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Abstract:  
Individual thermal comfort perception plays very 

important roles in smart building and its energy efficiency 
control. However, there is no effective method to measure 
real-time thermal comfort of individual occupant until now. 
For overcoming the challenge of this case, including 
time-varying, individual difference and difficult to practical 
apply widely, a novel macro posed-based non-invasive 
perception method for thermal comfort (NIMAP) was 
presented. The occupant pose images were captured by 
normal phone camera (computer or cell phone) and the 
corresponding 2D coordinates can be obtained. Based on 
this, a novel pose recognition algorithm for thermal comfort, 
including 12 sub-algorithms, was presented. Then the 12 
different macro poses of thermal comfort can be recognized. 
Further, based on Fanger’s theory, 369 subjects are invited 
for subjective questionnaire. Finally, 3 human occupants 
participated in the validation of the method proposed and 
massive data was collected. The results is encourage and the 
12 poses of thermal comfort all can be recognized 
effectively.  
 
Keywords: Non-invasive measurement, Thermal comfort, 
Macro pose, Energy efficiency, Artificial intelligence 

1. Introduction 

21% of energy consumption of the world is that of 
residential and commercial buildings, and half of 21% is 
generated by Heating, Ventilation and Air Condition 
(HVAC) system [1-2]. Real-time and accurate measurement 
of occupant thermal comfort can reduce the energy 
consumption of HVAC, and the energy consumption of the 
entire building and block can be optimized. Many 
measurement methods for thermal comfort were proposed 
in the past few decades, including questionnaire, 
environment measurement, invasive physiological 
measurement and semi-invasive physiological measurement. 
Recently, some scholars use Kinect to measure human 
thermal preference [3], some researchers mounted an 
infrared sensor on the frame of glasses to measure skin 
temperature [4, 5]. However, thermal comfort is personal 

subjective feeling while the body interacts with indoor 
environment [6]. Due to some challenges existed, such as (1) 
individual difference between different occupants (2) 
time-varying of one occupant [6, 7], there is no effective 
method until now to perceive human thermal comfort in the 
practical application. Besides, Kinect is a kind of special 
device with exclusive patent rights, also not everyone wears 
glasses, so that the wide application possibility of study [3 - 
5] is limited.   

For overcoming the drawbacks described above, in this 
paper a non-invasive measuring method for human thermal 
comfort based on macro-pose (NIMAP) is presented. 
According Fanger’s theory, we handled a subjective 
questionnaire with 369 subjects, and defined 12 macro-pose 
for human thermal preference. The occupant poses can be 
captured by normal compute or cell phone camera. The 
OpenPose was combined with thermal comfort perception, 
and a novel macro-pose recognition algorithm is 
constructed, including 12 sub-algorithms, so that the 12 
macro-poses can be estimated. Finally, 3 human models are 
invited for algorithm validation, and a big dataset was 
collected.  

The main contribution of this paper is summarized as 
follows: 
(1) 369-person subjective questionnaire of thermal 

comfort were handled and 12 macro-poses of thermal 
comfort were defined based on Fanger’s theory.  

(2) It is the very first time that normal computer or phone 
camera was used for estimating thermal preference 
based on human poses. Thus the algorithm (NIMAP) 
proposed in this paper has the initial possibility of 
practical application. 

(3) A novel algorithm (NIMAP) based on OpenPose was 
proposed for measuring human thermal preference, 
including 12 sub-algorithms. It is the very first time 
that OpenPose was combined with thermal comfort 
measurement.  
The rest of this paper is organized as follows. Section 2 

introduce the related work about thermal comfort 
measurement. In Section 3, the research method, including 
macro-pose definition and OpenPose platform, are 
introduced. Based on this, the micro-pose recognition 
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algorithm is proposed. The big data validation results and 
discussion are shown in Section 4 and 5. Finally, 
conclusions are given in Section 6. 

2. Related work 

Human thermal comfort is subjective feeling which 
involves human psychology and human interaction with the 
environment [6]. Fanger has been explored thermal comfort 
since 1970s and founded Fanger’s theory [6]. Based on it, 
many researchers study this topic in the past several 
decades. 

