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Rooftop solar incentives remain effective for low- and moderate-income adoption 

Eric O’Shaughnessy, Lawrence Berkeley National Laboratory 

 

Abstract 

Financial incentives for rooftop solar photovoltaic (PV) adoption have declined in the 

United States over time by policy design. Incentive phase-down can efficiently promote 

early adoption and avoid ineffective payments to late adopters. However, incentive 

phase-down may exclude low- and moderate-income (LMI) households from realizing 

the same financial benefits from PV adoption as high-income early adopters. Here, data 

from two state-level LMI PV incentive programs are analyzed to test whether incentives 

still drive PV adoption among LMI households. As a first order approximation, the 

analysis suggests that incentives drove adoption that would not otherwise have 

happened in about 80% of cases. To the extent that policymakers prioritize PV adoption 

equity as part of the emerging energy justice policy agenda, the results suggest that 

ongoing incentive support for LMI adoption may be merited. 
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1. Introduction 

 

Most U.S. states have directly incentivized rooftop PV adoption through rebates, 

ongoing production-based incentives, and net metering (NC CETC 2018). These 

incentives played an instrumental role in driving early PV adoption (Kwan 2012, 

Sarzynski, Larrieu et al. 2012, Hughes and Podolefsky 2015, Crago and 

Chernyakhovskiy 2017). Rebates and production-based incentives have generally 

phased down or out by policy design (Nemet 2019). Incentive “phase-down” design is 

theoretically efficient (Alizamir, de Véricourt et al. 2016, Ding, Zhou et al. 2020). Phase-

down ensures that larger incentives are available when technology prices are high. 

Large initial incentives can reduce the risks associated with adopting new, expensive, 

and relatively unproven technologies, thus fostering early adoption. Early adoption, in 

turn, can support scaling and learning-based technology cost reductions. As technology 

costs and prices decline, phase-down ensures that incentives also decline to avoid 

inefficient payments to free riders, i.e., individuals who would have adopted PV even 

without incentives. Further, phase-down can prevent individuals from inefficiently 

delaying their own adoption to wait for higher expected net benefits in the future.  

 

Incentive phase-down poses equity and energy justice problems due to the inequitable 

adoption of PV. Relatively high-income households have been significantly more likely 



 3 

to adopt PV than low- and moderate-income (LMI) households (Barbose, Forrester et al. 

2021). As a result, state-funded incentives have predominantly benefited high-income 

early adopters (Borenstein 2017). Like most emerging technologies, LMI households 

have and will continue to become more likely to adopt PV as prices decline 

(O’Shaughnessy 2021). LMI households could therefore increasingly benefit from these 

incentives, particularly given evidence that LMI households face similar motivations to 

adopt PV as high-income households (Wolske 2020). However, these incentives are 

phasing down or out just as PV prices have brought PV adoption within financial reach 

for LMI households.  

 

At least 46 state and local programs have emerged in the United States to support LMI 

PV adoption (Paulos, Forrester et al. 2021). A common approach in these programs is to 

provide means-tested financial incentives for income-qualifying households. In some 

cases, LMI incentives have persisted even as other incentives have phased down. For 

instance, California set aside 10% of funds for LMI incentives under the state’s 

California Solar Initiative (Navigant 2015). While other incentives have phased out, LMI 

households remain eligible for incentives under California’s set-aside for LMI 

customers. However, it is important to recognize that despite the recent proliferation of 

LMI PV incentive programs, LMI incentive programs are much smaller than state 

programs for broader PV adoption. Only about 1% of rooftop PV systems installed to 
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date have been supported by means-tested incentives (O’Shaughnessy, Barbose et al. 

2021). 

 

LMI incentives could theoretically address some of the equity challenges posed by 

incentive phase-down. Beyond questions of equity, LMI incentives may still be a 

necessary component of nascent LMI rooftop PV markets. That is, whereas incentives 

without income eligibility requirements may simply subsidize PV adoption that would 

have occurred otherwise, means-tested incentives may still drive PV adoption that 

would not have occurred without the incentive support. However, research on the 

impacts of these programs is scarce. Several LMI incentive programs have implemented 

program evaluations, however these evaluations generally only document program 

effort (e.g., number of incentives distributed) without rigorously estimating program 

impacts (Paulos, Forrester et al. 2021). These simple evaluations do not provide insights 

into the degree to which LMI incentives drive LMI PV adoption.   

