Planning in a Non-Stationary Climate

Robert Lempert
RAND Corporation

Innovations in Electricity Modeling
Training for National Council on Electricity Policy
Session #4 – Planning for Climate Variability
November 1, 2021
Non-stationarity Changes the Nature of Climate Risk

- Past climate is no longer a good approximation for future climate
- Non-stationarity contributes to:

Uncertainty

IPCC AR6 Atlas: Total precipitation 2050 (% change)
28 CMIP6 models

Complexity

Individual risks product of hazard, exposure, and response
Overall risks can combine and cascade

High agreement
Low agreement

https://interactive-atlas.ipcc.ch

Simpson et. al. One Earth (2021)
Climate-Related Decisions Pose Both Analytic and Organizational Challenges

Public planning should be:
• Objective
• Subject to clear rules and procedures
• Accountable to public

Climate-related decisions involve:
• Incomplete information from new, fast-moving, and sometimes irreducibly uncertain science
• Many different interests and values
• Long-time scales
• Near certainty of surprise

Responses include:
• Update standards and codes
• Use multiple, rather than single forecasts
• Employ adaptive, rather than static strategies and plans

How to make plans more robust and adaptable while preserving public accountability?
Risk management

Address These Challenges with an Expanded Understanding of Risk

Risk = probability \times \text{consequence}

Risk is effect of uncertainty on objectives

Iterative risk management

Broad view of risk
Outline

► Challenge of non-stationarity

► Decision Making Under Deep Uncertainty (DMDU)

► Example application

► Implications
Traditional Risk Management Works Well When Uncertainty is Limited

“Predict then Act”

What will future conditions be? → What is the best near-term decision? → How sensitive is the decision to the conditions?

Predict

Act

These are sometimes called “optimization methods”
“Predict then Act” Can Break Down When Uncertainties Are Deep

Under conditions of deep uncertainty:
- Uncertainties are often underestimated
- Competing analyses can contribute to gridlock
- Misplaced concreteness can blind decision makers to surprise

Well-characterized uncertainty:
- Future regulatory requirements
- Future technology capabilities
- Today’s return period for extreme events

Deep uncertainty occurs when the parties to a decision do not know or do not agree on the likelihood of alternative futures or how actions are related to consequences
To Inform Decisions Under Deep Uncertainty, Invert the Order of Traditional Analysis

“Predict then Act”
- What will future conditions be?
- What is the best near-term decision?
- How sensitive is the decision to the conditions?

“Agree on Decisions”
- Propose strategy & decision context
- Use analytics to stress test strategy
- Identify new & revised strategies that are more robust

Such approaches are called Decision Making Under Deep Uncertainty (DMDU)

Consider an Example Application

City of Los Angeles developed an extensive plan of infrastructure investments and policies to meet federal water quality standards on the Los Angeles River*

Question: Can this expensive plan still meet water quality goals in a changing climate and, if not, what can be done about it?

* Study focuses on Tujunga sub-watershed: 225 square miles (165 sq. miles Los Angeles National Forest + 60 sq. miles urbanized San Fernando Valley floor)

Let’s Use One DMDU Approach — Robust Decision Making (RDM) — to Answer this Question

Checklist of steps in RDM process

- Frame the decision challenge, including:
 - What are we trying to achieve?
 - What actions might we take to achieve our goals?
 - What uncertainties affect achieving our goals?

- Stress test proposed strategies over a wide range of futures
 - Identify most important factors affecting whether we meet or miss our goals

- Identify new or revised strategies that meet our goals over a wider range of relevant futures
RDM Begins with Decision Framing

Decision makers and stakeholders deliberate over key factors in analysis

The Plan

Optimal distribution of BMPs (best management practices) assuming we know future climate!

GOALS
- Meet water quality requirements
- Do so in a cost-effective way

UNCERTAINTIES
- Climate change
- Land use
Stress Test LA’s Water Quality Plans

Checklist of steps in RDM process

- Frame the decision challenge, including:
 - What are we trying to achieve?
 - What actions might we take to achieve our goals?
 - What uncertainties affect achieving our goals?

- Stress test proposed strategies over a wide range of futures
 - Identify most important factors affecting whether we meet or miss our goals

- Identify new or revised strategies that meet our goals over a wider range of relevant futures
Generate Cases that Stress Test Strategy in Each of Many Plausible Futures

Run model for each of hundreds to millions of cases
Each case tests one strategy in one plausible future

Gather all the cases in a large database

Simulation model relating actions to consequences

Strategy & Context Stress Test New & Revised Strategies
Study stress tested Tujunga water quality implementation plan over 47 climate times 6 land use = 282 futures

Computer algorithms and visualization help separate all the model runs into two sets of futures:

- In one set LA's water quality plan generally meets its regulatory goal
- In the second set LA's water quality plan generally fails to meet its regulatory goal

The algorithms and visualizations also identify the combination of uncertainties most important in distinguishing these two sets of futures.
Summarize Stress Test Runs with Policy-Relevant Scenarios

These two scenarios provide policy-relevant information

Computer algorithms and visualization help separate all the model runs into two sets of futures:

- In one set LA’s water quality plan generally meets its regulatory goal
- In the second set LA’s water quality plan generally fails to meet its regulatory goal

The algorithms and visualizations also identify the combination of uncertainties most important in distinguishing these two sets of futures

Climate change puts LA at risk of missing water quality goals, but successfully implementing storm water master plan eliminates this climate risk
Should Decision Makers Worry?