 Questionnaire is a useful and humanistic method for 
capturing subjective feeling of occupant [8]. However, the 
operability is weak, because it is unrealistic for occupant to 
constantly feedback their personal feelings [9]. For solving 
the practical problem of building industry, environmental 
measurement method was adopted by human. Thereby, 
constant parameters, including indoor temperature, 
humidity and airflow, are measured for controlling indoor 
environment. Further, from the perspective of constant 
indoor parameters, ASHRAE and ISO (No. 7730) defined 
thermal comfort environment which is ‘at least 80% of 
building occupants are psychologically satisfied with the 
temperature range of thermal environment’ [10, 11]. 
Individual subjective feeling is ignored in environmental 
measurement method. For overcoming this problem, based 
on Back Propagation (BP) neural network, Liu [12] study 
the individual thermal comfort and constructed a neural 
network-based model. Afroz [13] proposed a nonlinear 
autoregressive network to predict indoor temperature, and 
the network size was tuned for improving the efficiency of 
prediction model. However, the inter- and intra-individual 
differences are exist in human thermal comfort [7], so that 
different people has different feeling in the same indoor 
environment. Therefore, physiological measurement 
method was explored by many researchers, including 
invasive measuring method, semi-invasive measuring 
method and non-invasive measuring method.  

Invasive measuring method was appeared in early. Firstly, 
skin temperature is an intermediate variable usually used for 
human thermal comfort estimation. Wang [14] studied the 
relationship between human thermal sensation and 
upper-extremity skin temperature. Nakayama [15] 
estimated human thermal sensation based peripheral skin 
temperature, and a subjective experiment was handled to 
analyze the relationship between peripheral skin 
temperature and subjective sensation votes. From then on, 
Liu [16], Takada [17], Sim [18], Wu [19] and Chaudhuri 
[20] proposed all kinds of methods to predict thermal 
comfort based on skin temperature. Secondly, the heart rate 
variation (HRV) and electroencephalograph (EEG) are 
studied. Yao [21] explored HRV and EEG to estimate 
thermal comfort. The results show that HRV and EEG can 

be factors to reflect human thermal comfort. Further, some 
scholars introduce machine learning into invasive 
physiological measurement method. Chaudhuri [22] 
proposed a data-driven method and 3 thermal comfort levels 
were defined which are cool-discomfort, comfort and warm 
discomfort. Based on this, support vector machine (SVM), 
artificial neural network (ANN), and logistic regression 
(LR), etc are used for constructing classifiers. Dai [23] 
combined machine learning with skin temperature, and an 
intelligent control method based on SVM was proposed. 
The validation results show that 3 skin sampling points can 
produce enough information for estimating thermal comfort, 
and the SVM classifier with linear kernel is better than that 
with Gaussian kernel. Kim [24] proposed a personal 
comfort models for predicting occupant thermal sensation. 
The data was collected from a personal comfort system 
(PCS) chair, and machine learning was used for data 
analysis.  

Semi-invasive measuring method was presented in study 
[4, 5]. Ghahramani [4] collected skin temperature from 3 
sampling points around human eyes. The infrared sensors 
are constructed on eye glasses, and some subjects are 
invited for subjective experiment. Further, Ghahramani [5] 
use unsupervised learning method to further analyze the 
data collected in study [4], and proposed a hidden Markov 
model to estimate skin temperature and thermal comfort.  

The disadvantages of invasive measuring method and 
semi-invasive measuring method are obvious. Because the 
close-fitting sensor is required to collect human 
physiological parameters, thereby the widely practical 
application is limited. For overcoming this drawbacks, 
Cheng and Yang [25] use normal computer and cell phone 
camera to predict human thermal comfort. Two 
saturation-temperature (ST) models were proposed, 
including non-invasive thermal comfort measurement based 
on ST model (NIST) and non-invasive thermal comfort 
measurement based on partly ST model (NISPT). In the 
study [25], the first time that subtleness magnification 
technology was adopted and the Euler Video Magnification 
(EVM) was combined with big data to magnify skin features. 
The study [25] is a meaningful attempt in non-invasive 
thermal comfort perception.  

In recent years, the deep learning is booming [26], 
besides the study [22-24], many other researchers made 
some meaningful attempts in the combination of machine 
learning and thermal comfort prediction. The mainly 
machine learning method they used is SVM [27-29], and 
public dataset was used for method validation. Further, 
Peng [30] use unsupervised and supervised learning to 
predict occupant behavior, and a demand-driven method 
was presented which was validated in 11 rooms of a 
commercial building. 

