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Abstract 

 
Power-quality events are of increasing concern for the economy because today’s equipment, 
particularly computers and automated manufacturing devices, is susceptible to these 
imperceptible voltage changes.  A small variation in voltage can cause this equipment to shut 
down for long periods, resulting in significant business losses.  Tiny variations in power quality 
are difficult to detect except with expensive monitoring equipment used by trained technicians, 
so many electricity customers are unaware of the role of power-quality events in equipment 
malfunctioning. 
 
This report describes the findings from a pilot study coordinated through the Silicon Valley 
Manufacturers Group in California to explore the capabilities of I-Grid®, a new power-quality 
monitoring system.  This system is designed to improve the accessibility of power-quality 
information and to increase understanding of the growing importance of electricity reliability and 
power quality to the economy. 
 
The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the 
impacts of power quality on individual study participants as well as to explore the capabilities of 
the I-Grid system to detect events on the larger electricity grid by means of correlation of data 
from the sensors at the different sites.  In addition, study participants were interviewed about the 
value they place on power quality, and their efforts to address electricity-reliability and power-
quality problems.  Issues were identified that should be taken into consideration in developing a 
larger, potentially nationwide, network of power-quality sensors. 
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1. Introduction 

The U.S. electricity system has been described as one of the most reliable in the world and, at the 
same time, as an antiquated system in dire need of new investment.  Little solid information is 
available to support either claim.  Utilities’ data on the reliability of electricity service is not 
collected consistently and is not readily available.  Moreover, information on power quality, a 
key aspect of electricity reliability from the customer’s point of view, is rarely collected at all 
(Warren, Pearson, Sheehan 2002). 
 
Power quality is a growing concern because today’s electricity-consuming equipment – ranging 
from personal computers in offices to automated manufacturing processes – is much more 
susceptible to power-quality problems than older equipment, such as conventional lighting and 
motors.  Power-quality problems – typically sags, swells, or interruptions in voltage – arise from 
both routine grid operations and natural events (e.g., lightning strikes).  Although these problems 
are typically last only fractions of a second, they can cause hours of manufacturing downtime.  
Traditional utility measures of electricity grid reliability, which focus on the duration of grid 
events, do not capture power-quality events and their profound impact on customers. 
 
The absence of consistent and geographically comprehensive information about the prevalence 
and impact of power-quality problems on the nation’s economy presents challenges for 
consumers and policy makers/regulators.  From the consumer’s perspective, awareness and 
diagnosis of power-quality events are key concerns.  Because of the short duration of power-
quality events, customers are rarely aware that a power-quality event has taken place.  Although 
power-quality problems are one reason that manufacturing processes may stop or operate poorly, 
there are other possible reasons, including mechanical failures, impurities in feedstock, and 
poorly calibrated operations.   
 
Even if a customer is aware that a power-quality event could be the cause of manufacturing 
problems, the expertise and technology required to diagnose and confirm power-quality 
problems are expensive.  Power-quality monitoring devices typically cost $5,000-10,000+ and 
must be used by technicians with specialized training.   
 
Data on power quality is almost completely lacking and, although data on the larger issue of 
electricity reliability are collected by utilities, these data are not consistently defined and 
categorized from utility to another.  Therefore, even though our specific focus in this report is on 
power-quality issues, we frequently refer to the larger category of electricity reliability as well 
because reliability and power quality issues are closely related and consistent information is 
lacking on both.  Section 2 of this report gives a brief technical overview of the growing linkage 
between electricity reliability and power quality as viewed from the customer’s perspective. 
 
From the public policy perspective, reliable information on both electricity reliability and power 
quality is a public good that is not provided for adequately by the market.  The last systematic 
information published on power quality was developed by the Electric Power Research Institute 
(EPRI) seven years ago and included only 300 monitored sites at 24 utilities in selected regions 
of the country (Electrotek 1996).  These data are now outdated and can only be obtained under 
license from EPRI.  Limited results intended to be statistically representative of the country as a 
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whole have been presented publicly (Sabin 1998).  Results of a follow-on EPRI survey were 
published in 2003 by EPRI, but have not been presented in a public forum. 
 