 

This study fills this research gap on the role of means-tested incentives in LMI rooftop 

PV markets. The study builds on the available literature, summarized in Section 2, in 

two ways. First, the effects of specific programs are analyzed using case studies based in 

California and Connecticut. In doing so, the magnitude of program impacts can be 

placed in the context of program size to assess the degree to which these incentives 
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drive new adoption. The analysis suggests that most distributed LMI incentives in these 

case studies drove adoptions that would not have otherwise occurred, providing 

evidence that incentives remain a key factor in supporting LMI adoption. Second, I 

explore the hypothesis that LMI incentives generate spillover impacts by increasing PV 

adoption among LMI households that do not receive incentives themselves.  

  

2. Background 

 

In the early years of the U.S. rooftop PV market (~2000-2010), relatively high-cost PV 

was disproportionately adopted by high-income households willing to buy innovative 

green products at a premium (Wolske, Stern et al. 2017). PV adoption has become more 

equitable over time but remains inequitable at the current stage of diffusion. In 2019, 

only about 21% of PV adopters earned less than 80% of their area’s median income 

(Barbose, Forrester et al. 2021), a threshold commonly used to define LMI households in 

LMI programs. O’Shaughnessy et al. (2021) estimate that a household earning more 

than $200,000/year was about 4 times more likely to adopt PV than a household earning 

less than $50,000/year in 2018. 

 

A direct consequence of inequitable PV adoption is that a majority of the financial 

benefits of PV adoption—including state-funded incentives—have flowed to high-
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income households (Borenstein 2017). Incentive phase-down therefore generally implies 

that LMI households will be shut out from many of the financial benefits realized by 

high-income early adopters (Baker 2021). Beyond this historic inequity, persistent PV 

adoption inequity poses at least three potential policy issues. First, inequitable adoption 

represents a missed opportunity to use rooftop PV deployment as a pathway to 

alleviate LMI energy burdens, that is, the disproportionately high shares of income that 

LMI household dedicate to energy expenses (Bednar and Reames 2020). Second, 

inequitable PV adoption could—and arguably already has—undermine public opinion 

of rooftop PV and drive regulatory reforms that ultimately stymy future PV 

deployment (Welton and Eisen 2019). Third, nearly half of PV-viable rooftop space in 

the United States is located on LMI buildings (Sigrin and Mooney 2018). Inequitable PV 

adoption could therefore ultimately reduce or at least delay the realization of the clean 

energy benefits of rooftop PV. 

 

By the early 2010s, several states began to address inequitable PV adoption through a 

variety of policy measures. The most common approach was to set aside a portion of 

state incentives for income-qualifying households. Paulos et al. (2021) identify 46 

programs that explicitly support LMI PV adoption. O’Shaughnessy et al. (2021) show 

that these LMI incentive programs can increase PV adoption equity by increasing LMI 

adoption rates. Further, the authors posited that LMI incentives could have beneficial 
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spillover impacts by increasing LMI adoption even among households that do not 

receive incentives. 

 

The potential for LMI incentives to spill over into broader adoption has strong support 

in the social influence literature. That literature shows that households are more likely 

to adopt PV when their neighbors have done so (Wolske, Gillingham et al. 2020). These 

so-called peer effects imply that PV installations have spillover impacts by increasing 

the likelihood of future adoptions in the area. In the context of LMI incentives, an 

incentive-supported system installed in a low-income area could catalyze peer effects 

that cause other LMI households to adopt PV.  

 

This study builds on the findings in O’Shaughnessy et al. (2021) in two ways. First, 

while that study explored LMI incentives from three programs in a single national 

sample, I analyze two specific case studies and contextualize the results within the sizes 

of those specific programs. Second, for the first time to the author’s knowledge, I 

directly test the spillover hypothesis by exploring changes in adoption patterns in areas 

that receive LMI incentives among households that did not receive the incentives. 

 

3. Data and Methods 
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This study is framed around two research questions: 

1. Do LMI incentives continue to drive new adoption among LMI households? 

2. Do LMI incentives generate spillover impacts by increasing LMI adoption in 

under-served areas among households that do not receive incentives? 

