outdoor temp, 80% acceptability 17.4 24.5 

This study Bayesian none 20.5 24.9 
 



 
Figure 6: Inferred neutral operative temperatures: the ASHRAE Standard 55 considers the influence of 

humidity, while the DOE/ASHRAE 90.1 Reference building models and the set-point recommended in this 
paper do not considered the humidity  

 
The data in the ASHRAE Database recommend a similar heating comfort temperature but a lower cooling 
comfort temperature compared with the ASHRAE Standard 55-2017. A lower cooling temperature means 
more energy usage and greenhouse emissions [47], [48]. Results from the data-driven approach reflect the 
reality but might not be the ideal scenario. The dress code in office settings that expects business suit fails 
to adapt to the varying outdoor temperature might be the root cause of the preferred lower comfort 
temperature and thus higher energy consumption in summer. To reduce electricity consumption, the Japanese 
government promotes a ‘Super Cool Biz’ campaign to encourage office workers to shed their suits, aiming 
to increase the temperature set-point in government offices to 27.5°C and reduce 15% of cooling energy 
consumption [49]. 
 
However, the comfort temperature range recommended by DOE/ASHRAE 90.1 Reference Building models 
and this paper only considers the influence of temperature, ignoring humidity. This simplification is made 
based on the assumption that office environments are usually not controlled to achieve a specific humidity 
set-point as long as the relative humidity ranges from 30% to 70%. It is acknowledged that although humidity 
has some effect on occupants’ comfort, this effect would be insignificant if the humidity is within a 
reasonable, non-extreme range [50]. Furthermore, the effects of humidity on comfort are considered 
differently in the two mainstream thermal comfort frameworks: the PMV-PPD approach considers the 
humidity [14] while the Adaptive Comfort approach ignores it [21]. 
 

4 Discussion 
This paper discussed the selection of temperature set-point for HVAC systems by applying Bayesian 
Inference on the recently released ASHRAE thermal comfort database. The proper selection of temperature 
set-point influences not only occupants’ satisfaction [51], productivity [52], and health [53], but also the 

ASHRAE Standard 55: cooling
ASHRAE Standard 55: heating
DOE/ASHRAE 90.1 Reference Building: cooling 
DOE/ASHRAE 90.1 Reference Building: heating
Recommended by this paper: cooling
Recommended by this paper: heating



building energy consumption. Hoyt et al.’s simulation study found a widened temperature band can result in 
HVAC energy savings up to 70%, depending on the climate [54]. For instance, in temperate climates such 
as San Francisco, increasing the cooling set-point from 22 to 25°C could save 29% cooling energy, while 
reducing the heating set-point from 21 to 20°C could save 34% heating energy [54]. Steemers and Yun’s 
regression study on the Residential Energy Consumption Survey (RECS) data found similar results in 
residential settings that heating energy would increase with higher heating temperature set-point [55]. 
Therefore, a careful and rational selection of HVAC set-point temperature is crucial to energy conservation, 
carbon emission reduction, and sustainable development. 

4.1 Contribution 
4.1.1 Smart thermal comfort management by active learning 
Both the PMV-PPD and the Adaptive Comfort approaches aim to propose a universal thermal comfort model, 
to meet the thermal comfort demand for everyone. However, the research community gradually realized the 
existence and importance of inter-individual variability in terms of thermal comfort [46]. Different groups 
of people might desire different temperature set-points in their buildings. Recognizing the personalized 
thermal comfort behaviors and demands, the concept of occupant responsive building control and smart 
buildings has been proposed, which use occupants’ feedback to manage a building’s thermal environment 
[56]. For instance, Chen et al. collected occupants’ thermal sensation to dynamically adjust the temperature 
set-point by applying the Extended Kalman Filter techniques [57], [58]. 
 
Another key concern in thermal comfort studies is about whether a relation (e.g., between temperature and 
thermal sensation) derived from a specific group of people could be generalized and applied to another. 
Someone would argue that the PMV-PPD model was developed from college-aged Danish subjects, which 
might not be suitable for people living in the U.S. or Asia; while the adaptive comfort theory was developed 
for naturally ventilated buildings, which might be unsuitable for air-conditioned buildings. Additionally, 
studies have shown that occupants’ thermal demands might evolve over time [59]. Therefore, a self-adaptive 
approach that could learn from new data is needed to determine the comfort temperature. 
 
