
 

 

 
 
 
 
 
 
 
 
 
 

Thermal Energy Storage for Electricity Peak-
demand Mitigation: A Solution in Developing 

and Developed World Alike 
 
 
Nicholas DeForest1, Gonçalo Mendes1,2, Michael Stadler1,3, 
Wei Feng1, Judy Lai1, and Chris Marnay1 
 

1 Lawrence Berkeley National Laboratory, University of California, Berkeley, One Cyclotron Road, Berkeley, CA 94720, USA 

2. Instituto Superior Técnico - MIT Portugal 

Av. Prof. Cavaco Silva, Campus IST TagusPark, Porto Salvo, CP 2744-016, Portugal 

3. Center for Energy and innovative Technologies, Austria 

 
 
 
Environmental Energy  
Technologies Division 
 
 
Presented at ECEEE 2013 Summer Study 3–8 June 2013, 
Belambra Les Criques, France 
 
http://microgrid.lbl.gov  
 
 
 
 
 
 
The Distributed Energy Resources Customer Adoption Model (DER-CAM) has 
been funded partly by the Office of Electricity Delivery and Energy Reliability, 
Distributed Energy Program of the U.S. Department of Energy under Contract 
No. DE-AC02-05CH11231. DER-CAM has been designed at Lawrence 
Berkeley National Laboratory (LBNL) and is owned by the U.S. Department of 
Energy. Gonçalo Mendes acknowledges the funding by Fundação para a 
Ciência e Tecnologia (FCT) PTDC/SENENR/108440/2008 and MIT Portugal 
Program. 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 

Judy
Typewritten Text

Judy
Typewritten Text
LBNL-6308E



 

 



 

   

 
Disclaimer 

 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither 
the United States Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by its trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof, or The Regents of 
the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof, or The Regents of the University of California. 
 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 



 

   

 



 

 1 

 
 

Thermal Energy Storage for Electricity Peak-demand 
Mitigation: A Solution in Developing and Developed 

World Alike 
 
Nicholas DeForest1 
Email: ndeforest@lbl.gov 
 
Gonçalo Mendes1,2 
Email: goncalo.p.mendes@ist.utl.pt 
 
Michael Stadler1,3 
Email: mstadler@lbl.gov 
 
Wei Feng1 
Email: weifeng@lbl.gov 
 
Judy Lai1 
Email: jlai@lbl.gov 
 
Chris Marnay1 
Email: ChrisMarnay@lbl.gov 
 
1. Lawrence Berkeley National Laboratory, University of California, Berkeley, 

One Cyclotron Road,  
Berkeley, CA 94720, USA 
 

2. Instituto Superior Técnico - MIT Portugal 
Av. Prof. Cavaco Silva, Campus IST TagusPark, 
Porto Salvo, CP 2744-016, Portugal 

 
3. Center for Energy and innovative Technologies, Austria 

Abstract 

In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity 
demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on 
already-congested grids. This common thread represents a large and growing threat to the reliable delivery of 
electricity around the world, requiring capital-intensive expansion of capacity and draining available investment 
resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies 
currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows 
a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and 
operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter 
consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of 
a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The 
optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally 
size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and 
consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine 
system cost feasibility, payback periods and customer savings under local utility tariffs.  

Introduction 

The growing threat of cooling demand 
In much of the world, energy consumption in buildings is rising quickly, representing over 30% of the total 
source energy consumption [IEA, 2011].  In developed economies, a substantial components of this consumption 
is air-conditioning, which dominates summer peak electricity consumption. Cooling loads represent a unique 
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threat to electricity reliability, given that they are met almost exclusively with electricity and cooling peaks 
within buildings tend to coincide with peak conditions on the grid. This threat also creates an opportunity for 
alternative cooling technologies to reduce cost and mitigate peak conditions. In the developing world, economic 
growth creates demand for new building construction along with the energy to cool it. This is particularly true in 
countries such as China, India and Brazil [WBCSD 2008], where steadily increasing utilization of air-
conditioning places additional strains on already-congested under development grids.  

