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Overview of IRP Development Process

Establish Values for Estimate Future Loads,

Key Input Idaniity ijor Resource Cost and
Issues

Assumptions Availability

Conduct Resource Portfolio Analysis

* Identify Resource Needs

* Test Alternative Resource Strategies

» Agree on Preferred Alternative for Draft IRP
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The Resource Planner’s Problem

GO'C‘”OCKS 71 Don’t have too
and the many resources
Three Bears 1 Don’t have too few

resources

-1 Have “just the right
amount” of
resources™

*The “right amount” means not only the quantity developed, but the timing of their
development and the mix (type) of resources required to provide energy, capacity,
flexibility, and other ancillary services for system reliability, including risk management

and resilience.




Solving the “Goldilocks’ Problem” Requires Analysis
Comparing Cost and Risk of Alternative Resource Options

12000 - Exposure to Exposure to

Market Volatility Load Volatility

10000

8000 -

6000 -

GWH/yr

4000 -

2000 -

Resources Loads

i Market Purchases/New Resources

k! Firm Contracts/Existing Resources

Increasing Risk

The “Just Right”
Resource Portfolio

)

Increasing Reserve Margin

i”%’ ENERGY TECHNOLOGIES AREA I ENERGY ANALYSIS AND ENVIRONMENTAL IMPACTS Division | ELECTRICITY MARKETS & PoLicy
\ )
= ",

64

Increasing Cost



IRPs Attempt to Find the “Just Right” Resource Timing, Type
and Amount by Answering Five Simple Questions

When Will We Need Resources?
How Much Will We Need?
What Should We Build/Buy?
How Much Will It Cost?

What’s the Risk?

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



Answering These Questions Require Assumptions About the Future

PHeisenbery

AcAp>2

have been here.

Perfect Foresight is Not Possible,
So IRP’s Must Address Uncertainty and Risk
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Major Sources of Uncertainty

Load Uncertainty
o Business cycles (e.g., post-2008 recession, COVID-19)

o Technology “shifts” (e.g., electrification of transportation, distributed
generation)

Resource Uncertainty

o Output (e.g., prolonged outages due to terrorist action, storms)

o Cost

o Construction lead times (e.g., pumped storage, transmission expansion)
o Technology change (e.g., declining cost of renewables, batteries)

Wholesale Electricity Market Price Uncertainty

Regulatory Uncertainty (e.g., required reductions in
GHG emissions)
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Perfect Foresight Can Lead to Overbuilding:
PNW Example
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Real World Example of the Cost of
“Too Many Resources”
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Perfect Foresight can also lead to underbuilding:
PNW Example
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NW Average Revenue/kWh (cents)
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Real World Example of the Cost of “Too Few Resources:”
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Industrial Sector Retail Sales
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Load Uncertainty Is Often Driven by Large Industrial
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Load Uncertainty Is Particularly A Problem For Resources With Long
Lead Times and Large Sizes
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Energy Efficiency, Demand Response and Shortened Lead
Times and Smaller Sizes For Some Generating Resources

Has Reduced Exposure to Load Uncertainty
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Major Sources of Uncertainty

Load Uncertainty

o Business cycles (e.g., post-2008 recession, COVID-19)

o Technology “shifts” (e.g., electrification of transportation, distributed
generation)

Resource Uncertainty

Output (e.g., prolonged outages due to terrorist action, storms)

Cost

Construction lead times (e.g., pumped storage, transmission expansion)

Technology change (e.g., declining cost of renewables, batteries)

Wholesale Electricity Market Price Uncertainty

Regulatory Uncertainty (e.g., required reductions in
GHG emissions)
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Energy Efficiency Resource Uncertainty Stems from Delays in
Deployment (i.e. construction) Schedule
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Since the West Coast Energy Crisis Energy Efficiency Resource
Development Delays in Deployment Have Been Less Uncertain
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Generating Resource Uncertainty Results from Unanticipated (i.e.,
"forced”) Outages Which Reduces Their Availability

PNW Generating Resource Forced Outage Rates

by Resource Type
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Resource Variability Differs from Resource Uncertainty - But
Planning for Both Is Important
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Resource Cost Uncertainty Is Primarily Driven by Input
Fuel Prices and Utilization (i.e., "capacity factors”)