 

The primary data source is the publicly-available Tracking the Sun (TTS) data set 

published by the Lawrence Berkeley National Laboratory (Barbose, Darghouth et al. 

2020). TTS comprises system-level data collected from various PV programs covering 

more than 70% of the U.S. PV market, making it the most comprehensive U.S. rooftop 

PV data set. A public version of the data set is available for download from 

https://emp.lbl.gov/tracking-the-sun. The TTS data set was augmented with modeled 

household-level income estimates from Experian. The raw data used for inputs to this 

study comprise 1,269,783 residential PV systems installed from 2010 to 2019 in 23 states 

and Washington, DC. The TTS data include identifiers for systems that received LMI 

incentives. Two of the programs have sufficiently large coverage in the data for 

evaluation purposes: the California Single-Family Affordable Solar Homes program; 

and the Connecticut Solar for All program (Table 1). 

 
Table 1. Case Study Descriptions 

State Program Description Number of Incentives 
Represented in Data 

California The California Single-Family Affordable Solar 
Homes program provides up-front financial 

8,305 

https://emp.lbl.gov/tracking-the-sun
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incentives for income-qualifying households. 
The current incentive level is $3/W, enough to 
offset the majority of system and installation 
costs. 

Connecticut The Connecticut Green Bank offers LMI 
incentives for third-party owned systems. 
Income-qualifying households can sign 
subsidized 20-year leases for PV systems. 

1,375 

 
This study is an ex-post program evaluation. As a result, this analysis must rely on 

econometric methods designed to control for potentially confounding factors. See 

Abadie and Cattaneo (2018) for a review of program evaluation methods, which include 

conditioning on observed variables, differences-in-differences models, instrumental 

variables, and regression discontinuity design. The primary objective is to isolate 

incentive-supported adoption that would not have occurred in the absence of the 

programs. For the purposes of this study, model design was based on two constraints. 

First, the LMI incentive programs were implemented in a staggered fashion. That is, 

LMI incentives were gradually distributed over time at different rates in different areas. 

Second, while LMI incentive program eligibility is discontinuous at the income 

thresholds, that discontinuity cannot be exploited using modeled household-level 

incomes. While modeled household-level data are valuable (Tidemann, Engerer et al. 

2019), all modeled data include some modeling error, and that modeling error in this 

case obviates the use of a regression discontinuity design. 
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The impacts of LMI incentives on LMI PV adoption rates are analyzed using a 

differences-in-differences (DiD) model. To account for the staggered implementation of 

the programs, I use the staggered differences-in-differences model described in 

Callaway and Sant’Anna (2020). That model, known specifically as a group-time model, 

measures the impacts of some intervention on groups of observations that began the 

intervention at the same time. In the context of this study, the group dimension is 

defined at the zip code level, while the time dimension is defined by quarters. Each 

“group” is a cohort of zip codes that began receiving LMI incentives in the same 

quarter. For instance, suppose LMI incentives were first distributed in the first quarter 

(Q1) of 2018 in zip codes W and X and in Q2/2018 in zip codes Y and Z. The model 

treats W and X as one group distinct from zip code Y and Z. The group-time model was 

implemented in the following form: 

 

 𝑟𝑟𝑔𝑔,𝑡𝑡 = 𝜎𝜎𝑔𝑔,𝑡𝑡 +  𝜏𝜏𝑔𝑔,𝑡𝑡𝐺𝐺𝑔𝑔 +  𝜌𝜌𝑔𝑔,𝑡𝑡𝑇𝑇𝑡𝑡 + 𝛽𝛽𝑔𝑔,𝑡𝑡𝐺𝐺𝑔𝑔𝑇𝑇𝑡𝑡 +  𝛾𝛾𝛾𝛾 +  𝜀𝜀𝑔𝑔,𝑡𝑡 (1) 

 

Where 𝑟𝑟𝑔𝑔,𝑡𝑡 is the LMI adoption rate in group 𝑔𝑔 in quarter 𝑡𝑡, Gg is an indicator variable 

for the group of zip codes that first began receiving incentives in quarter 𝑔𝑔, 𝑇𝑇𝑡𝑡 is an 

indicator variable for quarter 𝑡𝑡, 𝐺𝐺𝑔𝑔𝑇𝑇𝑡𝑡 is an interaction of the two terms, and 𝛾𝛾 is a vector 

of controls for median income, number of households in each zip code, the non-LMI 

adoptions rate, and the percentage of rooftop space that could viably host PV (see 



 11 

definitions in Table 2). Consistent with income eligibility criteria in many federal and 

state programs, I define LMI households as those earning less than 80% of their 

county’s median income. I used the DiD package in R to implement the group-time 

models (Callaway and Sant’Anna 2020). 