As of 2009, in the 50 largest metropolitan areas of the world, 76% of the potential cooling energy demand comes 
from developing countries [Sivak 2009]. Given the largely immature market for cooling in these countries, 
cooling represents a significant source of future energy demand growth [IEA, 2011]. As per capita incomes in 
these developing countries increase, so too will the frequency of air conditioning [WBCSD 2008]. Although a 
mature market in most developed economies, air conditioning in buildings is still growing in most developing 
nations. In 2011, 55% of new air-conditioning units were sold in the Asia Pacific region. In both India and 
China, air-conditioning sales are growing 20% every year [Rosenthal and Lehren, 2012]. Between now and 
2030, over half of new building construction is expected to take place in China and India. In that time, 
commercial energy consumptions in these countries is expected to double [WBCSD 2008]. This trend could 
potentially create serious summer shortfalls in both India and China without commensurate investment in 
generation and distribution capacity. 

Alleviating the peak conditions created by cooling demand requires capital-intensive expansion of generation, 
transmission and distribution infrastructure that may only be utilized during the brief annual peaks. This 
inefficient allocation of resources draws capital away from alternative uses, which may be used to reduce costs, 
improve reliability or decarbonize the existing electricity grid. 
Thus, there is clearly a need to explore alternatives to technologies for meeting cooling demand applicable to 
both developed and developing countries. Thermal energy storage (TES) for cooling is a simple technology, but 
one that may be well positioned to address these issues in both contexts. TES has been used effectively to 
compliment thermal energy systems in a wide number of industrial and commercial applications [Dincer, Saito, 
2002]. There exist a number of different TES technologies, including chilled water, ice and other phase change 
material. This investigation considers chilled water systems exclusively. By charging off-peak and discharging 
on-peak, TES allows for the dynamic time shifting between cooling load supply and demand. The myriad 
benefits, both to customer and utility, of this time-shifting is the focus of this investigation 

The investigation presented in this paper consists of a simulation study of a large office building in cities of four 
distinct geographical contexts: Miami, Lisbon, Shanghai and Mumbai. The first two are intended to represent the 
developed world, while the latter two represent the developing world. The city of Shanghai is itself quite 
developed, however, it is representative, in terms of climate and electricity tariff, of a region where growth in 
demand is likely to be high. 

Drivers of TES feasibility 
A report by PG&E on TES strategies for commercial buildings has identified a number of feasibility criteria for 
the deployment of TES systems [PG&E 1997] which remain relevant today.  Of these criteria, the theoretical 
applicability of TES depends heavily on the two listed below. Reference cities have been selected such that they 
exhibit one or both of these conditions. 
• The maximum cooling load of the facility is significantly higher than the average load. 
• The electric utility rate structure includes high demand charges 

Climate 

 
Figure 1. Temperature duration curves for reference cities. 
The principle driver of cooling demand is intuitively climate, particularly summer high temperatures and 
humidity. Economic conditions such as income will often dictate how much of this thermal demand is actually 
met with air conditioning [Sailor 2003]. A large office building represents a setting where thermal demands are 
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likely to be met. In an office building, where non-thermal loads tend to peak during the middle of the day, high 
daytime temperatures will drive total electricity demand significantly above average loads. The four reference 
cities selected each exhibit a cooling season of sufficient duration and magnitude to merit the consideration of 
TES. Temperature duration curves, which indicate the typical hourly average temperature in descending order, 
are shown in Figure 1. Table 1 provides additional metrics to describe the cooling season. Of these cities, 
Mumbai clearly has the most substantial cooling period, with the highest typical maximum temperature and the 
most cooling degree days (CDD). CDD is a simple metric which accounts annually for the duration and intensity 
of external temperatures. Shanghai and Lisbon exhibit the next highest maximum temperatures, however their 
CDD totals are lower than that of Miami, indicating that while its maximum temperature may be lower, the 
cooling season in Miami is more prolonged. While the metric presented here describe only temperature 
differences, humidity control is also taken into account for building thermal loads. 

Table 1. Climate details for reference cities. Cooling degree days (CDD) reflect both the magnitude and 
duration of the cooling season. Values are determined from typical meteorological year (TMY3) data for each 
location. 

 
Tariff 
The costs associated with meeting the cooling demand with an electric chiller will be determined by the local 
electricity tariff. As previous DER-CAM investigations have shown, the tariff structure and in particular the 
rates imposed on power demands have a strong influence on the optimal behavior and configuration of DER 
installations [Stadler 2009, 2010]. Tariffs with high on-peak energy rates and on-peak demand charges create 
opportunities for economic savings from load shifting. Figure 2 shows the tariff structure for summer periods in 
each reference city. Each tariff has three basic components: an energy rate which may vary by time of use 
(TOU), incurred for each kWh consumed, TOU power rates, which are incurred on the highest power demand in 
each TOU period, and non-coincident demand charge (NCDC), which is incurred on the maximum monthly 
power demand, regardless of period. The impact of these particular tariff structures on the optimization results 
will be examined in subsequence sections. Tariff data has been collected from Florida Power and Light, Energias 
de Portugal, State Grid Shanghai and Brihan Mumbai Electric Supply & Transport. 

