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ABSTRACT 

 

As decarbonization goals drive increasing levels of renewable generation, there is a need 

to understand the time- and location-based savings benefits of demand-side management (DSM) 

programs. The challenges of the 'duck curve' are driving the utility industry to consider how 

programs can be optimized to match demand profiles with low carbon generation resources. 

From an infrastructure standpoint, time- and location-targeted DSM could serve as a ‘non-wires 

alternative’ (NWA) to defer equipment upgrades.  

Additional DSM value streams are motivating innovation in savings evaluation, 

providing more resolved insights beyond the total annual program impact. Methods grounded in 

the principles of billing analysis, leveraging hourly metering at the distribution grid, can provide 

new visibility into the spatial and temporal savings achieved through DSM. A large body of 

work has investigated related topics including interval meter-based savings analysis, the time-

varying nature of efficiency measures, and NWA. A less studied topic concerns the impact of 

DSM on the grid, based on metered consumption.  

This paper presents an analysis of interval data across more than 25,000 customers and 

twelve substations, from the Sacramento Municipal Utility District. The results show for 

different locations on the grid: achieved savings and the impact on grid consumption; hourly 

savings shapes for DSM program participants and non-participants, and how those shapes vary 

with season; and the impact of the programs on peak demand. These findings show the current 

impact of DSM, with implications for future, more intentional targeting as the utility continues to 

pursue aggressive electrification, efficiency, load flexibility, and reliable NWA.  
 

Introduction 

 

The past decade has seen a significant shift in industry activities and policy regarding 

energy efficiency. The longtime focus on reducing consumption (kWh, therms) evolved to place 

increasing emphasis on peak demand (i.e., at times when the most carbon-intensive generation 

assets are mobilized). However, the significant growth in solar generation in some regions 

resulted in the so-called electric consumption “duck curve,” whereby the peak generation 

requirements had become disconnected from peak consumption because such a high portion of 

consumption was being met by PV power (i.e., the timing of peak consumption doesn’t 

correspond to the timing of peak generation needed from the utility). As a result, it is becoming 

far more important to understand when electric load reductions from energy efficiency programs 

occur, both by time of day and seasonally. 

In concert with the evolution of thinking around generation, a parallel evolution is 

happening with respect to transmission & distribution (T&D) planning. T&D Investments in the 

United States are in the billions of do3llars, and the evolving landscape of distributed energy 

resources (DERs) is increasing the return-on-investment risk for those investments. T&D 

constraints affect different locations to differing degrees (e.g., significant population/activity 
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growth may happen adjacent to one particular substation), so some regulators and utilities are 

exploring ways to defer T&D expansion investments by investing in demand-side management 

(DSM) strategies targeted at specific regions. These emerging strategies, also known as non-

wires alternatives (NWAs), were successfully demonstrated through the Brooklyn-Queens 

Demand Management program which met its 52MW reduction target in the summer of 2018, 

thereby avoiding a $1.2 billion substation upgrade. To support NWA efforts, the focus is not 

only on load reductions at specific times of day/year but also by geographical location. 

Whether targeting DSM efforts by time of day/year or by location, good quality data is 

key to successfully optimizing the programmatic approach. The major growth in Advanced 

Metering Infrastructure (AMI) deployment over the past decade presents an opportunity to 

quantify and target load reductions by time of year and/or by location. The emergence of 

advanced measurement & verification (M&V) over the past decade has shown the potential for 

capturing DSM program energy impacts at the meter, using established analytical methods and 

software. However, advanced M&V has generally focused on quantifying savings impacts for 

individual projects, or in some cases annualized savings for an aggregation of projects under a 

given program; advanced M&V literature is lacking when it comes to quantifying energy 

impacts at the grid level, both by time of year and by distribution substation. 

Sacramento Municipal Utility District (SMUD) is one of many utilities looking to address 

the above-mentioned challenges, along with another shift that has significant long-term 

implications for the grid: electric vehicle (EV) growth. SMUD recently became the first utility in 

the United States to change their key energy efficiency metric to “avoided carbon,” through their 

Integrated Resource Plan (IRP) (SMUD 2019). In this work we demonstrate the application of 

'bottom-up' advanced M&V savings analysis to characterize the time and locational savings 

achieved by participants in SMUD’s DSM programs. These programs included customers from 

residential, commercial, and industrial market segments. There were seven different DSM 

programs that included measures such as LED lighting, HVAC equipment upgrades, sealing and 

insulation among others. A majority of the participants in this study fell into the Equipment 

Efficiency program category, which included sealing, insulation, and heat pump water heater 

upgrades. The other programs that had a significantly large number of customers were the 

Appliance Efficiency and Pool Pump Programs. The Appliance Efficiency program included 

refrigerators replacements, cooktops, and clothes washers while the Pool Pump Program 

included the installation of efficient variable-speed pumps. 