Lifecycle Cost of Combined Cycle Gas Fired Combustion Turbine at
Varying Gas Prices and Capacity Factors
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Forecasting Natural Gas Prices Is Equivalent to Engaging in

Commodity Trading
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These Uncertainties Mean There’s No Single "Avoided Cost” for New Resources —
Hence No Single Avoided Cost for Energy Efficiency (or Demand Response)

Levelized Cost and In-Service Date of Combined Cycles Combustion Turbine
Across A Sample of 6th Plan Futures

300
= 250
2 o ¢ X
E A -
o 200
N
i
o
€ 150
% t » 2 » ¥
o X4 -
5 100 A A — 53 %
T = A A
> 50 = N @
3 . Z T Cn

0 [ [ [ [ [ 1
2018 2020 2022 2024 2026 2028 2030
Plant In-Service Year

g
A\
L . [ roreer i

ENERGY TECHNOLOGIES AREA | ENERGY ANALYSIS AND ENVIRONMENTAL IMPACTS DIVISION BERKELEY LAB




The Pace of Technology Change Introduces Additional
Uncertainty Into the Determination of Avoided Cost
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https://www.irena.org/publications/2018/Jan/Renewable-power-generation-costs-in-2017

Major Sources of Uncertainty

Load Uncertainty

o Business cycles (e.g., post-2008 recession, COVID-19)

o Technology “shifts” (e.g., electrification of transportation, distributed
generation)

Resource Uncertainty

o Output (e.g., prolonged outages due to terrorist action, storms)

o Cost

o Construction lead times (e.g., pumped storage, transmission expansion)
o Technology change (e.g., declining cost of renewables, batteries)

| Wholesale Electricity Market Price Uncertainty ‘

Regulatory Uncertainty (e.g., required reductions in
GHG emissions)
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Market Prices Establish the Value of Marginal Resources —

But They Are Full of Surprises
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Wholesale Electricity Market Prices Are Strongly

Correlated to Natural Gas Prices
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When Natural Gas Market Prices Provide Surprises,
They Pass Along That Gift To Wholesale Electricity Prices
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Major Sources of Uncertainty

Load Uncertainty

o Business cycles (e.g., post-2008 recession, COVID-19)

o Technology “shifts” (e.g., electrification of transportation, distributed
generation)

Resource Uncertainty

o Output (e.g., prolonged outages due to terrorist action, storms)

o Cost

o Construction lead times (e.g., pumped storage, transmission expansion)
o Technology change (e.g., declining cost of renewables, batteries)

Wholesale Electricity Market Price Uncertainty

Regulatory Uncertainty (e.g., required reductions in
GHG emissions)
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Climate Change Regulation — Yes, No, Maybe?
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Clean Power Plan

Resources for Communitles CUTTING CARBON POLLUTION FROM POWER
On August 3, 2015, President Obama and EPA announced the Clean :

. ) . More Information
Power Plan - a historic and important step in reducing carbon
pollution from power plants that takes real action on climate
change. Shaped by years of unprecedented outreach and public
engagement, the final Clean Power Plan is fair, flexible and
designed to strengthen the fast growing trend toward cleaner and
lower polluting American energy. With strong but achievable
standards for power plants, and customized goals for states to cut the carbon pollution that is driving
climate change, the Clean Power Plan provides national consistency, accountability and a level
playing field while reflecting each state’s energy mix. It also shows the world that the United States is
committed to leading global efforts to address climate change.
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ENERGY & ENVIRONMENT
Carbon tax chatter returns to shake up climate politics
Putting prices on carbon emissions isn't a sure-fire winner with progressives, and it's nearly a non-starter with

conservatives.
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Obama's Clean Power Plan
An unusual 5-4 decision halts the federal effort to curb carbon dioxide emissions from power
plants while the court battle continues
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So With All These Uncertainties, How Does An IRP Answer
Those Simple Questions?

1. When Will We Need Resources?
2. How Much Will We Need?

s What Should We Build/Buy? ‘
2. How Much Will It Cost?