From the perspective of practical application, 
non-invasive measuring method of thermal comfort is the 
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research direction in building industry. Further, human 
posture can reflect the thermal comfort of human body. 
With the development of deep learning technology, 
OpenPose is proposed and it is a deep learning-based open 
source platform [31-33]. OpenPose can produce key point 
coordinate of human skeleton and will be useful to estimate 
human thermal comfort. In this paper, based on OpenPose, 
we propose a thermal comfort perception method (NIMAP) 
which is belong to non-invasive physiological measurement 
method.  

3. Research method 

3.1 Macro-pose definition and questionnaire  

Human will naturally have various postures when they 
feel hot or cold. Thereby, based on Fanger’s theory of 
thermal comfort, we defined 12 macro-poses. As shown in 
Table 1, the macro-poses are wiping sweat, fanning with 
hands, shaking T-shirt, scratch head, roll up sleeves, 
walking, shoulder shaking, folded arm, leg cross, hands 
around neck, warm hands with breath and stamping feet. 
Further, the thermal comfort level of wiping sweat and 
fanning with hands are ‘hot’, and the corresponding score is 
‘3’. The other 10 poses have different thermal comfort level 
and score too. Fig. 1 and Fig. 2 show the continuous 
changes of 12 macro-poses in the time dimension. Sitting 
work style and standing work style are both considered in 
this paper, so that a total of 4 sub-fig were shown in Fig. 1-2.  

In order to assess whether the macro-poses defined in this 
paper are in line with the human thermal sensation, a 
subjective questionnaire will be handled in this paper. All 
the subjects of questionnaire are required to assess the 12 
macro-poses, and the options are (1) is it a cold action 
response, (2) is it a heat action response, or (3) neither. In 
addition, personal information of subjects, including height, 
weight, gender and age, will be collected. Based on the 
results of questionnaire, the macro-poses which is in line 
with the human body’s sensation feeling will be used for 
algorithm design and validation.  

3.2 Algorithm  

When human body naturally makes all kinds of poses about 
thermal comfort, the bones and joints will produce various 
changes in space. Let spi denotes the key points of human 
skeleton, since the images captured by normal camera is 2D, 
so that spi is  
 
  , , 1, ,i i isp x y i k    (1) 

 
where, xi and yi denote the horizontal and vertical 
coordinates in image space. The ‘i’ denotes different key 
point of human skeleton and its number. The ‘k’ is the 
maximum of key point number. If spi  is obtained accurately, 

the corresponding algorithm can be constructed for 
computing the movements of human body and recognizing 
human poses.  

OpenPose is a kind of convolutional pose machines 
which can provide a sequential prediction framework for 
learning rich implicit spatial models [31-33]. Based on this, 
a human skeleton can be obtained. As shown in Fig. 3, there 
are 19 key points (k = 19). The key points of skeleton are 
nose, neck, right shoulder, right elbow, right wrist, left 
shoulder, left elbow, left wrist, right hip, right knee, right 
ankle, left hip, left knee, left ankle, right eye, left eye, right 
ear and left ear. The corresponding number is from 0 to 17. 
It should be noted that ‘i=18’ denotes the scene 
background.  

The framework of NIMAP algorithm presented in this 
paper is shown in Fig. 4. The images of occupant, work in 
office, is captured by normal computer camera. After 
processing by ‘preprocessing’ module and ‘OpenPose’ 
module, the key points coordinates with confidence value (z) 
will outputted. If the confidence value is less than a 
threshold (z < ε), the images will be discarded in this paper. 
If z ≥ ε, the images will be imputed into poses recognition 
module. Finally, the type of macro-poses and its 
corresponding thermal comfort level can be obtained.  

For poses recognition, we designed a sub-algorithm for 
each pose estimation. Due to the need of technical 
processing, ‘walk’ and ‘stamping feet’ belong to the same 
sub-algorithm. Further, ‘hands around neck’ and ‘warm 
hands with breath’ belong to the same sub-algorithm. 
Therefore, a total of 10 sub-algorithms were constructed for 
different macro-poses in this paper.  