Without current data on power quality, it is difficult to determine how to remedy power-quality 
problems. The electricity grid was never designed to provide perfect reliability or power quality, 
and it would be prohibitively expensive to construct such grid.  It may be more cost effective and 
fair for society as a whole to allow individual customers to reduce the susceptibility of their 
equipment to power-quality (and other reliability) events rather than to require all ratepayers to 
pay for grid improvements that benefit only some ratepayers.  However, without consistent 
information on electricity reliability and power quality, it is difficult for both customers and 
policy makers to assess these tradeoffs. 
 
This report describes the findings from a pilot study, coordinated through the Silicon Valley 
Manufacturers Group (SVMG),2 to explore the capabilities of a new power-quality monitoring 
system, the I-Grid®.  This system is designed to improve the accessibility of power-quality 
information and to increase understanding of the growing importance to the economy of 
electricity reliability and power quality.  The I-Grid consists of low-cost monitoring devices and 
a web database and analysis capability that is easy to use without specialized training.  When an 
I-Grid monitoring device detects a voltage sag or interruption, it time-stamps and precisely 
records the data; after voltage returns to normal, the device automatically dials up and uploads 
information on the event to a web server.  Monitor owners and others can then view and analyze 
the event on a secure website.  Section 3 presents an overview of the I-Grid. 
 
Our pilot study involved installing 22 monitors at seven customer sites throughout the southern 
portion of the San Francisco bay area (known as “Silicon Valley” because of the large number of 
high-technology firms there).  Data were collected from June 2002 through July 2003.  Section 4 
describes the recruitment process for participants in the pilot study and the firms that agreed to 
participate. 
 
Data from I-Grid’s individual monitors allows us to identify power-quality events and determine 
their impact on individual customers.  In addition, because the data from all monitors are 
uploaded to a central repository, we can correlate data from multiple monitors to determine 
whether events recorded at one site were detected or had impact elsewhere.  From this 
information, we can assess likely impacts of power-quality events on adjacent customers who do 
not have monitors and draw conclusions about the state of the electricity grid.  Section 5 reviews 
the reliability and power-quality incidents recorded during the study period. 
 
The changing structure of the U.S. economy, coupled with the proliferation of electronic 
equipment in all sectors, has increased the economy’s vulnerability to electricity-reliability and 
power-quality problems.  Estimates of the annual costs of this vulnerability range consistently in 
the $10s of billions, and some exceed $100 billion (Eto et al. 2001).  However, little information 
is available about what these costs consist of and, more importantly, about what customers are 
doing to address the problem.   
                                                 
2 The Silicon Valley Manufacturing Group (SVMG) involves principal officers and senior managers of member 
companies in a cooperative effort with local, regional, state, and federal government officials to address major 
public-policy issues affecting the economic health and quality of life in Silicon Valley.  See http://www.svmg.org/ 



Pilot Evaluation of Electricity-Reliability & PQ Monitoring in CA’s Silicon Valley with the I-Grid System   

   3

 
This pilot project uses a case-study approach based on interviews with participants to understand 
the value they place on reliability and to identify emerging trends and issues in their efforts to 
address electricity-reliability and power-quality problems.  Section 6 summarizes the results of 
these interviews; the results are organized around four thematic issues: 
 
• The economic cost of electricity-reliability and power-quality problems. 

• Perceptions regarding electricity reliability and power quality, including utility relations. 

• Steps taken to address electricity-reliability and power-quality issues, including paybacks of 
investments. 

• Barriers to implementing solutions to power-quality problems. 

 
This pilot effort is also a proof-of-concept study to identify the issues that might arise in creating 
a much larger network of low-cost power-quality monitoring devices.  Section 7 discusses these 
issues. 
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2. The Growing Importance of Power Quality for Electricity Reliability, Viewed from the 
Customer’s Perspective3 

Assessment of electricity reliability and power quality involves looking at electromagnetic 
deviations from the ideal service that the U.S. electricity distribution system is designed to 
provide: a pure 60-cycle-per-second alternating current at a designated voltage (120 volts for 
residential customers or 480 volts for many commercial or industrial customers).  Any deviation 
from this standard that causes customers’ equipment to fail or malfunction is considered a 
reliability “event.”  Sustained interruptions (blackouts), which occur when voltage falls to zero 
for more than one minute (typically, five minutes or more), are the reliability problem with 
which most electricity consumers have the greatest direct experience and are the key phenomena 
captured in traditional utility reliability statistics. 
 