 

Research Method 

 

A dataset of hourly AMI electric consumption accounts was analyzed to understand the 

change in consumption for participants in energy efficiency programs (a) compared to accounts 

where no energy efficiency (EE) program participation occurred, and (b) relative to the total 

consumption at their grid location (i.e., the feeder or substation to which the meter is connected). 

The analysis results include whole-year energy impacts, hourly impacts, and load reduction on 

the single day with the highest peak load. Where accounts were marked as EE program 

participants, that participation took place during the 2016 - 2017 period. 

 

Data preparation 
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Data preparation steps included: 

 

● Dividing dataset into a 2015 baseline period and 2018 reporting period; 

● Removal of certain accounts (i.e., meters) from the dataset: 

o Accounts with owner relocations (i.e., moves) between 2015 and 2018; 

o Accounts marked as having PV or EV (a small percentage of accounts, with 

highly variable usage patterns); 

o Accounts for which data was incomplete in either the baseline or reporting period. 

 

The resulting analysis data sample included 1,372 EE program participant accounts and 

25,841 Non-EE participant accounts. This represented 12 distribution substations (a sample of 

SMUD’s >200 substations) and 51 feeders. When combined, the total sample is taken as a proxy 

for whole grid-level analysis in this analysis (“proxy grid” level). 

 

Energy modeling approach 

 

Several advanced M&V modeling approaches have been developed and shown to provide 

reliable predictive capabilities for development of annual savings estimates. A key component of 

this study was to review EE load impacts by time of year, so it was important to verify that the 

chosen modeling approach is robust to seasonal effects. Two modeling options were considered: 

The Gradient Boosting Machine (GBM) baseline model (Touzani et al. 2018), which is an 

ensemble tree-based machine learning method, and the Time-of-Week-and-Temperature 

(TOWT) model (Mathieu et al. 2011), which is a piecewise linear model where the predicted 

energy consumption is a combination of two terms that relate the energy consumption to the time 

of the week and the piecewise-continuous effect of the temperature. In previous studies 

(Granderson et al. 2016, Touzani et al. 2018) both of these models were shown to be highly 

accurate at predicting annual consumption, equaling or outperforming other models. 

The GBM model was configured with input variables for outside air temperature, time of 

the week, an indicator to specify if the day of the observation is a holiday, an indicator to specify 

if the day of the observation is a week day or a weekend and an indicator to represent the season 

of the observation (where “winter” covered the period December to February, etc.). The TOWT 

model uses only time (i.e., hour) of the week and the outside air temperature as input variables. 

Comparison of TOWT versus GBM model quality was based on three statistical model 

fitness metrics, in alignment with prior work and industry guidelines such as ASHRAE 

Guideline 14 (ASHRAE 2014) and industry best practice (Lawrence Berkeley National Lab 

oratory 2019): 

 

● Coefficient of determination or R2, target > 0.7, 

● Coefficient of Variation of the Root Mean Squared Error (CV(RMSE)), target <25%; 

● Normalized Mean Bias Error (NMBE), target within -0.5% to +0.5% range.  

 

In short, these metrics respectively characterize: the amount of variance explained by the 

independent variables; the difference between the modeled and measured data relative to the 

mean; and the percent difference between the modeled and measured data. 
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Baseline models were created for a variety of aggregations of the 2015 calendar-year 

meter data: firstly, for all EE participants and for all Non-EE participants, and then similar pairs 

of models for all 12 substations and all 51 feeders. Model fitness metrics were then calculated for 

each season, by comparing model-predicted consumption to actual metered values for each 

season.  

In virtually all cases the CV(RMSE) and R2 values met best practice targets across all 

four seasons, but NMBE results uncovered a marked difference between the TOWT and GBM 

models. Figure 1 shows a subset of these results, illustrating that all substation-level GBM 

models met NMBE best practice targets, while very few of the TOWT models met them. Similar 

trends were observed at the proxy grid level and feeder level. While the TOWT model has been 

demonstrated to be robust for quantifying annual savings impacts it appears biased when 

isolating individual seasons; all savings analysis was therefore conducted using the GBM model. 

 
Figure 1. Seasonal model fitness metrics for GBM and TOWT models at substation level. 