The distance (L) between the skeleton key points is 
European distance. For convenience of calculation, a 
standard distance is defined in this paper, that is  

 
 7 6sL sp sp   (2) 

 
where sp7 denotes the left wrist and sp6 denotes the left 
elbow. Based on formula (2), the relative distance between 
the key points can be computed as  
 

 s
r

L
L

L
  (3) 

 
different relative distance (Lr) will be computed, and 
different threshold of Lr will be set for different poses 
recognition. Further, Lr_max and Lr_min will be set for some 
poses recognition which denote the extremum of Lr. In 
addition, mathematical slope is adopted in our algorithm. 
Further, coordinate changes of key points in continuous 
image frames are also used for pose estimation. The details 
of NIMAP algorithm is shown in Table 1.  
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TABLE 1. Pose definition based on Fanger’s seven point scale  
 
No. Pose category Score Thermal 

comfort 
 Level 

Can NIMAP recognize 
the pose or not 

1 Wiping sweat 3 Hot √ 

2 Fanning with hands 3 Hot √ 
3 Shaking T-shirt 2 Warm  √ 

4 Scratch head 2 Warm √ 

5 Roll up sleeves 1 Slight warm √ 

6 Walking 0 Neutral √ 
7 Shoulder shaking -1 Slight cool √ 

8 Folded arm -2 Cool √ 

9 Leg cross -2 Cool √ 

10 Hands around neck -2 Cool √ 
11 Warm hands with breath -3 Cold √ 

12 Stamping feet -3 Cold  √ 

TABLE 2. Macro pose-based non-invasive thermal comfort perception for energy efficiency 

Algorithm: NIMAP  
Output: Pose category, thermal comfort level ([-3, 3]), thermal preference (-1, 0, 1) 
Step: 
1. Surveillance video preprocessing  

(1) Frame extraction. 
(2) De-noise.  
(3) Region of interest (ROI). 

2. Searching coordinates of key points 
(1) Calling OpenPose platform. 
(2) Generating Jason. 
(3) Saving valuable frames based on Confidence value (ε=0.5). 

3. Generating coordinate matrix based on Jason (18×3). 
4. Computing standard distance (α), define the nearest distance threshold (τ=1.5). 
5. Pose and thermal comfort estimation. 

(1) Computing relative Euclidean distance. 
(2) Computing slope.  
(3) Computing movement speed.  
(4) A total of 10 sub-algorithms were constructed and called for 12 macro-poses. The ‘walking’ and 

‘stamping feet’ belong to the same sub-algorithm. The ‘hands around neck’ and ‘warm hands with 
breath’ belong to the same sub-algorithm.   

(5) The sub-algorithms are 1) wiping sweat, 2) fanning with hands, 3) shaking T-shirt, 4) scratch head, 
5) roll up sleeves, 6) walking and stamping feet, 7) shoulder shaking, 8) folded arm, 9)leg cross, 
10)hands around neck, warm hands with breath.   

(6) Some parameters set: 1) wiping sweat: Lr=1.8, 2) fanning with hands: Lr_max = 120, Lr_min = 80, 
3) Shaking T-shirt: 1.8, 120 and 80 are all used. 4) scratch head: Lr = 1.8, 5) Roll up sleeves, Lr = 
0.9, 6) walk: Lr = 1.8, 7) stamping feet: slope difference threshold is 30. 8) shoulder shaking: Lr = 
1.5, 9) folded arm, Lr = 2, 10) leg cross: Lr = 1, 11) hands around neck and warm hands with breath: 
Lr = 3.  

(7) The key points used for calculating Lr are different for different macro-poses. 
6. Optimize algorithm parameters. 



 
 

5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
    

(a)                                                                  (b) 
Fig. 1. Macro-pose of thermal comfort Part A ((1) a. stand work style b. seated work style. (2) in Fig. 1, ‘1’ 
to ‘5’ respectively denote fanning with hands, shaking T-shirt, wiping sweat, folded arms and stamping feet).  

 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                          (b) 
Fig. 2. Macro-pose of thermal comfort Part B ((1) a. stand work style b. seated work style. (2) in Fig. 2, ‘1’ 
to ‘6’ respectively denote shoulder shaking, leg cross, warm hands with breath, hands around neck, scratch 
the side of head, scratch the top of head and walking).  