However, for many customers, the subset of reliability problems known as power-quality events 
– subtle deviations in voltage, sometimes observed as a “flicker” in lighting or other electrical 
devices and sometimes imperceptible – pose a far more significant problem than outages because 
of their much greater frequency of occurrence.  The most common small deviation is a voltage 
“sag” – a drop in (but not complete loss of) voltage for a short period of time (i.e., from a few 
cycles to a few seconds).4  Voltage sags can be caused by natural events (e.g., trees falling on 
power lines or lightning striking lines or transformers), utility activities (e.g., routine switching 
operations or human error), or customer activities (e.g., starting of large motors).  
 
Although in the past most electricity-consuming devices could “ride through” voltage sags (e.g., 
lights might dim momentarily), many of the electricity-consuming devices associated with 
today’s digital economy (e.g., equipment controlled by programmable logic chips) cannot 
tolerate a partial drop in voltage for even a fraction of a second.  Voltage sags may cause this 
equipment to shut down and remain off even after service is restored to normal levels.  Voltage 
sags are rapid and not easily detectable by an untrained observer, so consumers may not realize 
that a power-quality “event” caused their equipment to fail or stop operating.  Power-quality 
events are not included in reliability statistics reported by utilities (e.g., SAIFI, SAIDI, CAIDI, 
CAIFI, MAIFI). 
 
Figure 1 illustrates the relationship between voltage sags and equipment performance.  The 
figure plots individual, recorded power-quality events by their duration and magnitude.  
Superimposed on the figure is the Computer Business and Equipment Manufacturers Association 
(CBEMA) 1996 tolerance curve, which is a guideline for voltage tolerance of typical electronic 
equipment.  Typical equipment should be able to tolerate voltage sags of durations and 
magnitudes above the curve without interruption in function.  As indicated by these data, a 
significant number of recorded events fall below the curve; these events would cause failure or 
operational problems for susceptible equipment. 
 

                                                 
3 The material presented in this section is adapted from Divan, Brumsickle, and Eto 2003. 
4 EPRI’s landmark study of power quality found that voltage-related power-quality events accounted for 90 percent 
of all power-quality events (Electrotek 1996). 
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Figure 1. Representative Power-Quality Data and the CBEMA 1996 Tolerance Curve (Source:  
Sematech 1999). 

Increased reliance on devices that are susceptible to power-quality problems means that the U.S. 
economy’s vulnerability to electricity-supply interruptions in general, and to momentary supply 
deviations in particular, has increased.  Thus, the lack of relationship noted in the introduction – 
between the statistics that utilities collect about electricity reliability and the power-quality 
events that have profound impact on consumers – has great economic significance.  Without 
these data, we cannot determine whether it is most cost effective to harden customer’s equipment 
to be more tolerant of power-quality events or to makes changes to the grid and its operation to 
prevent damage and loss from power-quality events. 
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3. Description of the I-Grid Power-Quality and Reliability Monitoring System 

The I-Grid system, developed by SoftSwitching Technologies,5  is a web-based, power-quality 
and reliability monitoring and alarm system (Divan et al. 2002).  The system relies on 
widespread deployment of a large number of low-cost “I-Sense”™ power monitors throughout a 
geographic region of the grid.  The monitors continuously capture 10-minute min/max and 
average root mean squared (RMS) voltages as well as detailed data on grid voltage deviation 
events including outages, blackouts, brownouts, interruptions, and short-duration power-quality 
disturbances such as voltage sags and swells, which, as noted in the previous section, can pose 
significant reliability concerns from the customer’s point of view.6 
 
The sensors transmit data via the internet to a central database and website.  Information on grid 
events is displayed at the website, and near-real-time notification of events is sent to designated 
individuals or groups.  With these functions, the website acts like a live “web cam” for areas of 
the electricity grid.  In addition, web-based forms record customer observations about the cause 
of the event, if known and the effect of the event on company processes, including cost of 
downtime, if known. 
 
These sensors are significantly less expensive than conventional power quality monitors ($450-
600 per I-Sense device compared to $5,000-10,000 for conventional power quality monitors that 
require specialized technicians to use properly) and offer targeted, highly specific functionality.7  
In addition to internet communications and centralized data processing and aggregation, the 
monitors utilize low-cost digital signal processors and electronics.  Reliance on standard web 
browsers eliminates the need for the significant investment in software and hardware 
infrastructure that is typically required for other monitoring systems. 
 
