
Distribution Planning Overview 2022

What is Distribution Planning?

- Distribution planning is the analysis of historical data with forecasting information to prepare recommendations for National Grid to provide safe, reliable, and efficient electric service
 - Historical Data
 - Physical Characteristics = Asset Condition
 - Electrical Characteristics = Current, Voltage, and Power
 - Analysis
 - Recommendation
 - Infrastructure
 - System modifications or operational guidelines

Why do we plan?

- SAFE
 - Maximize safety of workers, equipment, and the public
- RELIABLE
 - Proactive (Predictive)
 - Reactive (Historical)

• EFFICIENT

- Maximize use of existing assets
- Economic expansion
- Minimize environmental impacts
- Minimize societal impacts

Planning Analysis Concepts

- Should apply criteria and strategies reviewed by regulatory entity
 - System Performance Criteria (including Asset Condition)
 - Acceptable = Continue to analyze and plan
 - Not Acceptable = Infrastructure Investment or System Modification
- Should allow customer choice Plan for most significant impact to the system
- Status of System Monitoring
- Comprehensive Plans
- Distribution Planning addresses Capacity, not Energy
 - Discrete and Large
 - Familiarity with cost, schedule, and capabilities

Distribution Planning Overview

- Distribution Planning Criteria
- Distribution Planning process
 - □ Forecasting
 - Annual capacity reviews
 - Area studies
 - Other planning studies
- Grid Modernization
- Planning Challenges

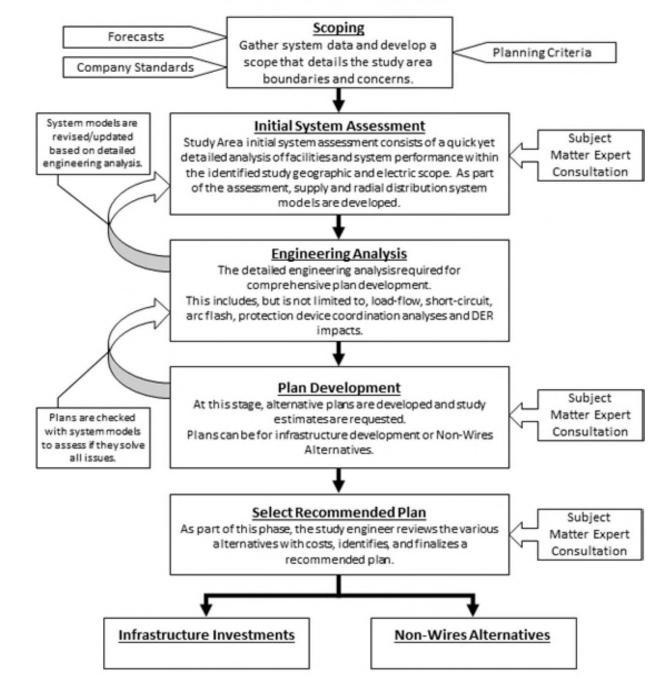
Distribution Planning Criteria

- Planning criteria is applied in all distribution planning studies
- Sets thresholds and limits intended to identify system needs and initiate investments to address these issues under Normal and Contingency (N-1) conditions
 - Asset condition
 - Thermal loading
 - Voltage
 - Non Wires Alternative Criteria
 - Fault Duty, Protection & Arc flash
 - Reliability
 - Resilience
 - Reactive Power
 - Load Balancing
 - Hosting Capacity

Load Forecasting

- The Company's Electric Forecasting team uses a regression-based core model to forecast summer and winter peak loads on an annual basis
 - 15-year projections
 - Variables considered include historical and forecasted economic conditions, historical peak load data, annual energy sales, and weather conditions based on historical data
 - Predicts forecasted peak demand under a normal and extreme weather scenario
 - The extreme weather scenario is used in planning analyses
 - The forecast of peak load incorporates distributed energy resources (DER), including:
 - energy efficiency (EE) savings
 - solar-photovoltaics (PV) reductions
 - electric vehicle (EV) increases
 - electric heat pumps (EH) decrease in summer and increase in winter
 - demand response (DR) reduction achieved through the prior year
 - Numerous DER scenarios are developed System planning uses the load with base DER scenario for planning purposes