 

Using 2015 GBM baseline models, energy use predictions for 2018 (the “reporting 

period”) were generated. The annual savings was calculated as the difference between the model 

predictions and the actual consumption in the reporting period (known as the “avoided energy 

consumption” approach), for EE and Non-EE meters at proxy grid level and for all 

substations/feeders. The analysis result was expressed as a percentage reduction in consumption, 

the fractional savings (FS), defined in ASHRAE Guideline 14 and shown in Equation 1: 
 

𝐹𝑆 =
�̂�𝑝𝑜𝑠𝑡−𝐸𝑝𝑜𝑠𝑡

�̂�𝑝𝑜𝑠𝑡
=

𝐸𝑠𝑎𝑣𝑒

�̂�𝑝𝑜𝑠𝑡
  (1) 

 

Where �̂�𝑝𝑜𝑠𝑡 is the model-predicted energy consumption in the reporting period, and 

𝐸𝑝𝑜𝑠𝑡 is the actual energy consumption in the reporting period. 

To assess the impact of EE accounts’ FS on overall energy used at different locations in 

the grid, a new metric was developed: relative fractional savings (RFS). Defined in Equation 2, 

the RFS expresses the savings of a given set of EE program participants as a fraction of the 

energy used at the level of the distribution grid in which the EE accounts are located. For 

example, it would express the energy impact of those EE participants attached to substation ‘X’ 

on the total consumption of substation X (including those who didn’t participate in any EE 

program).   
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RFS is defined as: 

𝑅𝐹𝑆 =
𝐸𝑠𝑎𝑣𝑒

∑ �̂�𝑝𝑜𝑠𝑡
  (2) 

Where �̂�𝑝𝑜𝑠𝑡 is the model-predicted energy consumption in the reporting period, and 

𝐸𝑠𝑎𝑣𝑒 is defined in Equation 1. The denominator of equation 2 corresponds to the sum of EE and 

the Non-EE groups for each location in the distribution grid. 

To determine the hourly EE savings shapes at different locations in the distribution grid, 

and how those shapes vary with season, average hourly FS was quantified for weekdays, for both 

EE and Non-EE accounts types. These hourly savings were computed for the full year of the 

2018 reporting period, for each of four seasons, and for the day with the highest peak demand 

(July 25, 2018). For the peak day load reduction analysis an uncertainty band was calculated 

around the model prediction. 

 

Results 

 

FS and RFS 
 

At the proxy grid level, EE participants saw an FS of 12.6% in 2018 (n = 1,372 

aggregated accounts), compared to a 2015 baseline year. This is almost 10% higher than Non-EE 

accounts, which saw an FS of 2.7% (n = 25,821). This indicates a significant impact from EE 

program participation, though it should be noted that the analysis did not attempt to attribute the 

savings directly to the EE programs. The positive FS of non-participants is noteworthy 

(especially as it is aggregated across over 25,000 accounts), and may be caused by many 

exogenous factors such as ‘green’ marketing, energy efficient product promotions, social trends, 

etc. 

While EE accounts’ FS was higher than Non-EE, the opposite was true for RFS. EE 

accounts saw RFS of 1.3% in 2018, compared to 2.4% for Non-EE. This was not unexpected, as 

the Non-EE participants achieved FS of 2.7% and Non-EE sample size was 19 times larger than 

the EE sample. Comparing these two values is somewhat arbitrary, as RFS for Non-EE accounts 

may be positive or negative, varies over time, and cannot easily be influenced. The more 

significant point (from a utility’s perspective) is that EE program adoption by just 5% of the 

population reduced overall grid consumption by 1.3%, an achievement that aligns well with 

typical statewide reduction targets. 

At the substation level, a wider variation in FS is observed for the EE accounts. As shown 

in Figure 2 (left-hand chart), FS for EE accounts ranged from near zero (S5) to 26% (S11). In all 

but one case, FS for EE accounts was higher than FS for Non-EE accounts (substation S3 being 

the exception). The causes for variation in EE account savings was not studied, but may be due 

to the types of EE program measures installed, exogenous factors, etc. 

