Using Customer Reliability Benefits to Support Business Cases for Smart Grid Investments

Josh Schellenberg Principal, Nexant IEEE Smart Grid Webinar October 15, 2015

Presentation overview

- New challenges for utility planners
- Methods for estimating customer interruption costs
- 2015 interruption cost meta-study
- Interruption Cost Estimate (ICE) Calculator
- Two distribution automation case studies
- Remaining knowledge gaps

Utility planners are facing several new challenges

Reliability

- While smart grid technologies improve reliability and help integrate renewable resources, operational benefits to the utility may not be sufficient to justify investment cost
- Many regulatory jurisdictions do not have an established amount of funding for new smart grid technologies

Resiliency

- Climate change is leading to increased severity and frequency of extreme weather in densely populated areas
 - Seven of the ten costliest storms in U.S. history occurred between 2004 and 2012
- Utilities must provide strong justification for resiliency investments that exceed typical standards and funding levels

Utilities are increasingly evaluating customer reliability benefits

- Primary customer reliability benefit is the <u>avoided</u> <u>customer interruption costs</u> that result from a reduction in outage frequency and/or duration
- These benefits can be used to <u>support business</u> <u>cases</u> for smart grid investments (and grid hardening)

Surveys are preferred method for estimating customer interruption costs

Method	Strengths	Weaknesses		
Macroeconomic	Inexpensive	 Unrealistic assumptions 		
Surveys	 More accurate Applicable to many geographical areas and interruption scenarios 	 Costly Responses are based on hypothetical scenarios 		
Case Study	 Responses are based on actual interruptions 	 Costly Major blackouts not representative 		
Market-based	Less costly than surveys	 Unrealistic assumptions 		

Preferred type of survey question varies by customer class

Commercial & Industrial

Interruption cost = Direct cost =

- Lost Production
- Recovered Production
- + Outage-related Costs
- Savings

Residential

Interruption cost = *Willingness to pay* to avoid power interruption

> Hypothetical outage scenarios refer to a specific season, time of week, start time and interruption duration

Addressing the cost-issue for surveybased estimates

- Due to the cost of conducting customer interruption cost surveys, reasonable estimates were not readily available for most utilities
- The U.S. Department of Energy, Lawrence Berkeley National Laboratory and Nexant have been <u>working together for over a decade</u> to address this issue for U.S. utilities
 - Meta-analysis of survey-based customer interruption cost studies in 2004, 2009 and 2015
 - Release of Interruption Cost Estimate (ICE)
 Calculator in 2011 and update in 2015

Results of 2015 meta-analysis

Source: http://eetd.lbl.gov/sites/all/files/lbnl-6941e_0.pdf

Interruption Cost	Interruption Duration							
(U.S. 2013\$)	5 Minutes	30 Minutes	1 Hour	4 Hours	8 Hours	16 Hours		
Medium and Large C&I (Over 50,000 Annual kWh)								
Cost per Event	\$12,952	\$15,241	\$17,804	\$39,458	\$84,083	\$165,482		
Cost per Average kW	\$15.9	\$18.7	\$21.8	\$48.4	\$103.2	\$203.0		
Small C&I (Under 50,000 Annual kWh)								
Cost per Event	\$412	\$520	\$647	\$1,880	\$4,690	\$9,055		
Cost per Average kW	\$187.9	\$237.0	\$295.0	\$857.1	\$2,138.1	\$4,128.3		
Residential								
Cost per Event	\$3.9	\$4.5	\$5.1	\$9.5	\$17.2	\$32.4		
Cost per Average kW	\$2.6	\$2.9	\$3.3	\$6.2	\$11.3	\$21.2		

Evaluating interruption costs with the ICE Calculator Forecast of

www.icecalculator.com

Reliability

- SAIFI (frequency)
- SAIDI (mins. interrupted)
- w/ and w/o investment

Advancing Technology for Humanity

Avoided interruption costs can help build business cases for smart grid

EPB: July 5, 2012 storm response in Chattanooga

CMP: Distribution automation avoids substantial interruption costs

- CMP proposed \$30M for distribution automation to improve reliability
- Reliability benefits served as primary justification, based on econometric models underlying the ICE Calculator

CAIDI	↓ 0.04 hours			
Customer outage savings	\$20.7M over 5 years or \$97/reduced outage hour			
Investment	\$47/reduced outage hour			
	Benefit/Cost ratio > 2			

Advancing Technology for Humanity

Key knowledge gaps remain

- Geographic Survey data not available for Northeast/mid-Atlantic region, limited in Midwest
- Age of data Around half of the data from the meta-database is 15 or more years old
- <u>Scenarios</u> Interruption scenarios are typically for peaking conditions (summer afternoons and winter mornings)
- Long duration interruptions Econometric model estimates interruption costs up to 16 hours

Key takeaways

- Utilities can help address reliability/resiliency challenges by using customer reliability benefits to <u>support business cases</u> for smart grid and grid hardening investments
- Although key knowledge gaps remain, utilities can <u>supplement existing studies and tools</u> with their own efforts to address specific needs
- These efforts can draw upon the <u>growing</u> <u>number</u> of surveys, analyses and case studies from several jurisdictions

Utilities may also consider applying interruption costs to operations

- At the <u>2016 IEEE/PES T&D Expo</u> in Dallas on May 3-5, LBNL and Nexant will present a paper on
 - Integrating customer interruption costs more closely with operations, including prioritization of outage restoration and scheduling of planned outages
 - Tracking value-based reliability metrics, such as a System Average Interruption Value Index (SAIVI)
- Paper title Integrating Customer Interruption Costs into Outage Management Systems

Contact information

Josh Schellenberg Principal Consultant Nexant JSchellenberg@nexant.com 415-777-0707

QUESTIONS?

Today's presentation will be made available on the IEEE Smart Grid Portal Smartgrid.ieee.org

