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Introduction to Lawrence Berkeley National Laboratory

• Dedicated to solving the most pressing scientific problems facing humankind

– Basic science for a secure energy future

– Science of living systems to improve the environment and energy supply

– Understanding and control of matter and energy in the universe

– Translation to applied energy programs

• Build and safely operate world-class scientific facilities

• Train the next generation of scientists and engineers 

Managed by the University of California for 

the United States Department of Energy

13 — Nobel Prizes
13 — National Medal of Science 
recipients 
4,200 — Employees 
200 — Site acreage 
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Emerging Economies Have a Unique Leapfrogging Opportunity
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80% of the vehicles that will exist
by 2030-2035 are yet to be
purchased

EVs have much higher benefits
under congested driving
conditions
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Li-ion battery prices have dropped
by over 90% in the last 10 years

Data Sources: BNEF (2017), Kammen et al (2017), 
Tesla( 2017), Bolt (2017)



In China, electric bus manufacturing has already scaled with bus 
market almost transformed 
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• Total EV sales in China are ~600-
700,000/yr

• Subsidies (up to ~50%), sales 
targets, air quality regulations 
accelerated the EV bus adoption

• Recently, subsidies are down to 
~5-10% of the upfront bus cost; 
vehicles with range <150km 
don’t get any subsidy

• Electric bus costs have also 
fallen and only marginally higher 
than diesel buses
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Data Sources: Bloomberg (2018), IBER (2018), F&S 
(2018) and Other industry reports



EVs reduce carbon emissions – even in a coal heavy grid

• Since EVs are inherently more efficient than gasoline/diesel vehicles, greenhouse gas emissions 

reduce even in case of the current coal heavy grid

• Much deeper decarbonization of transportation is possible with more ambitious clean power targets 
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Results from India 
analysis

Local environmental benefits are 
not even counted here



Although Electric Bus Capital Cost is Marginally Higher than a Diesel Bus, 
its Total Cost of Ownership (cost per km) is much lower
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Policy has a big role to play for ensuring manufacturing scale and sustained 
cost reduction

• Accounting of the externalities (local air pollution and greenhouse gas 
emissions) is crucial

• Creating a demand for electric vehicles

o California’s Zero Emissions Vehicle (ZEV) policy

• Incentives and bulk procurement programs

o Fleet level electrification e.g. government vehicles or buses etc.

• Complementary programs

o E.g. demand response, smart charging etc.
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In Indonesia, EVs can add significant peak load onto the system

• Let’s do a simple math for 2030:
• Assume Indonesia has 150 cars per 1000 people by 

2030 (i.e. ~50 million cars in total)

• Assume the entire fleet is converted to electric

• Typical electric car efficiency = 0.15 kWh/km

• Distance traveled = 40 km/day (~12,000 km/yr)

• Total electricity use by EVs in 2030 = ~80 TWh/yr

• Projected PLN sales by 2030 = ~450 TWh/yr

• >20% increase in PLN’s sales and revenue !

• Fast charging infrastructure may change the 
grid dynamics locally and also in cities with 
smaller electricity loads
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Projected Indonesia Load Curve in 2030

Projected PLN peak 
load = ~75 GW 

Peak load added by 
EVs = ~20GW

Illustrative numbers only. DO NOT CITE.Illustrative numbers only. DO NOT CITE.



Fast charging infrastructure is crucial for aggressive EV adoption

• Slow charging may lead inefficient use of the EV assets

• Several fast charging standards / protocols exist
o CHAdeMO (Japan) – up to 70kW (CAN)
o CCS (Europe and US) – up to 90 kW (PLC)
o Tesla Supercharger (US) – 120 kW
o GB/T (China) - ~70-300 kW standard, ~900 kW (proposed along with CHAdeMO) (CAN)

• In China, fast chargers (~300kW) have been deployed in several cities
o @ 300 kW, battery can be charged within ~1 hour
o No significant impact on battery life or performance despite high ambient temperatures (40-42 deg C)

• LTO batteries may perform better with fast charging than NMC or LFP

• Legal and regulatory barriers in setting up third party chargers need to be addressed



Key Takeaways

• Emerging economies such as Indonesia have a unique opportunity to 
leapfrog to a cleaner and smarter mobility future 

• Policies can help EV manufacturing reach scale and lower costs

• EVs will likely increase the PLN revenue and can offer several services to the 
grid and help cost-effective integration of renewable energy

• Creation of the fast charging infrastructure is crucial – need to address 
certain technical, siting, and regulatory challenges
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Thank you

Dr. Nikit Abhyankar
NAbhyankar@lbl.gov

+1-650-644-7178
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Most EV manufacturers want to move from using LFP to NMC due to 
higher specific energy and stability
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