Annual Capacity Review

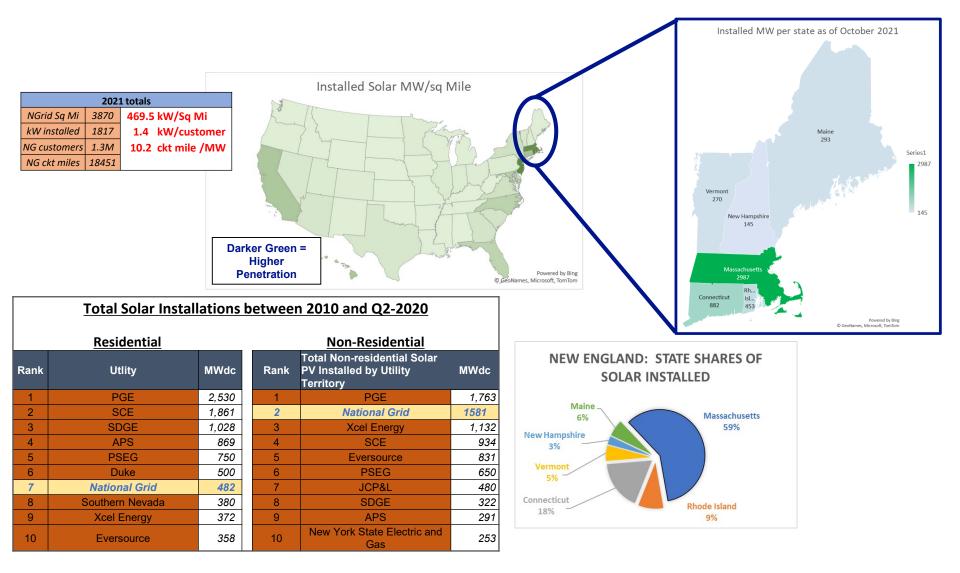

- Upon completion of the electric annual forecast report, Distribution Planning performs annual capacity reviews on all feeders, transformers and subtransmission lines.
- Analysis uses actual peak load data from the prior year with the forecast information provided in the forecast report.
- Incorporates known "spot loads" large load customers with a service request or anticipated though community/customer engagement
- Reviews identify thermal capacity constraints and assess the capability of the network to respond to contingencies.
- Results can prompt the need for new projects to address planning criteria violations
- Results inform the prioritization of area planning studies
 or other existing projects

Area Studies

- Area studies are comprehensive reviews of areas within the Company's service territory that result in long-term infrastructure development recommendations that solve system issues identified over a 10-15 year period
- Area study plans address all issues identified in the study including but not limited to the following issues: asset condition, capacity, protection, voltage, reliability, operational, arc flash, etc.
- Process involves input from subject matter experts across the company
- Alternatives are developed to solve all known issues and the "least cost fit for purpose" option progresses to implementation
- Non Wires Alternatives
 - Screening criteria included in the planning criteria
 - All recommended projects are screened for Non-wires Alternatives

PLANNING STUDY PROCESS

National Grid


10

Other planning studies

- Load Interconnection studies
- Generator and Energy Storage System (ESS) Interconnection studies
 - Group studies
 - Transmission Affected System Operator (ASO) studies
- Special Studies/Programs such as new technology assessments, system wide targeted programs etc.
- Annual reliability reviews of distribution circuits

New England Distributed Generation Benchmarking

Grid Modernization

1. Why are we doing this?

- To improve system reliability, efficiency, and outage response
- To enable an expanding portfolio of sustainable energy resources delivering on National Grid's Northeast 80x50 Pathway
- To increase network visibility and share key information with customers and market participants

2. What are we doing?

- Enabling increased integration of Distribution Energy Resources (DERs)
- Improving the quality of power delivered through voltage optimization
- Developing new systems and tools for Distribution Control Centers
- Leveraging devices to improve Field Operations situational awareness capabilities
- Improving distribution system planning

3. How will this benefit customers?

- Cleaner, most cost-effective, consistently reliable energy
- More timely and accurate customer service information
- New technologies to track and manage outages
- Increased capacity for interconnection of customers' renewable energy resources

National Grid

Advanced Grid Technologies

1. Feeder Monitors

• Power quality data will improve the timing of equipment upgrades, validate and improve modelling tools for load types and possibly support real-time ratings.

2. Volt Var Optimization (VVO)

- Control System that manages the quality of the energy delivered to customers
- Provides efficient delivery of power to the customer
- Equipment includes smart controls, voltage regulators, Load Tap Changers, Capacitors, Feeder monitors, and cellular modems

3. Fault Location Isolation & Service Restoration (FLISR)

- Real-time scheme-based system that is able to respond to failure conditions on the distribution grid
- A FLISR scheme is between two or more feeders and is composed of local field devices known as Reclosers, Control Boxes, Radios, and Data Concentrators to achieve Distribution Automation
- Adjusts to changing loads and generation without operator intervention
- Minimizes effects of permanent faults

Planning Challenges

- Emerging Issues
 - Distributed Generation (DG) saturation and increased number of Energy Storage System (ESS) applications
 - Need for 8760 forecasts and analysis
 - System Resiliency
 - Climate Change
 - Continued Operational Efficiency
 - Electrification

- Emerging Technologies
 - Distributed Energy Resources
 - Advanced Distribution Automation
 - Volt/Var Optimization
 - Advanced Distribution Monitoring
 - Time of use rates
 - Distributed Energy Resource Management System

Area Study Example – Tiverton, RI

- Tiverton substation has 4 12.47kV distribution circuits
- All 4 feeders violate our contingency load at risk criteria
- Study developed potential solutions to mitigate this issue
- Recommended plan includes installing a new 5th 12.47kV circuit at Tiverton Substation

- There are two Distributed Generation (DG) projects currently in design that require the construction of a new 5th Tiverton circuit for interconnection.
- If the DG project does not proceed, this 5th circuit will still be needed to address the area contingency loading concerns, and the same route would be followed as the least-cost solution. There will be an additional extension to address the contingency issue.
- DG project is on a different schedule (earlier than the Company project), the DG developer will be responsible for the cost to construct the feeder serving their project.
- Cost sharing will apply to the shared route portion of work once the 33F6 circuit is being used to serve load as per the Standards for Interconnecting Distributed Generation

Tiverton Feeders Overload & Load-at-Risk

National Grid

nationalgrid