 
Figure 2. Summer weekday tariff profiles. Energy rates are incurred per kWh purchased in each period. Power 
rates are incurred for maximum power demand within that demand period each month. Non-coincident demand 
charge is applied to absolute monthly maximum regardless of which demand period it occurs in. Note: axis are 
scaled the same among figures for comparison. 

DER-CAM Optimization 
The Distributed Energy Resources Customer Adoption Model (DER-CAM) is an optimization tool built to 
inform decisions of distributed energy resources (DER) planning and operation. It is able to determine cost or 
carbon minimal solutions that satisfy end-use demands under local economic and climate conditions. DER-CAM 
has been developed over the past decade by researchers at Lawrence Berkeley National Laboratory and has 
already been applied to a number of diverse projects [Stadler et al., 2010, 2009]. The mixed integer linear 
program (MILP) is written in the text-based optimization language GAMS DER-CAM, however a web-based 
graphical user interface has been developed for DER-CAM and is freely available [Web-Opt, 2013]. DER-CAM 
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is technology neutral, meaning it selects the optimal combination DER technologies, as defined by the user, in 
order to minimize its objective. In most cases, DER-CAM selects from a diverse menu of technologies, however 
in this investigation, DER-CAM will be used exclusively to size the TES system. It may be that this 
investigation misses important synergies between different DER technologies (for instance solar thermal and 
absorption cooling) and fails to reach a true optimum. A more detailed DER-CAM analysis would be required to 
determine how other DER technologies may compliment or compete with TES. 

Methodology 

EnergyPlus simulation 
Simulations have been conducted using EnergyPlus 7.0 for a large commercial office building reference file 
created by the Commercial Building Initiative at U.S. Department of Energy. The 46,000 m2 office exhibits an 
approximately 1.1 MW peak electrical demand for non-thermal loads. Given the diverse international scope of 
this investigation, the building envelope performance characteristics have been varied to encompass the various 
national building efficiency standards. In reviewing these building standards, it was found that the developing 
world cities have quite rigorous prescriptive requirements, however very little data is available on standards 
enforcement. Consequently, two generic building envelopes have been constructed to capture the difference in 
performance between developed and developing world contexts. Details are presented in Table 2. While the 
medium efficiency building may underestimate the performance of many standard-compliant buildings in 
Shanghai and Mumbai, it illustrates the influence of building shell on TES adoption trends.  

Table 2. Building envelope performance levels 

 

Modeling TES in DER-CAM 
Hourly end-use loads from EnergyPlus are used to generate typical load profiles for weekdays, weekends and 
high demand, peak days for each month. These profiles are the basis on which DER-CAM optimizes the 
capacity of TES at each location, taking into account local conditions, including the electricity tariff and ambient 
temperature. The optimization results will also depend on the cost to install TES. To determine this cost, a 
review of TES projects constructed in the United States over the past 15 years has been conducted. While there 
are many such examples, few have readily available date on both the technical details, such as capacity and the 
capital cost of installation. A cost curve developed from sufficiently documented projects is given in Figure 3. 
Investment costs have been adjusted for inflation to 2013 values. From this analysis, it is determined that TES 
exhibits a variable cost of $31.80 (€24.46) per kWh capacity. Note this estimate is intended to reflect TES cost 
as part of new building construction, and neglects other factors such as system integration and available space, 
which may also constrain capacity. In addition to materials, investment costs include costs for labor, which are 
likely to vary significantly between locations. Project data was not sufficiently detailed to make this 
characterization, and it was therefore neglected. Operations and maintenance costs are assumed to be low 
relative to investment costs and are also neglected.  