 
 

Table 2. Model Variable Definitions and Summary Statistics* 

Variable Description (Source[s]) California Case 
Study Mean (SD) 

Connecticut Case 
Study Mean (SD) 

LMI adoption rate 
(dependent variable) 

Estimated installs by 
households earning less than 
80% of the county median 
income per quarter per 1,000 
households (TTS/Census) 

0.51  
(1.3) 

0.37  
(0.76) 

Zip code median income Median household income 
(Census) 

48,998.12 
(14,776.56) 

43,820.34 
(16,614.85) 

LMI share of population Estimated percentage of 
households in zip code 
earning less than 80% of 
county median income 
(TTS/Census) 

0.55 
 (0.1) 

0.68  
(0.1) 

Zip code population Number of households in zip 
code (Census) 

10,943.78  
(6,684.91) 

7,925.12  
(4,883) 

Non-LMI adoption rate Estimated installs by 
households earning more 
than county median income 
per quarter per 1,000 
households (TTS/Census) 

1.15  
(2.23) 

1.02  
(3.76) 

PV-viable rooftop space Percentage of rooftop space 
in zip code that could viably 
host PV (Google Project 
Sunroof) 

85.69  
(8.65) 

83.61  
(8.95) 

* Case study summary statistics are based on R10 sample 
 
The group-time model measures heterogenous DiD effects across groups of zip codes 

and across quarters. Because the two programs use household income eligibility criteria 
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rather than location-based criteria there are no clearly defined treatment groups in 

either program. To increase the robustness of the analysis, I explore three thresholds to 

identify treatment groups: 

• R0 sample: Treatment group includes all zip codes where at least one adopter 

received an LMI incentive 

• R1 sample: Treatment group includes all zip codes where at least 1% of adopters 

received an LMI incentive during the study period 

• R10 sample: Treatment group includes all zip codes where at least 10% of 

adopters received an LMI incentive during the study period. 

 

The different sample definitions entail tradeoffs between sample size and the extent to 

which LMI incentives were distributed (Table 3). The R0 and R1 samples are 

considerably larger in both cases because many zip codes receive a small number of 

LMI incentives. However, less than 10% of PV adopters in those samples received 

incentives after incentive distribution began. In contrast, around 19% and 28% of 

adopters received incentives in the R10 samples in California and Connecticut, 

respectively, though the small sample sizes compromise statistical power. Given that 

the R10 sample may provide a more accurate reflection of program impacts, I generally 

focus on the R10 samples in the Results section. 
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Table 3. Treatment Sample Summary Statistics 

 California Connecticut 
 Treatment Zip 

Codes 
% Receiving 
Incentives* 

Treatment Zip 
Codes 

% Receiving 
Incentives* 

R0 sample 523 1.8% 115 8.7% 
R1 sample 253 4.8% 95 9.4% 
R10 sample 38 18.5% 16 28% 

* Based on LMI incentive shares in quarters after incentives were first distributed in each zip code 
 
The pool of potential controls includes all remaining zip codes. For each case study, I 

identified control groups comprising equivalent numbers of zip codes using propensity 

score matching. The propensity score matching was implemented using the MatchIt 

package in R (Ho, Imai et al. 2011) using the following formula: 

 

 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1%𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛼𝛼2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼3𝑖𝑖𝑝𝑝 + 𝛼𝛼4𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟 + 𝜖𝜖 (2) 

 

Where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is a dummy variable for zip codes that received LMI incentives, %𝐶𝐶𝐶𝐶𝐶𝐶 is 

the percentage of the population earning less than the respective county median 

income, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the zip code’s median household income, 𝑖𝑖𝑝𝑝 is the zip code’s per-

capita PV penetration, and 𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟 is the percentage of rooftop space in the zip code that is 

viable for hosting PV (based on data from Google Project Sunroof). Using the matched 

data, balanced panel data sets were generated for the 40 quarters from 2010 to 2019 for 

the R0, R1, and R10 samples in each case study. 
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The key identifying assumption in the group-time model, as in other DiD models, is 

that trends in the treatment and control groups would have been the same without the 