5. What’s the Risk?

The Answer Seems
Obvious: The Lowest
Cost and Lowest Risk
Resources




All Resource Cost — Energy
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All Resource Cost — Peak Capacity
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Creating and All Resource Supply Curve

Permits Resource Portfolio Analysis on One Slide
Almost
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While the “All Resource Supply Curve” tells use what to acquire, it doesn’t tell us
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Uncertainty and Risk Means Managing the Unknowns

As we know,

There are known knowns.

There are things we know we know.
We also know

There are known unknowns.

That is to say

We know there are some things

We do not know.

But there are also unknown unknowns, Donald Rumsfeld. Feb. 12, 2002,

. Department of Defense news
The ones we don't know briefing

We don't know.
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Answering the Timing, Amount, Type, Cost and Risk Questions
Requires Capacity Expansion Modeling and Risk Analysis

Resource Strategies — actions and
policies over which the decision maker
has control that will affect the outcome
of decisions (i.e., “the knowns”)

Futures — circumstances over which
the decision maker has no control
that will affect the outcome of
decisions (i.e., “‘the unknowns”)
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o Business cycles (e.g., post-2008 recession, Covid-19)
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o Technology Change (e.g., declining cost of renewables, batteries)
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Regulatory Uncertainty ( e.g., GHG emissions)
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Scenarios — Combinations of Resource Strategies
and Futures used to “stress test” how well what we

control performs in a world we don’t control
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Resource Portfolio Optimization & Risk Assessment Methods

Users™ of Capacity Expansion Models (CEMs) employ different
methods to optimize resource development plans and assess risk

O Most prevalent - Deterministic modeling, followed by stochastic risk analysis
Optimization is done for a single future

Optimization produces a “resource portfolio” specifying the type, amount and
schedule of resource development over a planning period.

Risk is quantified by stress testing the optimized resource portfolio against a wide
range of alternative futures.

O Less prevalent — Stochastic optimization (scenario analysis on steroids)

Optimization is done across multiple (100s) of futures using decision criteria for
capacity expansion.

Optimization results in a “resource strategy” of options and decision criteria

managing the type and schedule of resource development over planning periods
as future conditions evolve over a planning period.

Risk is quantified based on the cost of “worst outcomes” across all futures tested.

*Commercially available CEMs can be run in “multiple modes.” Users determine which modes are used for optimization and whether
other models and analyses are used in conjunction with the CEM to select their preferred resource plan.
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Stochastic Risk Analysis of Resource Strategies Optimized

for a Single Future
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Limitation of Deterministically Optimized Resource Portfolio
Stochastic Risk Assessment

- Capacity expansion modeling that optimizes resource portfolios
for a single future.

o Assumes control of not only all “known knowns,” but also the “known
unknowns” and the “unknown unknowns”

o This systematically likely understates risk, and therefore the value of risk
mitigation and resilience

1 Adding stochastic risk assessment permits testing resource
portfolios optimized for a single future against a stochastically
derived range of alternative future conditions

o Replication of this process is required to compare the risk of many (1000s)
of resource portfolios optimized for different single futures against
stochastically derived range of many (100s) of alternative future
conditions to identify the most robust portfolio

o This approach likely overstates risk, because these resource portfolios are
not altered in response to future conditions for which they are not
optimized

This method of risk analysis assumes that even though you can see the bridge is
out, you would drive into the river because you continue to follow Google Map’s

“Quickest Route.”
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Best Practice IRPs Follow the “Gump” Resource Strategy
Risk Analysis Method

The Future’s Like
A Box of

Chocolates.

You Never Know
What You're
Gonna Get,




Stochastic Risk Analysis for Resource Strategies Optimized
Across A Range of Future Conditions

Peak Loads and Firm Resources

$400

$350

@ @
N
[ -1
o o

$200
$150

$100

Levelized Cost (2016$/MWh)

@
@
o

$0

Generic coal, gas and nuclear units
| 1Coal - are shown at typical project sizes - —_—
Energy Efficiency <@
I-{Gas P
Renewable -
—{Nuclear P
: P
i - e
[l %
0 20000 40000 60000 80000 100000 120000 140000
Cumulative Resource Potential (GWH/yr)