The I-Grid differs from other power-quality monitoring methodologies by using a system-
centered (rather than a monitor-centered) approach, providing access to real-time as well as 
historical data on site-specific power quality and reliability, and offering the ability to correlate 
events recorded at geographically dispersed locations.  More importantly, the system’s low cost 
per node means that broad-based deployment of monitoring across the electricity grid is more 

                                                 
5 SoftSwitching Technologies™ is a spin-off from the University of Wisconsin that designs and manufactures power 
monitoring and power electronics solutions for power-quality applications.  http://www.softswitching.com/ 
6 EPRI-Power Electronics Applications Center (PEAC) has recently completed a comprehensive test report that 
confirms the accuracy of the power-quality information collected by I-Sense monitors and their ability to capture 
voltage sags and interruptions (EPRI 2003). 
7 The I-Grid system in its present configuration does not monitor all possible power-quality phenomena; it monitors 
only voltage-related power-quality events, which, as noted above, account for 90 percent of all power-quality events.  
Summary specifications are listed in the Appendix. 
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financially feasible than it has been in the past.  A large number of monitors and appropriate 
analysis software could allow data to be clustered and aggregated over large geographic areas, to 
assess reliability and power quality for individual customers as well as the state of the electricity 
grid as a whole.  The I-Grid’s use of accurate, synchronized timestamps across geographically 
dispersed sensors is critical for wide area monitoring. 
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4. Description of DOE Silicon Valley Pilot Project 

SoftSwitching Technologies and the U.S. Department of Energy’s (DOE’s) Lawrence Berkeley 
National Laboratory, in conjunction with the SVMG, initiated a pilot I-Grid project in 2002.  The 
project’s overall objective was to assess the effectiveness of I-Grid’s web-based electricity-
reliability and power-quality monitoring system based on deployment of low-cost sensors within 
a geographic region.  Specifically, we field-tested the I-Grid system’s ability to detect grid-level 
events through a network of sensors deployed at individual customer sites.  A secondary 
objective was to better understand the impacts of electricity reliability, primarily power quality, 
on customers.  Findings for this second objective came from interviews with project participants. 
 
Participants were recruited with assistance from SVMG, which provided contact information for 
members known to be interested in electricity-reliability and power- quality issues.  We also 
made an invited presentation on the project to a meeting of the SVMG Energy Policy 
Committee.   
 
Participants were asked to install and register a small number of I-Sense monitors at an 
appropriate site within their facilities.  Typically, monitors were installed at service delivery 
points and panels serving susceptible loads.  Participants were also asked to respond to 
notifications of power-quality events by completing an on-line form regarding downtime 
occurrences coincident with each event (to maintain confidentiality, all process-related 
information was purged of company identity).  In return, participants received email notification 
of power-quality events after the events were recorded and access to the I-Grid website for 
additional diagnostic information about the events. 
 
Seven firms/institutions ultimately agreed to participate in the pilot and installed a total of 22 I-
Sense monitors.  An eighth firm agreed to participate but was not able to coordinate installation 
of monitors in time to include data in the analysis.  Figure 2 shows the approximate locations of 
the monitoring sites. 
 
To maintain the anonymity of participants, the participant companies and institutions are 
numbered Firm 1 through Firm 8: 
 
• Firm 1 is a semiconductor fabrication facility.  Utility service is three-phase at 480 volts.  

Firm 1’s characteristics are further described in the Section 5 case studies. 

• Firm 2 is a high-tech research and development (R&D) campus with offices and associated 
labs.  Three buildings on the same campus are monitored.  Utility service is three-phase at 
480 volts. 

• Firm 3 is a university campus including large dormitories, library, offices, and classrooms.  
Two buildings are monitored, containing offices, data center, and library.  Utility service is at 
transmission-level three phase.  Firm 3 provides its own distribution substation and campus 
distribution system, as well as local generation capability. 

• Firm 4 is an electrical supply business with distribution and storefront facilities.  Offices, 
some with light industrial shops, at five buildings in five different cities are monitored.  
Utility service is Single-phase. 
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• Firm 5 is an electrical consulting firm, with offices and a testing lab, located in a light 
industrial park suite.  Utility service is three-phase, 120/208 volts. 

• Firm 6 is a large university and national laboratory.  Three buildings on one campus and one 
building on another nearby campus, with offices and labs, are monitored. Utility service is 
three-phase; all monitors at Firm 6 are single-phase. 