LMI incentives. Pre-trend testing is one method to increase confidence in the 

assumption of parallel trends, though pre-trend tests do not discard the untestable 

possibility of non-parallel post trends (Kahn-Lang and Lang 2019). In this case, I 

examine the 4 quarters prior to LMI incentive implementation in each of the case 

studies and split that period into two sub-periods: the 2 quarters immediately prior to 

program implementation, and the 2 quarters preceding that period. A DiD model was 

implemented between those sub-periods. If the trends are indeed parallel, one would 

expect an insignificant coefficient on the interaction term between the treatment group 

and the time period. Table 4 presents the results of the pre-trend tests for the three 

samples in each state. The interaction terms are insignificant in all cases except the R0 

sample for Connecticut. I therefore focus most of our discussion of the results on the 

R10 sample. 

 
Table 4. Pre-Trend Test Results 

 CA 
R0; R1; R10 

CT 
R0; R1; R10 

treatment 0.06*; 0.07*; 0.21 
(0.02; 0.03; 0.14) 

1.9*; 0.3; 0.58 
(0.07; 0.2; 1.56) 

quarter 0.008; 0.01; -0.004 
(0.005; 0.008; 0.03) 

0.008; 0.02*; 0.10 
(0.02; 0.01; 0.05) 

treatment x quarter -0.004; -0.007; -0.005 
(0.007; 0.01; 0.05) 

0.10*; -0.03; -0.04 
(0.03; 0.02; 0.07) 

N 2,092; 948; 152 460; 368; 56 
* p<0.05 
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4. Results 

 

The group-time model produces heterogenous estimates for program impacts for group 

at every time. Unlike conventional DiD models, there is no single metric upon which to 

evaluate program impacts. I therefore present results in terms of several metrics and 

visualization methods: 

• Aggregate treatment effects: The average of all group-time effects across every 

group and time over the study period. 

• Average first quarter effects: Every group in the treatment group began receiving 

LMI incentives in some quarter in the data. I refer to the first quarter in which a 

group began receiving incentives as simply the first quarter. Average first quarter 

group-time effects are presented across all groups. First quarter impacts are of 

particular interest in that LMI incentives may have strong initial impacts when 

incentives first “arrive” in a given area. 

• Average group-time effects: To visualize the heterogeneous group-time effects, I 

take the average estimated impacts across groups based on the number of 

quarters elapsed from the first quarter. For instance, if a group first began 

receiving incentives in Q1/2014, then Q1/2014 has an elapsed value of 0, Q2/2014 

has an elapsed value of 1, Q3/2014 has an elapsed value of 2, and so on. 
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Visualizing results in terms of elapsed quarters allows a comparison of the initial 

versus lagged impacts of incentives on LMI adoption rates. 

• % positive: Finally, results are presented for the percentage of groups for which 

the models estimated positive first quarter effects and positive group-time effects 

in subsequent quarters.  

 

I begin by exploring the first research question on whether incentives directly increase 

LMI adoption rates in Section 4.1. I then turn to the second research question on 

whether incentives generate spillover impacts in Section 4.2 

 

4.1 Direct impacts 

 

Table 5 presents metrics to summarize the results of the staggered DiD models in both 

case studies across the three treatment sample thresholds. The metrics in Table 5 are 

aggregated statistics of all the group-time effects. Figure 1 provides a visualization of 

the average group-time effects by elapsed quarters. Again, elapsed quarters refer to the 

number of quarters from when incentives were first distributed in each zip code. Figure 

1 illustrates how the average group-time effects spike in the first elapsed quarter, 

corresponding to zero on the x-axis. In each scenario and state, group-time effects 
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decline after the initial quarter then steadily grow over time through the remainder of 

the study period. 