 
Figure 3. Cost curve of TES projects. Cost curve is developed from public data on recent U.S. TES projects. 
Within DER-CAM, TES is modeled as a thermal battery, with charging and discharging decisions determined by 
the optimization. Thermal losses are assumed to be low at .1% per hour. A charging efficiency of 95% is used to 
approximate losses due to pumping chilled water in and out of the storage tanks. The maximum charging and 
discharging rates are assumed to 25% per hour, meaning full charging or discharging requires at least 4 hours. 
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It is also assumed that the performance of the chiller will vary in response to changing conditions, particularly 
ambient temperature. Thermodynamically, it becomes more difficult for the chiller to reject heat as the ambient 
temperature increases. Derived from the detailed EnergyPlus outputs, a 1.5% penalty is imposed on the chiller 
coefficient of performance (COP) for every °C. The reference COP is 2.5 at a temperature of 35°C. 
Consequently, the chiller tends to operate more efficiently during cooler night time hours. 

Results 

 
Figure 4. Summer peak cooling load profiles. The above shows the optimal capacity of TES being dispatched to 
meet summer peak cooling demand. 
A summary of results for each city is presented in Table 3. In each case, DER-CAM has determined the optimal 
TES installation in order to minimize total cost. From the optimization results, changes to annual electricity 
consumption, cost and peak demand have each been determined. For each location, overall energy consumption 
changes only slightly, resulting in small parasitic losses from pumping and small efficiency boosts from night 
time chiller operation. In every location, however, the deployed TES system realizes a substantial reduction to 
peak electricity consumption, ranging from 30% to nearly 38%. Results for each reference cities are examined 
individually in the following sections. Typical summer peak day cooling profiles are given in Figure 4 to 
illustrate the amount of on-peak cooling demand that can be met with TES. Finally, the impact of TES on 
monthly electricity costs is examined in Figure 5, which designates savings to energy and power charges 
separately.  

Table 3. Summary of results for TES deployment from DER-CAM. 

 

Miami, Florida 
Relative to the other cities here, Florida has low energy rates, both on and off peak, and no TOU demand 
charges. The difference between on-peak and off-peak energy rates is also quite low. Each of these factors will 
limit the economic benefit of TES. Miami does, however, have the highest NCDC. It also exhibits the second 
highest CDD total. This means that the duration of Miami’s cooling season is likely many months. In each of 
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these months, the peak-shaving capabilities of TES will reduce costs incurred from the high NCDC. 
Consequently, the optimal TES installed capacity is 21.9 MWh. This system is able to realize an annual savings 
of approximately $132, 000 (€101,540), which as Figure 5 indicates for Miami come predominately from power 
savings. The payback period for this TES system is 5.3 years. 

Lisbon, Portugal 
Lisbon is the only reference city which includes a TOU power charge for on-peak consumption, which is higher 
than the NCDC rates in every city. Additionally, Lisbon incurs high energy rates for mid-peak and on-peak 
periods. Each of these factors would suggest favorable conditions for TES deployment. However, of the cities 
investigated, Lisbon has the least intense summer cooling period. Its on-peak period also occurs earlier in the 
day, before cooling loads reach their peak. Consequently, its optimal TES installation is only 14.9 MWh, which 
is 32% smaller than the Miami installation. Figure 5 indicates that this smaller system is adequate to reduce on-
peak chiller output to zero, while also offset electricity purchases in mid-peak periods. This smaller system is 
able to save a comparable $130, 000 (€100,000) , as a result of the higher overall electricity prices, and requires 
the lowest observed payback period 0f 3.7 years. 

Shanghai, China 
Revisiting the temperature duration curves in Figure 1, Shanghai is clearly the only reference city that 
experiences a cold winter period. This means that the value of TES will be limited to a smaller portion of the 
year. Conversely, this means that its 1063 CDDs will originate from fewer, more intensely hot days. As a result, 
there will be large potential for savings during a few summer months, and diminishing savings at other times 
throughout the year (Figure 5). The overall cooling load in Shanghai is higher than the previous cases, as it was 
modeled with a less efficient building envelope. The Shanghai tariff has a moderately high NCDC and high on-
peak TOU energy rates, however, they do not coincide with the cooling demand peak. More importantly, there is 
nearly a factor 3 difference between off-peak and mid-peak TOU energy rates, creating a significant opportunity 
for savings from TES load shifting. Ultimately, it is this, along with the higher cooling load that necessitates a 
TES installation of 25.5 MWh, the highest of the four cities with a payback period of 4.2 years. This system 
generates an annual savings of $191, 000 (€146,920), also the highest value of the four cites. 