The Bayesian approach provides us with a handy tool to deal with those concerns. The relations found in 
another group or a more general group of people, such as in this study derived from the ASHRAE Database, 
could serve as the prior distribution for a specific group of people in the target building. If no more data is 
observed, we have no reason or evidence to reject prior knowledge. However, once we have collected more 
data, as in the occupant responsive building controls, we could use new observations to update the prior 
distribution. If we keep collecting data and updating the model, the updated posterior distribution could 
always reflect the latest changes in occupant behaviors and thermal demands, which might vary as new users 
move in or with the shift of seasons. In other words, once new data are observed and used to train the model, 
the thermal comfort model would evolve through the Bayesian approach to update the recommended comfort 
temperature that is more capable of reflecting the thermal demands of current users. This evolving and 
updating behavior is also called active learning. 
 
Therefore, for the implementation of occupant responsive building control, this study would be helpful in 
the following two ways: 

• First, to provide a prior knowledge about the value and variation of the comfort temperature, which 
was derived from the largest thermal comfort database up-to-date, and could serve as a prior 
distribution for U.S. office buildings. 

• Second, to demonstrate the use of the Bayesian approach to update the prior distribution of comfort 
temperatures with new observations collected from new studies or occupants in real buildings. 

 
4.1.2 Inferring temperature set-point through a data-driven approach 
In this study, we summarized the approach to infer the temperature set-point through two mainstream 
theories: the PMV-PPD model, and the adaptive comfort model. Then we proposed a data-driven approach 
to infer the suitable temperature set-point from the recently released ASHRAE Thermal Comfort Database, 
the largest database in thermal comfort field so far; and then compared the temperature set-point inferred 
from the ASHRAE database to those recommended by the existing standards based on the classical thermal 



comfort theory.  
 
The data-driven approach provides a way to infer the temperature set-point that is closer to the status quo. 
The realistic temperature set-point could: first, facilitate more accurate building performance simulation, 
load prediction; and second, better inform the HVAC design, cooling technology selection, and policymaking. 
 
Comparing with existing models, the data-driven Bayesian approach avoids the input of hard-to-measure 
parameters needed by the PMV-PPD model. Those hard-to-measure factors such as metabolic rate, clothing 
were considered by the variance of neutral temperature and inferred from the measured data, solving the 
over-simplification concern of the adaptive comfort model. 
 

4.2 Limitations 
A major limitation of this study is we only applied the Bayesian Inference method to study the comfort 
temperature of U.S. office buildings. Therefore, the results might not apply to other building types or other 
countries. As the existing studies have confirmed that the thermal demands vary by building types [60] and 
countries [61], due to different occupants behaviors and motivations. For instance, in residential buildings, 
occupants have greater control over the thermal environment than in office buildings, as they do not need to 
share thermostat or other controls with their coworkers [62]. The higher perceived control has a 
psychological effect [63] that might lead to a wider acceptable temperature range [32]. Additionally, 
occupants need to pay the utility bills for heating and cooling in residential but not in offices, which 
constitutes an economic motivation to accept a wider temperature range in residential buildings. Although 
the comfort temperature range calculated for the U.S. office buildings might be unsuitable for other building 
types in other countries, the Bayesian Inference method used in this study could apply to the data collected 
from those building types or countries. 
 
Another limitation lies in the fact that Bayesian Inference method is more computational demanding than 
the existing approaches such as the adaptive comfort approach, which uses a linear function of outdoor 
temperature to infer the indoor comfort temperature. This is a trade-off between computational cost and 
inference accuracy, which widely exists in almost every field of data-driven approach. It is not necessary to 
update the comfort temperature on a real-time basis for each new observation. Instead, the inferred comfort 
temperature can be updated on a daily or even weekly basis for a group of new observations.  
 