 
Table 5. Staggered DiD Results 

 California Connecticut 
Metric R0 R1 R10 R0 R1 R10 

Aggregate treatment effect 0.33* 
(0.09) 

0.27* 
(0.09) 

0.32 
(0.52) 

0.28* 
(0.08) 

0.36* 
(0.10) 

0.47* 
(0.14) 

Average first quarter effect 0.12 
(0.07) 

0.29* 
(0.12) 

0.99* 
(0.46) 

0.30 
(0.18) 

0.42 
(0.30) 

0.55 
(0.29) 

% positive in first quarter 69% 67% 75% 63% 65% 88% 
% positive in subsequent 
quarters 

75% 68% 68% 68% 78% 76% 

N 41,840 18,960 3,040 9,200 7,360 1,280 
* p<0.05 

 
 

 
Figure 1. Average group-time effects by elapsed quarters 

 
Focusing first on the aggregate treatment effects, the models suggest that program 

impacts are on the order of 0.3 to 0.5 additional LMI installs per quarter per 1,000 

households. These results are generally robust though statistically insignificant in the 
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R10 sample of the California case study. Recall that the R10 threshold entails a 

significant reduction in sample size (see Table 3), reducing the statistical power of the 

R10 samples, but may more accurately describe program impacts by identifying zip 

codes where more adopters received incentives. Focusing on the R10 results, based on 

the average zip code-level populations of LMI households in each case study, the effects 

translate to roughly an additional 1.9 and 2.4 LMI installs per zip code per quarter in 

California and Connecticut, respectively. Extrapolating over the whole R10 sample and 

study period, the aggregate treatment effects suggest that the incentives drove about 

2,300 and 490 additional LMI adoptions in California and Connecticut, respectively. 

These estimates compare to totals of 2,544 and 623 LMI incentives distributed in the R10 

California and Connecticut treatment groups. As a first order approximation, the model 

therefore suggests that around 80% of LMI incentive-supported adoptions were 

additional to any LMI adoption that would have occurred in these case studies. 

 

Moving to the first-quarter effects, the model suggests that initial program impacts 

range from 0.1 to 1 additional LMI adoption per quarter per 1,000 households. The first-

quarter effects are generally larger than the aggregate treatment effects, suggesting that 

program impacts are strong initially but diminish over time, as illustrated by the first-

quarter spikes in average group-time effects in Figure 1. Again, the results are generally 

robust, though the first-quarter effects in the Connecticut case study are only weakly 
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significant. Further, the model suggests that first-quarter effects were positive in most 

zip codes in both case studies. That is, though LMI incentives have heterogeneous 

impacts, the incentives increase LMI adoption in most zip codes where incentives are 

received. The R10 samples yield the highest values for the % positive metric given that 

this sample represents zip codes that received greater shares of incentives. Based on the 

R10 samples, LMI incentives increased LMI adoption rates in 75% and 88% of zip codes 

in California and Connecticut, respectively.  

 

Comparing the results across the case studies reveals strikingly different temporal 

patterns. In California, the model suggests that incentives sharply increase LMI 

adoption in initial quarters but that these effects decline in intensity over time. In 

contrast, in Connecticut, the model suggests weaker initial impacts and stronger lagged 

impacts that occur several quarters after incentives were first distributed. These distinct 

temporal patterns in program impacts represent similarly distinct underlying patterns 

in program implementation. In California, incentives have been gradually distributed 

across time and space (Figure 2). In contrast, incentives in Connecticut appear to have 

been distributed in waves, with most incentives being distributed a full year after 

incentives were first distributed in any given zip code. Put another way, Connecticut 

issued incentives in a more staggered fashion. These temporal patterns in incentive 

distribution help explain the distinct results in the two programs.  
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Figure 2. Incentive distribution patterns. This figure shows the percentage of all incentives distributed in 

each case study by elapsed quarters. 

 
4.2 Spillover impacts 

 

The results from Section 4.1 indicate that LMI incentives drive LMI adoption that would 

not have otherwise occurred. The social influence literature suggests that these 

additional adoptions should affect the adoption decisions of the neighbors and peers of 

those LMI adopters. It follows that the effects of LMI incentives should spill over into 

additional socially-influenced adoptions. This spillover hypothesis has a strong 

theoretical basis founded in a robust literature on the role of social influence in PV 

adoption (Wolske, Gillingham et al. 2020). Beyond social influence, LMI incentives 

could generate spillovers by changing installer marketing patterns (O’Shaughnessy, 
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Barbose et al. 2021). By jumpstarting dormant LMI markets, LMI incentives could 

convince installers to begin marketing in previously under-served areas (Baker 2021), 

though this hypothesis has yet to be rigorously tested. 