 
 
Fig. 3. Human skeleton and key points [31] ( 0. Nose 1. Neck 2. Right shoulder 3. Right 
elbow 4. Right wrist 5. Left shoulder 6. Left elbow 7. Left wrist 8. Right hip 9. Right 
knee 10. Right ankle 11. Left hip 12. Left knee 13. Left ankle 14. Right eye 15. Left eye 
16. Right ear 17. Left ear 18. Background). 
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Fig. 4. The NIMAP network framework. 
 
 
 
 
 
 
 
 

(a)                                                (b) 
 
 

 
 
 
 
 
 

(c)                                                (d) 
 

Fig. 5. Subjects information (Gender, age, height and weight). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Subjective questionnaire results (369 subjects participating the questionnaire of thermal comfort reaction). 
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

(k) (l)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Recognition results of hot and neutral poses by NIMAP algorithm proposed in this paper (Fig. 7.a-j denote the hot 
feeling poses which are wiping sweat, fanning with hands, shaking T-shirt, scratch head and roll up sleeves respectively. 
Fig. 7.k-I denote the neutral feeling poses which is walking.).  
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

(k) (l)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Recognition results of cold feeling poses by NIMAP algorithm proposed in this paper (The cold feeling poses are 
shoulder shaking, folded arm, leg cross, hands around neck, warm hands with breathe and stamping feet, respectively).  
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4. Results  

To validate the non-invasive thermal comfort perception 
method based on macro poses (NIMAP) presented in this 
paper, a subjective questionnaire was explored and a total of 
369 valid questionnaire were collected for defining thermal 
comfort poses. Further, an algorithm validation experiment 
were handled, and 3 subjects are invited for real-time test.  

In this paper, a computer workstation, with 64-bit version 
and 32G RAM, was used for algorithm validation. Graphics 
processing unit (GPU) is required in the process of 
algorithm training and test. The GPU adopted in this paper 
is NVIDIA GeForce GTX 980 (1920 × 1080, 32 bit, 60Hz), 
and the processor is Intel (R) Xeon (R) CPU E5-2687W V3 
@ 3.10GHz. 

As shown in Fig. 5, in all the subjects who output valid 
questionnaires, male and female are 199 and 170, 
respectively, which is relative balance. The age of most of 
the subjects are between 20 years and 50 years. Among 
them, two age ranges which are [20, 30) and [30, 40) 
accounted for 35% and 41%, respectively. Subject height 
statistics were performed at intervals of 5 cm. Among all the 
height intervals, the numbers of subjects whose height in 
[160, 165), [165, 170), [170, 175), [175, 180), [180, 185), 
[185, 190) are 85, 70, 63, 52, 32 and 5, respectively. The 
intervals of weight is 5kg. Among all the weight intervals, 
the numbers of subjects whose weight in [40, 45), [45, 50), 
[50, 55), [55, 60), [60, 65), [65, 70), [70, 75), [75, 80) are 
13, 46, 67, 52, 60, 32, 45 and 30.  

Based on Fanger’s theory of thermal comfort, we defined 
12 macro-poses which are hot reaction pose, neutral pose 
and cold reaction pose. The poses are wiping sweat, fanning 
with hands, shaking T-shirt, scratch head, roll up sleeves, 
walking, shoulder shaking, folded arm, leg cross, hands 
around neck, warm hands with breath and stamping feet. In 
questionnaire, all the subjects are required to assess the 
sensation of the 12 macro-poses defined in this paper, and 
the assessment results are shown in Fig. 6. The subjective 
assessment results of 10 of 12 macro-poses are fully 
consistent with our expectations and that of the remaining 2 
poses are partially consistent with expectations. Fig. 6 
shows that the definition of macro-poses in this paper is 
reasonable and meets the thermal sensation of human daily 
life.   

As shown in Fig. 4, in practical application, all the images 
captured by normal computer camera will be processing by 
NIMAP algorithm. For improving estimating accuracy, 
when one image was inputted into NIMAP algorithm, the 12 
sub-algorithms will be traversed according to a certain 
priority. The estimation results are shown in Fig. 7-8. A 
total of 3 subjects are invited for algorithm validation. Fig. 7 
is the validation results for the hot and neutral poses. The 
pose order of validation results are the same as that in Table 

2. From Fig. 7-a to Fig. 7-I, the poses are wiping sweat, 
fanning with hands, shaking T-shirt, scratch head, roll up 
sleeves and walking, respectively. Fig. 8 is the validation 
results of cold poses, the corresponding poses are shoulder 
shaking, folded arm, leg cross, hands around neck, warm 
hands with breathe and stamping feet, respectively.  When 
the images were captured by normal computer or cell phone 
camera, the 2D coordinates can be obtained by OpenPose 
firstly. Further, the 12 sub-algorithms can recognize the 
poses based these coordinate point. In addition, the 
Euclidean distance and mathematical slope are adopted in 
this paper for poses recognition. The conditional thresholds 
of poses recognition used in this paper shown in Table 2.  