The right-hand chart in Figure 2 illustrates the RFS at substation level. In 4 out of 11 

cases (S2, S6, S7, and S11) the RFS of EE accounts exceeded the RFS of Non-EE accounts, and 

in 3 of those cases the RFS of EE accounts exceeded 3%, a significant impact. In one case 

(substation S4) RFS was virtually zero for both EE and Non-EE accounts. Even in the absence of 

specifically targeted measures, the EE RFS analysis results indicate that just a small cohort of 

program participants can have a significant impact on substation load. 
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Figure 2. FS (left) and RFS (right) by substation, for EE accounts (red) and Non-EE accounts (blue) 

 

At feeder level the picture was similar to substation level but with a wider distribution of 

results; this is most likely due to the wider spread in the number of accounts per feeder and 

percentage of those accounts participating in EE programs. FS for EE accounts ranged from -

4.7% to 42%, and was higher than the FS for Non-EE accounts in 39 out of 51 cases. RFS for EE 

accounts ranged from -2% to 12%, and exceeded the RFS of Non-EE accounts for 12 out of 51 

feeders. As with the substation-level analysis, the results suggest that targeted DSM efforts have 

potential to significantly affect feeder-level load. In contrast, however, feeder-level loads will be 

far more sensitive to exogenous factors, especially if those factors result in significant load 

increases for large customers attached to a given feeder (e.g., expansion of an industrial facility 

attached to a relatively small feeder). 

 

Savings shape 

 

Hourly FS at proxy grid level is shown in Figure 3, for the whole year (left-hand chart) 

and for each season. For each season and the whole year, the FS of EE accounts is higher than 

for Non-EE accounts, reflecting the validity of the EE load reductions. The whole-year FS 

profile shows daytime load reductions peaking around 17% between 12:00 and 1:00pm, and 7% 

- 10% load reduction between 11:00pm and 6:00am. The EE savings shape is similar for each 

season, though Autumn trends a few percent higher than other seasons and the summer peak FS 

occurs a few hours earlier in the day. The Non-EE savings shape is generally flatter and shows 

less consistency from season to season. It is also noteworthy that while the annual FS for Non-

EE accounts is 2.7% (as noted in the prior section), there are some time periods in Spring and 

Summer where FS is below zero (i.e., load increased relative to baseline for some hours of the 

day). This emphasizes the benefit of hourly load shape analysis over annual total FS, as T&D 

capacity constraints are time-bound rather than based on average annual consumption. 
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Figure 3. Hourly FS at proxy-total level, for the whole year and for each season 

 

Whole year and seasonal FS profiles were analyzed for each substation, and the hourly 

profiles for Summer are shown in Figure 4 as an example. Figure 4 illustrates the greater 

diversity in FS profiles when looking at the substation level, with some substations experiencing 

higher FS for Non-EE accounts than for EE accounts at some hours of the day (indicated by gray 

shaded areas on some charts). These substations (with substation S5 being the most extreme 

example) are dominated by single industrial or miscellaneous accounts, which have very 

different consumption patterns and usage levels than typical residential and commercial 

accounts. Other seasons saw similar diversity in hourly FS shapes; this diversity likely reflects 

the number and type of accounts associated with each substation, and the type of efficiency 

program deployed.  

    



8 

 
 

Figure 4. Summer hourly FS at substation level 

 

When replicating the hourly FS analysis at the feeder level, more diversity was seen in 

terms of EE savings shape (as was seen in the annual savings estimates in the prior section). 

While substations were typically seeing 3 - 7 hours where Non-EE FS was higher than for EE, 

feeders were seeing this for 7 - 9 hours. This illustrates that it is harder to distinguish EE FS from 

the ‘noise’ of Non-EE load shape changes when data is analyzed by feeder. 

Peak day analysis did not provide reliable quantification of load shape changes. Figure 5 

shows the GBM model-predicted load shape at the proxy grid level for the peak day (July 25th, 

2018) in red, with red dashed lines indicating the uncertainty band around the prediction. Actual 

consumption is shown in black. The difference between the predicted and actual consumption is 

relatively small, and actual consumption falls well within the prediction uncertainty band. While 

some marginal variation in load shape may have occurred, this analysis cannot quantify it with 

statistical certainty.  

 



9 

 
Figure 5. Peak day load analysis at proxy grid level. 

 

As with all other types of analysis in this study, greater variation was observed when 

moving from proxy grid level to substation level. However, even when plotting the substation 

with the greatest difference between predicted and actual load, 22 out of 24 hours were inside the 

prediction uncertainty band (Figure 6). In this case it can be seen that peak demand was reduced 

by approximately 250kWh (17%) and moved two hours later, but was still within the uncertainty 

band. Values for 5:00pm and 6:00pm were outside of the uncertainty band but were the 

exceptions when looking across all substations.  

 

 
Figure 6. Substation that has the highest hourly 

difference between predictions and actual energy 

consumption 

 

Given that the prediction uncertainty band was around 15% - 20% of predicted values, 

and that an aggregate impact of 15% from DSM programs is very high, we conclude that the 
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analysis method is insufficient for capturing peak day loadshape changes (i.e., this method would 

be appropriate for program efforts yielding >20% load reductions, which is highly unlikely). 