• Firm 7 is an industrial manufacturing plant comprising one very large building.  Three-phase 
utility service is at transmission-level voltage.   The industrial distribution system supplies 
plant loads.  One single-phase monitor is installed at an office branch circuit outlet within the 
plant. 

• Firm 8 is a semiconductor fabrication tool manufacturer.  Firm 8 participated in interviews 
but was unable to install monitors in time for inclusion in data analysis. 

 

 
Figure 2. Locations of participating firms (large squares). 
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5. Review and Assessment of Power-Quality and Electricity-Reliability Events 
Recorded During Pilot Monitoring Period 

The first monitors were installed in late May 2002.  Figure 3 shows an overall summary 
of the significant power-quality and reliability events recorded from May 2002 to late 
July, 2003, together with the Information Technology Industry Council (ITI, formerly 
CBEMA) curve for typical equipment susceptibility to voltage disturbances.8 
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Figure 3.  Magnitude-Duration summary of all significant power quality and electricity 
reliability events, 5/23/02 to 7/27/03, with ITI/CBEMA curve overlay. 

In all, 402 significant voltage sag events (88 percent of total events) and 53 interruptions 
(12 percent of total events) were recorded.9  No voltage swells or longer-term brownouts 
were recorded during the monitoring period.  Of the interruptions, 12 were longer than 
five minutes in duration, meeting the definition commonly used by utilities of a power 
“outage.”  Four of the participating firms are large (more than one megawatt) electricity 
consumers.  Only one of these large utility customers experienced an outage, when a car 
hit a utility pole near the plant, which accounts for three of the recorded outages. 
 
Although the sample in this data set may be too small to allow generalizations, a 
revealing split in the reliability and quality of electric power becomes apparent when the 
data are segregated by monitor type; larger commercial and industrial (C&I) electricity 

                                                 
8 The ITI curve is also known as the CBEMA 2000 curve (ITI 2000).  Recommended interpretation is 
provided by ITI on its website:  http://www.itic.org/technical/iticurv.pdf.  
9 It is believed that the recorded interruptions (i.e., the points along the x-axis indicating 0 voltage) include 
a small number of cases where the monitor was purposely disconnected or a scheduled interruption of 
internal facility power occurred.   

2s 30s 1m 5m 15m 1h 2h 
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consumers with three-phase service experience far fewer power-quality events than were 
experienced by smaller, light industrial or office locations with single-phase service. 
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Figure 4.  Summary of Single-Phase Monitors Data with ITI curve overlaid. (263 sags, 51 
interruptions, 104 events below the ITI curve). 
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Figure 5.  Summary of Three-Phase Monitors Data with ITI curve overlaid. (139 sags, 2 
interruptions, 18 events below the ITI curve). 
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Figures 4 and 5 are the magnitude-duration plots for all single-phase sensor events and all 
three-phase sensor events, respectively.  These figures clearly show that the three-phase 
C&I customers are much less likely to suffer power interruptions (those events along the 
horizontal axis) than are the single-phase customers.  The larger C&I customers 
experienced an average of 17.4 voltage sags per monitor during this period but only 0.3 
interruptions per monitor.  In contrast, the single-phase monitors recorded an average of 
20.2 voltage sags per monitor and 3.9 interruptions per monitor.  The experiences of the 
one-phase and three-phase monitor sites are summarized in the pie charts in Figure 6. 
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Sensors
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16%

 
 

Figure 6.  Summary of voltage sag and power interruption events, 5/23/02 to 7/27/03, 
recorded by three-phase sensors (left) and single-phase sensors (right). 

The chronology of the data for events that fell below the ITI curve for equipment 
susceptibility is of interest.  Figure 7 contrasts the aggregation of those events recorded 
by single-phase and three-phase monitors over time.  We see that the three-phase 
monitors, representing larger commercial and industrial customers, experienced far fewer 
events where voltage fell below the ITI tolerance curve and that those events occurred on 
only a few discrete days.  By contrast, a steady stream of below-ITI events was captured 
by the single-phase monitors. 
 
It is also notable that, overall, voltage sags that do not dip below 50-percent remaining 
voltage predominate, and all but two of the voltage sags were less than 2.0 seconds (120 
cycles) in duration. 
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Figure 7.  Number of events falling below the ITI curve, as recorded by date.  Three phase 
monitors (top) and single phase monitors (bottom).  
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5.1 Review of Significant Events Recorded During Monitoring Period 

Firm 1 is a relatively large manufacturing plant with a nearly-ideal deployment of 
monitors (described further below).  With one exception, the details below focus on 
power-quality events recorded at Firm 1; some were recorded only at Firm 1, and some 
were felt at other firms as well, as noted in each case.  In one case, the event occurred at 
Firm 3. 
 