5. Discussion  

The large number of samples questionnaire handled in 
this paper show that the 12 macro poses defined is 
reasonable. Further, the validation results shown in Fig. 7-8 
show that the 2D coordinates of the skeleton key points, as 
well as the displacement and slope changes of the 
coordinates, are very useful to the recognition of the thermal 
comfort poses. 

Kinect were used for measuring human metabolism and 
thermal comfort which are meaningful attempt. However, 
the patent and price of Kinect make a limited practical 
application. In this paper, a normal computer camera or cell 
phone camera is required for the NIMAP proposed. Further, 
the NIMAP algorithm can be embedded into computer 
server of HVAC in building. Thereby it is convenient for 
practical application.  

There are inter- and intra-individual differences in human 
thermal comfort. The NIMAP proposed is a kind of 
real-time thermal comfort perception method. The image 
frames (usually 30 or 24 frames/second) can be processed 
by NIMAP algorithm. Thereby, the real-time pose variation 
can be captured, and the intra-individual differences can be 
overcome. In the design and commissioning phase of the 
NIMAP algorithm, the relevant parameters were fine-tuned 
for different subjects, and a comprehensive parameter is 
given in this paper. In further applications, different 
parameters will be adopted according to population 
classification. So that the inter-individual differences can be 
overcome.  

The study [25] is another meaningful attempt in 
non-invasive perception of thermal comfort. The 
differences between this paper and study [25] are shown as 
follow (1) the study [25] is from the perspective of skin 
color variation. However, human poses of sensation are 
used for feature extraction in this paper. (2) the output of the 
study [25] is predication values of skin temperature, and 
that of this paper is thermal comfort level and the type of 
human poses.  

It should be noted that deep information of  human body 
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and office scene is not adopted in this paper. Signals 
interference with each other will happen, e.g. stamping feet 
and walk are sometimes misjudged during the debugging 
process. For overcoming this interference, more determine 
statements were used in the 12 sub-algorithms.  

In questionnaire, the results of 2 of 12 poses defined in 
this paper, leg cross and scratch head, are just partly 
consistent with our expectation. For example, leg cross is a 
cold poses, but only 47.43% of the 369 subjects thought it is 
a cold poses, and 43.9% of the 369 subjects thought it is 
neither cold poses nor hot poses. There is similar results for 
scratch head. Thereby, some researcher maybe argue that 
why we still design the recognition algorithm for ‘leg cross’ 
and ‘scratch head’? The reasons are as follows (1) it seems 
that there are description ambiguous for poses, leg cross and 
scratch head, in our questionnaire. So that the two poses 
were misunderstood by some subjects. Thereby, we still 
think that people will cross and stick their legs to warm 
when they feel cold. On the other hand, people will scratch 
side of head or top of head when they feel hot. (2) Even the 
two poses are not typical poses of thermal comfort, we 
would like to provide a kind of recognition method. So  that 
it can be used in practical application if it is necessary.  

6. Conclusion  

The aim of this paper is to study a kind of non-invasive 
perception method of thermal comfort from macro-poses 
perspective. Based on Fanger’s theory of thermal comfort, 
the subjective questionnaire was explored and the NIMAP 
algorithm was presented. The conclusion can be 
summarized as follows.  

(1) The 12 macro-poses of thermal comfort defined in 
this paper can be used for descripting human thermal 
sensation.  

(2) The NIMAP algorithm presented in this paper is 
useful to recognize the 12 macro-poses and the 
human sensation level can be obtained.  

(3) More abundant coordinate information of human 
body helps to perceive thermal poses accurately.  

It should be noted that deep information of human body 
will be useful to perceive the human comfort sensation. It 
will be our work in next step.   
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