In this study, the recently released ASHRAE thermal comfort database is used. No further data quality control 
was done beyond ASHRAE’s data requirements. The data and results are solid for two reasons. First, as a 
research funded by ASHRAE, the data collection process of the ASHRAE thermal comfort database is well 
documented and reliable. For instance, only data from peer-reviewed journals or conference articles were 
included in the database [26]. In this regard, the data in the ASHRAE database might have unavoidable 
uncertainties, but would be free from systematic biases. Secondly, the random measurement uncertainties 
could be mitigated with the increasing sample size. As the largest database in the field of thermal comfort, 
the ASHRAE database provides us a unique opportunity for applying Bayesian approach to infer the 
temperature set-point in real buildings through a data-driven approach. 

5 Conclusions 
This study applies the Bayesian Linear Regression on the data recorded in the ASHRAE Global Thermal 
Comfort Database to learn the indoor comfort temperature set-points for U.S. office buildings, which are 
between 21.9 and 25.4oC for cooling conditions and between 20.5 and 24.9oC for heating conditions. 
Compared with the simple linear regression, the Bayesian Inference is a useful way to quantify the 
uncertainty and variability of the estimated parameters, which is important in the context of inferring 
temperature set-point since the variability of estimated parameters reflects the occupants’ thermal adaptive 
behaviors and inter-individual variabilities in thermal demands. 
 
This study is helpful for the implementation of occupant responsive building control in two ways. First, we 
quantified the linear relation between temperature and thermal sensation by providing not only the mean 
value but also the estimated variance. Because the ASHRAE Database is general and contains the largest 
sample size up-to-date, the estimated values recorded in Table 4 of this paper could serve as a prior 
distribution for other target buildings. Second, we introduced the Bayesian Inference technique, which is a 
useful and powerful tool for active learning, enabling the update of the thermal comfort model with new 



observations, which could reflect the latest adaptive behaviors and thermal demands of current users. 
 
Future studies can apply the Bayesian Inference to the ASHRAE Database for other regions/countries or 
other building types to explore differences in indoor comfort temperature set-points from the U.S. office 
buildings and to understand the influential factors that drive such differences.   
 

Acknowledgements 
This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of 
Building Technologies of the United States Department of Energy, under Contract No. DE-AC02-
05CH11231. 
 

References 
[1] Y.-S. Kim and J. Srebric, “Impact of occupancy rates on the building electricity consumption in 
commercial buildings,” Energy Build., vol. 138, pp. 591–600, Mar. 2017. 
[2] A. Mirakhorli and B. Dong, “Occupancy behavior based model predictive control for building 
indoor climate—A critical review,” Energy Build., vol. 129, pp. 499–513, Oct. 2016. 
[3] Z. Wang, H. Zhao, B. Lin, Y. Zhu, Q. Ouyang, and J. Yu, “Investigation of indoor environment 
quality of Chinese large-hub airport terminal buildings through longitudinal field measurement and 
subjective survey,” Build. Environ., vol. 94, pp. 593–605, Dec. 2015. 
[4] S. Tanabe, Y. Iwahashi, S. Tsushima, and N. Nishihara, “Thermal comfort and productivity in offices 
under mandatory electricity savings after the Great East Japan earthquake,” Archit. Sci. Rev., vol. 56, 
no. 1, pp. 4–13, Feb. 2013. 
[5] T. Kjellstrom, I. Holmer, and B. Lemke, “Workplace heat stress, health and productivity – an 
increasing challenge for low and middle-income countries during climate change,” Glob. Health 
Action, vol. 2, no. 1, p. 2047, Nov. 2009. 
[6] Z. Liu, W. Li, Y. Chen, Y. Luo, and L. Zhang, “Review of energy conservation technologies for fresh 
air supply in zero energy buildings,” Appl. Therm. Eng., vol. 148, pp. 544–556, Feb. 2019. 
[7] S. Rashidi, J. A. Esfahani, and N. Karimi, “Porous materials in building energy technologies—A 
review of the applications, modelling and experiments,” Renew. Sustain. Energy Rev., vol. 91, pp. 229–
247, Aug. 2018. 
[8] W. Wang, T. Hong, N. Li, R. Q. Wang, and J. Chen, “Linking energy-cyber-physical systems with 
occupancy prediction and interpretation through WiFi probe-based ensemble classification,” Appl. 
Energy, vol. 236, pp. 55–69, Feb. 2019. 
[9] W. Wang, J. Chen, T. Hong, and N. Zhu, “Occupancy prediction through Markov based feedback 
recurrent neural network (M-FRNN) algorithm with WiFi probe technology,” Build. Environ., vol. 138, 
pp. 160–170, Jun. 2018. 
[10] D. H. Blum, K. Arendt, L. Rivalin, M. A. Piette, M. Wetter, and C. T. Veje, “Practical factors of 
envelope model setup and their effects on the performance of model predictive control for building 
heating, ventilating, and air conditioning systems,” Appl. Energy, vol. 236, pp. 410–425, Feb. 2019. 
[11] Z. Wang, R. de Dear, B. Lin, Y. Zhu, and Q. Ouyang, “Rational selection of heating temperature 
set points for China’s hot summer – Cold winter climatic region,” Build. Environ., vol. 93, pp. 63–70, 
Nov. 2015. 
[12] A. A. Chowdhury, M. G. Rasul, and M. M. K. Khan, “Thermal-comfort analysis and simulation for 
various low-energy cooling-technologies applied to an office building in a subtropical climate,” Appl. 
Energy, vol. 85, no. 6, pp. 449–462, Jun. 2008. 
[13] L. Peeters, R. de Dear, J. Hensen, and W. D’haeseleer, “Thermal comfort in residential buildings: 
Comfort values and scales for building energy simulation,” Appl. Energy, vol. 86, no. 5, pp. 772–780, 
May 2009. 
[14] P. O. Fanger, “Thermal comfort. Analysis and applications in environmental engineering.,” Therm. 