Sixteen significant power-quality events were recorded on 15 different days by one or 
more sensors at Firm 1 during the period from June 26, 2002 to July 27, 2003.  These 
events are summarized, and correlated with records from other participating firms, in 
Table 1on the next page. 
 
The table shows that: 
• Some events were seen only by a single sub-circuit within Firm 1. 

• Some events were experienced only in one half of Firm 1 and were not seen in the 
other half of the building. 

• Some events were seen across Firm 1, but not at other locations. 

• Some events were recorded only by three-phase monitors and not seen by single-
phase monitors. 

• Some events were seen at Firm 1 as well as several other Firms that are served by 
different distribution companies.  These events were propagated on the transmission 
system. 

• The transmission system is apparently configured differently at different times: when 
events affected other firms in addition to Firm 1, the set of other firms was not always 
identical. 

The case studies below highlight key information obtained from or illustrated by the 
power-quality data recorded for Firm 1 and, in some cases, other firms as well.  All 
voltage waveforms and rms profiles shown below are copied directly from the I-Grid 
website display. 
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Table 1.  Occurrences of significant electric-reliability and power-quality events at Firm 1.  Also shown are coincident (identical 
timestamp) events captured at other monitor sites, at other firms. 

 

   Event Dates: 
Firm Sensor Site 7/1/02 9/29/02 10/19/02 11/7/02 11/13/02 12/14/02 12/21/02 1/23/03 2/2/03 3/8/03 4/19/03 4/23/03 7/5/03 7/7/03 7/23/03

1 1P Block 1 - - ● ●●● ●●●● - ● - ○ - - - ● - - 
1 1P Block 2 ● - ● ● - ● ● - ○ ● - - ● - ● 
1 3P Block 1 - ○ ● ●●● - ● ● ● ●● ● ●● ●● ● ● ● 
1 3P Block 1 - ○ ● ●●● - ● ● ● ●● ● ●● ●● ● ● ● 
1 3P Block 2 ● ● ● ●●● - ● ● ● ●● ● ●● ●● ● ● ● 
1 3P Block 2 ● ● ● ●●● - ● ● ● ●● ● ●● ●● ● ● ● 
2 3P Bldg. 1 - - - ○ - - - - ●● - N N - ○ - 
2 3P Bldg. 2 - - - ○● - - - - ●● - ●● ●● - ○ - 
2 3P Bldg. 3 - - - ● - - - - ●● - ●● ●● - ○ - 
3 1P Bldg. 1 - - - ○ - - - ●●● ●● - - ●● - ● - 
3 1P Bldg. 2 - - - ●●● - - - ●●○ ●● - ● ●● - - - 
4 1P Location 1 - - - ● - - - - - - - - - N - 
4 1P Location 2 - - - - - - - - - - - - - - - 
4 1P Location 3 - - - ●●● - - - ● ●● - - ●● - ● - 
4 1P Location 4 - - - ● - - - - ○○ - ● ●● - - - 
4 1P Location 5 - - - ● - - - - ○○ - ●● - - - - 
5 3P - - - - ● - - - - ●● - ●○ ●● - ○ - 
6 1P 1 - - - - - - - - - - - - - - - 
6 1P 2 - - - - - - - - - - - - - - - 
6 1P 3 - - - - - - - - - - - - - - - 
6 1P 4 - - - - - - - - - - - - - - - 
7 1P - N N N N N N N N N - ●● ●● - ● - 
+ 3P SFO N N N N N - - - ●● - ●● ●● - ● - 
+ 1P Fresno - - - ● - - - - ●● - - - - ● - 

KEY:   
     Events:  ● indicates significant PQ event recorded,   ○ indicates non-significant (greater than 87% voltage remaining) event recorded,   
               N indicates sensor not in service. 
     Sensor Type:  1P are single-phase sensors, 3P are three-phase sensors 
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5.1.1 July 1, 2002 Car-Pole Accident near Firm 1 

Firm 1 installed six I-Sense monitors at one manufacturing site.  A facility expansion left the 
older and newer halves of the building with independent electrical systems.  The plant electrical 
loads are approximately evenly divided between two utility transformers that connect to separate 
utility distribution “blocks.”  Three monitors were installed on each bus within the plant, as 
shown schematically in Figure 8.  One three-phase sensor was located near the service entrance, 
a second three-phase sensor was located near load buses within the building, and a single-phase 
sensor was located at a branch circuit outlet within the building. 
 