Mumbai, India 
None of the components of the Mumbai tariff are particularly favorable to TES installation. It includes no TOU 
power rates, the lowest NCDC rate, and TOU energy rates that change only slightly across TOU periods. 
Mumbai is however consistently hot, meaning that savings from TES, even if they are modest, can be realized 
throughout the year (Figure 5). Mumbai is also modeled with a medium efficiency building envelope, meaning 
that its cooling loads will be higher than the developing world case. Even without the strong drivers from the 
electricity tariff, the optimal installed capacity of TES is determined to be 23.5 MWh, the second highest of the 
four, but under a relatively high payback period of 8.5 years. Annual savings are a mere $89,000 (€68,460), the 
lowest observed. 

 
Figure 5. Monthly electricity cost savings. Savings from monthly electricity are broken down between energy 
and power charges. Shape and magnitude of savings depend on local tariff structure. 

Conclusion 
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This investigation has demonstrated the feasibility of TES deployment in both developed and developing world 
contexts. The most significant drivers of feasibility were identified as high summer temperatures and a tariff 
comprised of high on-peak rates or a high non-coincident demand charge. These create, respectively, high on-
peak electricity demand and strong economic signals to shift or reduce on-peak consumption. While TES 
installation can address both, these drivers do not need to exist in tandem for TES to be feasible. In the case of 
Lisbon, an appropriately structured tariff compensates for a relatively mild summer; whereas in Mumbai, a 
consistently hot climate makes up for a tariff structure that is not particularly favorable to TES deployment. 
Across locations, the benefits of deployment are also clear. Economically, TES has the ability to generate 
substantial savings to annual energy costs, ranging from 6.5%-18.7%, often exceeding $130,000 (€100,000). 
Corresponding payback periods for TES investment are reasonable and range from 3.7-8.5 years. Additionally, 
the functional link between TES and cooling demand make it uniquely positioned to reduce cooling-driven peak 
electricity demand. This investigation observed a peak electricity demand reduction ranging from 30% to 38%. 
While overall energy consumption with TES remains nearly constant, its dynamic load shifting ability make it a 
promising technology throughout the world. In other building contexts, where similar load profiles and thermal 
demands exist, energy savings for TES deployment are likely to be comparable. 

References 
[IEA] International Energy Agency, Energy-efficient Buildings: Heating and Cooling Equipment, Technology 

Roadmap, France, 2011. 
[WBCSD] World Business Council for Sustainable Development, Energy Efficiency in Buildings Facts and 

Trends, Full Report, 2008. 
M. Sivak, Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for 

developing countries, Energy Policy, Issue 37, pp1382–1384, 2009. 
E. Rosenthal and A. Lehren, Relief in Every Window, but Global Worry Too, Press article, New York Times, 

Published: June 20, 2012. 
I. Dincer, On thermal energy storage systems and applications in buildings, Energy and Buildings, Issue 34, 

pp377–388, 2002. 
A. Saito, Recent advances in research on cold thermal energy storage, International Journal of Refrigeration, 

Issue 25, pp177–189, 2002. 
[PG&E] Thermal Energy Storage Strategies for Commercial HVAC Systems, PG&E Energy Efficiency 

Information, 1997. 
D. Sailor, A.A. Palova, Air conditioning market saturation and long-term response of residential cooling energy 

demand to climate change, Energy, Issue 28, pp941-951, 2003. 
M. Stadler, C. Marnay, A. Siddiqui, H. Aki, J. Lai, Control of Greenhouse Gas Emissions by Optimal DER 

Technology Investment and Energy Management in Zero-Net-Energy Buildings, European Transactions 
on Electrical Power, Special Issue on Microgrids and Energy Management, Volume 21, Issue 2, Online 
ISSN: 1546-3109, LBNL-2692E, 2010. 

M. Stadler, C. Marnay, A. Siddiqui, J. Lai, B. Coffey and H. Aki, Effect of Heat and Electricity Storage and 
Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York 
States, Report, LBNL-1334E, Berkeley, 2009. 

[Web-Opt] http://der.lbl.gov/der-cam/how-access-der-cam 

Acknowledgements 
The Distributed Energy Resources Customer Adoption Model (DER-CAM) has been funded partly by the Office 
of Electricity Delivery and Energy Reliability, Distributed Energy Program of the U.S. Department of Energy 
under Contract No. DE-AC02-05CH11231. DER-CAM has been designed at Lawrence Berkeley National 
Laboratory (LBNL) and is owned by the U.S. Department of Energy. 