 

Detecting and measuring these spillover impacts is a methodological challenge 

(Angelucci and Di Maro 2015). Further, while there are strong prior reasons to expect 

spillover effects to exist, there are also strong priors to expect these effects to be small. 

Bollinger and Gillingham (2012), for instance, estimate that a PV installation in a typical 

zip code increases the probability of an additional installation in that zip code by about 

0.8 percentage points. Based on the aggregate treatment effects, Bollinger and 

Gillingham’s estimate suggests that the case study incentive programs increased the 

probability of adoption by around 1.4 percentage points in California and about 1.9 

points in Connecticut. Based on the adoption rates in the samples, this translates to an 

expected impact of about 0.01 additional LMI installs per quarter per 1,000 households 

in both case studies, based on the R10 sample. Statistical power tests suggest that 

sample sizes of at least 30,000 observations would be required to detect such an effect. 

 

Bearing in mind the methodological challenges, I attempt to analyze spillover impacts 

by repeating the staggered DiD analysis while excluding LMI incentive recipients. That 

is, I simply drop records for incentive-supported systems and otherwise repeat the 
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process described in Section 3. The rationale is that spillover effects would be detected 

as changes in adoption patterns among LMI households that did not receive incentives 

themselves.  

 

Table 6 presents the results of the staggered DiD models while excluding incentive 

recipients. The aggregate treatment effects are consistently positive across the models, 

consistent with the spillover hypothesis. However, the results are only statistically 

significant at p<0.05 in the R0 sample in California and the R0 and R1 samples in 

Connecticut. The lack of statistical significance is due, in part, to low statistical power 

stemming from the small sample sizes. Future research could further explore the 

spillover hypothesis with a more statistically powerful data sample or study design. 

 
Table 6. Staggered DiD Results Excluding Incentive Recipients 

 California Connecticut 
Metric R0 R1 R10 R0 R1 R10 

Aggregate treatment effect 0.28* 
(0.09) 

0.16 
(0.10) 

0.05 
(0.37) 

0.17* 
(0.08) 

0.23* 
(0.08) 

0.12 
(0.12) 

Average first quarter effect -0.04 
(0.06) 

-0.02 
(0.08) 

0.21 
(0.37) 

0.04 
(0.18) 

0.03 
(0.21) 

0.03 
(0.07) 

% positive in first quarter 43% 37% 42% 56% 47% 50% 
% positive in subsequent 
quarters 

73% 62% 56% 59% 74% 55% 

N 41,840 18,960 3,040 9,200 7,360 1,280 
* p<0.05 

 
The R0 and R1 sample results are more difficult to interpret and are provided primarily 

as robustness checks. Recall that both sample treatment groups include large numbers 

of zip codes where relatively few households received LMI incentives, particularly in 
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the R0 sample (see Table 3). The large estimated impacts in these samples are due 

largely to correlations between the treatment groups and the marketing patterns of a 

few large-scale installers, particularly in California. Large-scale installers install systems 

on LMI households more frequently than other installers (Barbose, Forrester et al. 2021), 

in part because large-scale installers are more likely to offer leasing models to LMI 

households (O’Shaughnessy, Barbose et al. 2021). As a result, the marketing patterns of 

large-scale installers can generate significant swings in LMI adoption rates as these 

installers move in and out of specific markets. For instance, from Q3 to Q4/2019 the 

number of LMI installs in one zip code in the R0 California treatment group jumped 

from 1 to 334, entirely driven by the entrance of a single large-scale installer into that 

zip code. When excluding the 10 largest-volume installers from the sample, the 

estimated impact in the R0 samples falls from 0.28 to 0.12 in California. The direct 

impact group-time results for the California R0 sample are similarly sensitive to 

installer exclusions. However, importantly, both the direct and indirect group-time 

results for the R10 samples are robust to the installer exclusions: the aggregate 

treatment effects are nearly identical, with estimates of 0.31 (SE=0.48) and 0.49 (SE=0.18) 

in the California and Connecticut R10 samples, respectively. 