1/2 of plant loads 1/2 of plant loads

Block 1 Block 2

3-ph
Sensor

3-ph
Sensor

1-ph
Sensor

1-ph
Sensor

3-ph
Sensor

3-ph
Sensor

480 V

 
 
Figure 8.  Sensor locations within Firm 1. 

On July 1, 2002, the three monitors on bus “Block 2” reported a 9.6-minute interruption event 
(outage) at 10:54 a.m.  Neither the three monitors on bus “Block 1” nor other I-Sense monitors in 
the Silicon Valley (SV) area reported electricity-reliability or power-quality events at this time. 
 
In a subsequent interview, the facilities manager stated that a car had struck a utility pole near the 
site and that the utility line crew was forced to de-energize the line to extricate the car.  
Distribution bus “Block 1” was not affected. 
 
This is a clear example of an externally caused event that affected only the local distribution 
system.  Firm 1 did not provide an estimate of the costs of the process interruption caused by this 
event but has reported that the restart time for some manufacturing processes can take three days 
and that plant revenue is approximately $500,000 per day at full operation. 
 
5.1.2 October 19, 2002 Short Voltage Sag Event at Firm 1 

On October 19, 2002, all six monitors at Firm 1 reported a short-duration voltage sag at 8:27 
a.m.  The captured event voltage waveforms from two monitors on buses Block 1 and Block 2 
are shown in Figure 9.  The nearly identical waveform signatures, together with the knowledge 
that the plant buses are not inter-tied, indicates that this event was externally caused and 
propagated on the distribution grid.  No other I-Sense monitors in the SV area reported events at 
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this time, which further suggests that the root cause occurred on the distribution or sub-
transmission grid, not on the transmission grid. 
 
Firm 1 did not report a process interruption associated with this event. 

 

 

 
Figure 9.  10/19/02 event voltage waveforms: Block 1 event (top) Block 2 event (bottom).  Both are 
480V L-L sensors. 

5.1.3 November 7, 2002 Region-wide Wind Storms 

A major windstorm swept through California on November 7, 2002.  Voltage sags were reported 
by monitors across the SV area.  Figure 10 summarizes one widespread event recorded at 
11:41:28 p.m. by 16 different monitors at twelve locations, including those at Firm 1.  The 
voltage sag severity was greatest in the area of Firm 1.  A simultaneous event was also recorded 
near Fresno, in the Central Valley.  Captured rms voltage profiles from four sites are shown in 
Figure 11. 
 
This event was felt across the SV region at all monitored locations except one.  A likely 
conclusion is that a weather-related, transmission-level fault caused the voltage-sag event.  
PG&E, in its 2002 reliability report to the California Public Utilities Commision, lists major 
reliability events on November 7-8, 2002, caused by storms with winds gusting up to 90 mph. 
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A less-widespread pair of voltage sag events was recorded by seven sensors, including five of the 
six sensors at Firm 1, earlier in the day at 5:55:53 PM and 5:55:57 PM. 
 

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 1 2 3 4

Duration (cycles)

R
em

ai
ni

ng
 r

m
s V

ol
ta

ge

Firm 1
Firm 2
Firm 3
Firm 4 (4 sites)
Firm 5

 
  



Pilot Evaluation of Electricity-Reliability & PQ Monitoring in CA’s Silicon Valley with the I-Grid System   

20 

 

Firm 1 Firm 2 

Firm 3 Firm 5 
Figure 10.  11/7/02 typical event rms voltage profiles at four sites. 

5.1.4 December 27, 2002 Firm 3 Campus Distribution Transformer Failure 

Firm 3 installed single-phase I-Sense monitors in two separate buildings on a single campus.  At 
7:02 p.m. on December 27, 2002, one of the two monitors reported a one-minute interruption 
followed 22 minutes later by a 67-minute interruption.  In a subsequent interview, the site 
facilities manager reported that a distribution transformer (owned by Firm 3) had failed on that 
evening.  At least one campus building was without power for several days until a replacement 
transformer could be located. 
 