Compare Available Science to The “Plan Misses Goal” Scenario

Bottom line:
- We looked at two ways to estimate the probability of extreme precipitation events.
- Both indicate Los Angeles’ water quality implementation plan may fail to meet regulatory standards if the climate changes (or has changed).

Evidence from best study of local climate (Berg et al 2015)*

Range of IPCC projections

Plan Meets Goal Scenario

Plan Misses Goal Scenario

Plan Misses Goal Scenario

X

Planning case

Extremely high

Extremely low

Existing

Newly mandated land use

Strategy & Context

Stress Test

New & Revised Strategies

Extreme rainfall intensity
Identify More Robust Strategies

Checklist of steps in RDM process

☐ Frame the decision challenge, including:
 • What are we trying to achieve?
 • What actions might we take to achieve our goals?
 • What uncertainties affect achieving our goals?

☐ Stress test proposed strategies over a wide range of futures
 • Identify most important factors affecting whether we meet or miss our goals

☐ Identify new or revised strategies that meet our goals over a wider range of relevant futures
Stress Test Results Suggest Using a Robust, Adaptive Water Quality Implementation Plan

Consider an adaptive plan consisting of

- Near-term actions,
- Signposts to monitor, and
- Contingent actions if signposts are observed

* Used optimization to identify augmented plan

Vulnerability analysis informs signposts

Plan Misses Goals Scenario

Plan Meets Goals Scenario

Begin with Current Plan

2016

2035

Augment current plan*

Signposts -- Switch to new plan if:
- City fails to achieve mandated land use and
- Climate science cannot guarantee storms stay small

Continue current plan

Climate

Land use

* Strategy & Context
* Stress Test
* New & Revised Strategies
Should Decision Makers Adopt This Adaptive Plan?

Compare tradeoffs for three alternatives over multiple objectives and multiple scenarios

- **Start with one scenario**

<table>
<thead>
<tr>
<th>Plan Meets Goals Scenario</th>
<th>Water quality</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Highest</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Slightly higher</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Lowest</td>
</tr>
</tbody>
</table>

Begin with Augmented Plan

Begin with Current Plan, prepare to adjust

Current Plan
Help Decisionmakers to Compare Tradeoffs Among Alternative Strategies

The strategies perform very differently across the two scenarios:

<table>
<thead>
<tr>
<th>Plan Meets Goals Scenario</th>
<th>Plan Misses Goals Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water quality</td>
<td>Cost</td>
</tr>
<tr>
<td>Yes</td>
<td>Highest</td>
</tr>
<tr>
<td>Yes</td>
<td>Slightly higher</td>
</tr>
<tr>
<td>Yes</td>
<td>Lowest</td>
</tr>
</tbody>
</table>

The adaptive “Begin with current plan, but prepare to adjust” plan, represents a “low regret” strategy.

In general, a robust strategy is one that:

- Performs well over a wide range of plausible futures,
- Keeps options open, or
- Trades some optimal performance for less sensitivity to broken assumptions.
DMDU Can Help Ensure Plans Meet Goals, Even When Uncertainties Are Deep

Basic DMDU principles

1. Consider multiple futures, not one single future, in your planning. Choose these futures to stress test your organization’s plans
2. Seek robust plans that perform well over many futures, not optimal plans designed for a single, best-estimate future
3. Make your plans flexible and adaptive, which often makes them more robust

DMDU can generate robust and adaptive plans that:
- Perform well over a wide range of plausible climate futures
- Meet other goals
- Provide accountability to the public
Questions states can ask (in a non-stationary climate)

- To what extent are utilities currently planning for current and future change in the climate? To what extent are utilities planning for climate-related changes in their service areas and beyond? If so, how?

- How are utilities currently stress-testing resource plans? Are climate-related variables being used in stress tests? What additional climate stress test factors can be used?

- How can utilities take more of a flexible, adaptive planning approach, given climate uncertainty? What types of signposts can be used to flag when adaptations should be implemented?

- How can utilities, regulators, and stakeholders appropriately consider the results of stress tests and come to consensus on robust and flexible responses?
Resources for more information

► Society for Decision Making Under Deep Uncertainty: https://www.deepuncertainty.org
► IPCC Interactive atlas: https://interactive-atlas.ipcc.ch
► RAND:
 • https://www.rand.org/topics/robust-decision-making.html
 • https://www.rand.org/pardee.html

Robert Lempert
Principal research
RAND Corp
Lempert@rand.org
310-393-0411 (office)