 

The temporal patterns of the non-recipient group-time effects likewise support the 

spillover hypothesis (Figure 3). Unlike the direct impacts test, group-time effects for 
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non-recipients exhibit only a small bump in the first quarter in California and exhibit no 

trend whatsoever in Connecticut. In both cases, the non-recipient group-time effects 

hover around zero for several elapsed quarters and only become consistently positive 1 

or 2 years after incentives are first distributed. These patterns are consistent with the 

spillover hypothesis. To the extent that spillovers occur, one would expect a significant 

lag between LMI incentive program implementation and spillover-driven adoption.  

 

 
Figure 3. Average group-time effects excluding LMI incentive recipients 

 
5. Conclusions and policy implications 

 

Rooftop PV financial incentives have declined in the United States over time, by policy 

design. Incentive phase-down is an efficient design, ensuring cost-effective investments 

in early adoption and preventing inefficient payments to later adopters who would 
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have adopted otherwise. However, the phase-down occurs just as PV prices bring 

adoption within financial reach for LMI households, which have been historically 

under-represented in the U.S. rooftop PV market. As a result, incentive phase-down 

may inequitably exclude LMI households from realizing the same financial benefits 

from PV adoption as high-income early adopters. A few dozen state and local programs 

continue to offer means-tested incentives to income-qualifying households, though 

these programs are small relative to the broader suite of programs that have supported 

rooftop PV adoption.  

 

Incentive phase-down design is based, in part, on the assumption that falling prices 

would obviate the role of such incentives. While this assumption may hold for 

“conventional” PV adopters—namely relatively high-income households—it does not 

necessarily hold for previously under-served populations such as LMI households. The 

results indicate that LMI incentives still drive LMI adoption. As a first order 

approximation, the analysis suggests that around 80% of LMI incentive-supported 

systems would not have been installed without incentive support. The estimate accords 

with qualitative insights from the California incentive program. In a 2015 survey of 

California incentive recipients, only 36% of recipients reported that they would have 

adopted if they had been required to contribute to the system’s cost (Navigant 2015). 
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Presumably, a smaller share of incentive recipients would have adopted if they have 

been required to pay the full system cost.  

 

This finding has significant policy implications, particularly given the growing 

prominence of energy justice on public policy agendas (Carley, Engle et al. 2021). The 

results suggest that means-tested incentives could be an effective tool for driving PV 

adoption equity. One alternative to the conventional phase-down design would be to 

tighten income eligibility restrictions over time. For instance, many existing programs 

base eligibility on criteria related to area median incomes. Income eligibility can be 

adjusted downward as increasingly smaller shares of area median income as PV prices 

decline. Income-based phase-down could have similar efficiency objectives as 

conventional phase-down design. For instance, the pace of adjustments in income 

criteria could be designed to prevent ineffective payments and to prevent inefficient 

delays in adoption (Alizamir, de Véricourt et al. 2016, Ding, Zhou et al. 2020). In this 

way, tightening income eligibility requirements can help more LMI households benefit 

from those incentives while also addressing concerns related to excessive free riding. 

 

Further, I find evidence that LMI incentive programs generate spillover impacts by 

increasing adoption among households that do not receive incentives. Though the 

effects are statistically insignificant—partly due to low statistical power—the spillover 
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hypothesis is strongly supported by a robust literature on the key role of social 

influence in solar adoption. The implication for policymakers is that the impacts of LMI 

incentives on LMI adoption may be under-appreciated. Further, incentive programs 

could potentially be designed to leverage these spillover effects, such as by targeting 

incentives in LMI areas rather than setting eligibility based on household income. 

 

This study adds to the body of evidence that LMI incentives and other interventions can 

increase PV adoption equity. Further research can explore specific program designs to 

determine which programs are more successful than others, and why. Future research 

can also evaluate LMI programs using a wider range of metrics, such as cost-

effectiveness and impacts beyond adoption, particularly program impacts on LMI 

household energy burden. Finally, further research is required to determine the extent 

to which LMI incentives and other LMI PV programs drive spillover adoption. This 

particular vein of proposed research is critical. Overlooking spillover impacts could 

result in under-valuation of LMI incentive or other LMI PV programs. Factoring in such 

spillovers could support broader adoption of LMI PV programs.  
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