Load Forecast No New Energy Efficiency
250,000
- 200,000
T 150,000 -
3 =-10% Percentile
L ~#—First Quartile
E 100,000 | —-Median
= -Third Quartile
50,000 ~#-90% Percentile
2016 ZOZI‘ ' 1026‘ ' 2031
$14
&, | Natural Gas -
z Price Forecast —10%
g ~$10
g3 —25%
235 8
] —50%
§& s6
TS —75%
LA
z —90%
$2 /\/\/\/\/\M
100%
50
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Quarter
$180
£ s10 Wholesale Electricity —%
€ suo | Price Forecast — 0%
~
g_ $120 —25%
£ s100
a —50%
§ ss0
S s60 B
o
{0 A AN,
2
3 $20 Wwww 100%
$.
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Quarter

NPV System Cost for No Constraints Scenario

30%

20%

40,000
«##=Low Load Forecast
38,000 =¢=High Load Forecast
g =e=Resources
© 36,000
3
3
)
S 34000
32,000
LY Y Y
30,000
2015 2020 2025 2030 2035
1
9N . -
A
CA
OUE
Carbon Dioxide Emission Price
$120
$100 y—¥
s
Sl * * X
£ s80 //’ /
]
H /TN
€ $60
g /
$40 7
%Qst—r-;..-;-.;-;
$20 /
S0 T L e Ean e a2 i e |

ENERGY TECHNOLOGIES AREA

i

ENERGY ANALYSIS AND ENVIRONMENTAL IMPACTS DIVISION

Z
'r-:: 15%
2
2
&
10%
o BE_
$40,000 $50,000 $60,000 $70,000 $80,000 $90,000 $100,000 $110,000 $120,000 $130,000 $140,000 $150,000
NPV System Cost (million 2012%)
No Constraints Scenario Resource Development by Future
100%
90% -
=—Efficiency
80%
=——=Demand Response
70
. % —Renewable
Z 60%
£ 0% Gas-CccT
= 50%
°
£ 40%
30%
20%
o i
0% e —
0O Q0 0 Q0 0 Q0 Q0 Q0 Q0 Q0 Q0 Q00 o9
'hHh O OmM o Mo ’mowmowmowmwowmo ;o
o-—tawmmmqqmm‘mmr\v\mwmmg
Winter Capacity in 2035 (GW)

~

frrereerer ‘IH'

BERKELEY LAB




Multiple Scenarios Are Tested
Each Scenario Has an “Expected Value” Resource Portfolio
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However, Each Scenario Varies Resource Development by Future

|Avoids driving into the river when you can see the bridge is out!

Assumes Adaptive Management* by Utilities
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The Distribution of Net Present Value System Cost for a Resource
Strategy Across All Futures Permits Comparison of
Their Relative Cost and Risks
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Expected Cost and Risk Metrics Characterize Each Resource Strategy

Expected Value of Resource Strategy’s Cost =
Average Cost Across All Futures

}

A X
r )

Expected Value of Resource Strategy’s Risk

= Average Cost of “Worst” 10% of Futures

b

Likelihood (Probability)
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This Permits Comparison of Both System Cost and Risk
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Average of the Inverse * Inverse of the Average

Stochastic Risk Analysis of Resource Strategies Optimized
for a Single Future

Deterministically optimized
Resource Portfolio’s likely
understate risk relative to
stochastically optimized
Resource Portfolios
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Stochastic Risk Analysis for Resource Strategies Optimized
Across A Range of Future Conditions
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What Does a Stochastic Risk Analysis Model Do?

It test thousands of alternative resource strategies (those things we control)
o Varying the amount and timing of utility controlled resource development

Energy Efficiency (retrofit, lost-opportunity)

Demand Response

Natural gas fired CCCT and SCCT

Wind and Utility Scale Solar

Utility scale storage

Distributed Generation and stroage
o Varying the amount and timing market purchases in lieu of resource development

Against hundreds of different futures (those things we don’t control)
Fuel Price Uncertainty

Regulatory/Carbon Risk Uncertainty
Load Uncertainty

Resource Uncertainty

Wholesale Market Price Uncertainty
Regulatory Uncertainty

It “sorts” through all of the resource strategies to find those with the lowest
cost for each level of risk.
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The “Optimization Objective” of Best Practice IRPs -
Find the Lowest Cost Insurance for the Same Risk Coverage
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In Summary, a Resource Strategy’s Benefits
Should Always Outweigh Its Risks

Benefits