Comf. Anal. Appl. Environ. Eng., 1970. 
[15] The American Society of Heating, Refrigerating and Air-Conditioning Engineers, “Standard 55-
2017 -- Thermal Environmental Conditions for Human Occupancy.” 01-Jan-2017. 
[16] E. of the physical environment International Organization for Standardization, “ISO 7730:2005 - 
Ergonomics of the thermal environment -- Analytical determination and interpretation of thermal 
comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.” Nov-2005. 
[17] J. van Hoof, “Forty years of Fanger’s model of thermal comfort: comfort for all?,” Indoor Air, vol. 
18, no. 3, pp. 182–201, Mar. 2008. 
[18] G. S. Brager, M. Fountain, C. C. Benton, E. A. Arens, and F. S. Bauman, “A comparison of methods 
for assessing thermal sensation and acceptability in the field,” in Thermal Comfort: Past, Present and 
Future, Watford, UK, 1993. 
[19] B. Kingma and W. van Marken Lichtenbelt, “Energy consumption in buildings and female thermal 
demand,” Nat. Clim. Change, vol. 5, no. 12, pp. 1054–1056, Dec. 2015. 
[20] A. S. Ribeiro, J. Alves e Sousa, M. G. Cox, A. B. Forbes, L. C. Matias, and L. L. Martins, “Uncertainty 
Analysis of Thermal Comfort Parameters,” Int. J. Thermophys., vol. 36, no. 8, pp. 2124–2149, Aug. 2015. 
[21] R. de Dear and G. S. Brager, “Developing an adaptive model of thermal comfort and preference,” 
ASHRAE Trans. 1998, vol. 104, 1998. 
[22] J. F. Nicol and M. A. Humphreys, “Adaptive thermal comfort and sustainable thermal standards 
for buildings,” Energy Build., vol. 34, no. 6, pp. 563–572, Jul. 2002. 
[23] R. Yao, J. Liu, and B. Li, “Occupants’ adaptive responses and perception of thermal environment 
in naturally conditioned university classrooms,” Appl. Energy, vol. 87, no. 3, pp. 1015–1022, Mar. 2010. 
[24] E. Halawa and J. van Hoof, “The adaptive approach to thermal comfort: A critical overview,” 
Energy Build., vol. 51, pp. 101–110, Aug. 2012. 
[25] US Energy Information Administration (EIA), “Commercial Buildings Energy Consumption Survey 
(CBECS),” 2012. [Online]. Available: https://www.eia.gov/consumption/commercial/. [Accessed: 03-
Nov-2018]. 
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