 

Discussion 
 

The results of the annual savings analysis showed that EE program participants are, on 

average, achieving an almost five-fold reduction in energy consumption compared to non-EE 

participants. This pattern was largely replicated at substation and feeder level, though to varying 

degrees across the 12 substations and 51 feeders analyzed. The causes of variation in FS between 

EE accounts at different substations/feeders was not studied, but two possible drivers of the 

variation are the applicable programs (which may have some correlation to the building types 

attached to the substations/feeders) and exogenous factors.  Further study of FS results in relation 

to participation in different programs and the mix of residential/commercial/industrial properties 

in the analysis may provide valuable additional insights for future targeting of programs. 

The development of the RFS metric allowed for an assessment of the impact of EE 

programs on the grid (and on specific geographical locations within the grid infrastructure). The 

grid-level RFS of 1.3% was reasonable with respect to the utility’s load reduction targets, which 

aim for annual reductions in the order of a couple percent (which include midstream/upstream 

programs with subcontractors and retailers, which weren’t captured by the “EE” marker in the 

dataset used for this study). At the substation and feeder level, a wider distribution of RFS results 

illustrate that, as the sample size is reduced, there is more chance for exogenous factors and 

variation in EE participation rates to lessen the visibility of EE impacts. However, it should be 

remembered that there was no explicit effort to target DSM efforts geographically. When taken 

in combination, FS and RFS analysis results provide strong encouragement to program 

implementers wanting to target EE programs geographically and to clearly quantify the benefits 

of those efforts. 

Reporting hourly FS enabled temporal analysis of EE impacts, which is becoming ever 

more important as the evolving duck curve is driving utilities and regulators to review the time-

specific impacts of their programs. At the proxy-grid level, hourly FS ranged from 

approximately 7% to over 17%, with some relatively minor variations between seasons. 

Maximum savings were observed to occur between 12:00pm and 1:00pm. Solar generation is 

also high during these hours, suggesting that in a decarbonized world with increased building 

electrification, the ability to time-shift savings will have implications on the value of efficiency.     

In moving to substations and then to feeders the hourly profiles saw increasing levels of 

variety (in savings shape, and also in whether FS for EE accounts was higher than for Non-EE). 

These results showed that, with more intentional DSM targeting, there is potential to target 

specific locations based on intended FS magnitude and savings shape. To support this, further 

study into the impacts of factors such as program type and building type may be very useful for 

program developers. Supplementing FS charts with hourly charts of absolute carbon reductions 

(using variable hourly carbon emission rates) may also help inform and prioritize DSM planning. 

Analysis of peak day FS was inconclusive; results indicated a trend of modest load 

reductions across all substations, but those reductions couldn’t be expressed with statistical 

certainty. Refinements to the analysis method could include: (a) more selective curation of data 

used to create the baseline model; (b) quantifying average load reduction for several peak days in 

the reporting period; and/or (c) considering other model types. Analysis of data from other 
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regions (perhaps with peaks occurring in different seasons or at different times of day) may also 

provide some interesting insights into peak demand reduction. 

 

Conclusions and Future Research 
 

As the efficiency industry is moving toward application of energy efficiency to meet the 

needs of a renewables-integrated energy system, there is a strong need to understand time- and 

location-based energy impacts of DSM efforts. This work demonstrated new metrics and an 

accurate modeling method to assess grid-level spatio-temporal impacts of energy efficiency. 

These approaches provide a methodological and modeling framework that can connect efficiency 

programs with grid and distribution planning. In turn this will support the achievement of 

aggressive targets for electrification and efficiency through targeted DSM, load flexibility, and 

reliable NWA.  

Future work on grid level AMI data analysis can expand upon the initial analyses 

presented in this paper. Disaggregation of the data set would enable assessment of program-

specific effects, and characterization of how energy savings vary with different distributions of 

residential, commercial, and industrial customers (the analysis could also be replicated with data 

from different geographical regions). This would provide valuable insights to program 

implementers seeking to optimize a portfolio of program offerings, and could be combined with 

the development of analytical methods to address meters with EVs, on-site PV, and other meters 

that had to be excluded from this study. Improvements to the quantification of peak day load 

reduction are needed; this may be achieved through more selective curation of baseline and 

reporting period data, review of model terms, and consideration of other model types. Finally, 

the analyses presented in this work can be applied to NWA projects in the field to study longer 

term impacts, and to future pilots of location- and time-based targeting of EE program delivery. 
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