Firm 3 is served directly at 115 kilovolts (kV).  No other monitors in the area recorded 
significant events during the same period.  This case demonstrates an internally caused power-
quality event that did not affect the regional power grid. 
 
5.1.5 January 23, 2003, Airplane Hit 500-kV Transmission Line 

A Cessna Cirrus SR20 crashed in the Evergreen Foothills northeast of San Jose on January 23, 
2003. National Transportation Safety Board officials said the airplane dropped from radar at 
around 5 p.m.  Pacific Gas and Electric Company (PG&E), the utility serving the area, said the 
plane hit the 500-kV transmission line that feeds the San Jose area.  PG&E reported that the 
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plane damaged seven spans of wire and destroyed five or six cross arms but did not cause any 
power outages. 
 
At 4:53 p.m., all four three-phase monitors at Firm 1 recorded a three-cycle-duration voltage sag 
to 80- to 84-percent remaining rms voltage.  One of two single-phase monitors at Firm 3 and a 
monitor at Firm 4 recorded similar voltage sags with the same timestamp.  Less than one second 
later, both monitors at Firm 3 reported interruptions: one monitor saw a one-minute interruption, 
and the other saw a 42-minute interruption.  No other monitors in this study recorded an 
interruption or further voltage sags.  Six minutes after the time that the 42-minute interruption 
ended, the other Firm 3 monitor, which had earlier seen only a one-minute interruption, reported 
a two-cycle interruption. 
 
Firm 3 has cogeneration that provides 80 to 85 percent of campus power requirements during on-
peak hours.  In this case, a relatively insignificant transmission-level, power-quality event may 
have been exacerbated at Firm 3 by local switching practices associated with the cogeneration. 
 
5.1.6 February 2, 2003 Transmission Level Event, Possibly Caused by Earthquake 

An earthquake followed by multiple aftershocks struck the SV region on February 2, 2003 at 
10:23 a.m. and 10:47 a.m.  The quake epicenter was five kilometers (km) southeast of San 
Ramon, California.  The United States Geological Survey classified shaking as “severe” 
throughout the area of this study.10  Later that day, two separate power-quality events, 15 
seconds apart, were detected at 5:19 p.m. by 14 monitors in the SV study area as well as by other 
I-Sense monitors in South San Francisco and 70 km (45 miles) east of Livermore, near Fresno, in 
the California Central Valley.   
 
Figures 12 and 13 show three-phase monitor data from two sites approximately 20 km (13 miles) 
apart in the western SV area.  Apparently, a single-line voltage sag was propagated on the 
transmission network.  Of the monitors that did not record these two events, all were single-
phase monitors that may be connected to a phase voltage that was not affected by the events. 
 
The actual cause of the transmission-level, power-quality events is not known to the authors of 
this report.  However, the coincidence of the events with the earthquake and aftershocks suggests 
a possible correlation. 
 

                                                 
10 Source: http://quake.usgs.gov 



Pilot Evaluation of Electricity-Reliability & PQ Monitoring in CA’s Silicon Valley with the I-Grid System   

22 

 

 
Figure 11.  2/2/03 event voltage waveform (top) and rms voltage profile (bottom), captured by 120 
volt L-N monitor. 
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Figure 12.  2/2/03 event voltage waveform, (top) and rms voltage profile (bottom) captured by 480 
volt L-L monitor. 

5.2 Summary of Findings from Pilot Data Collection 

The data collected in this pilot project support the following observations: 
 
1. Power-quality and reliability events occur with some frequency.   
2. There is preliminary evidence to suggest that, consistent with common wisdom, the 

frequency of power-quality events decreases as delivery voltage increases. 
3. Judicious placement of I-Grid monitors allows classification of events according to whether 

the events originate within or external to a customer’s premises. 
4. Correlation of events among multiple monitors permits identification of grid- level events 

affecting other customers who do not have monitors. 
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6. Customer Views on Electricity Reliability and Power Quality  

Interviews conducted with each of the pilot study participants were an important complement to 
the information collected by the I-Grid monitoring system.  The goal of the interviews was to 
understand the value the participants place on electricity reliability, particularly power quality, 
and to identify emerging trends and issues in the participants’ efforts to address reliability and 
power-quality issues. 
 
The interviewees were generally lead staff members from the facilities departments of each firm. 
One participating firm has outsourced its management of utility services, including treatment of 
reliability and power-quality issues, so we were granted permission to interview the third-party 
firm handling these services.  Another participating firm provides power-quality consulting 
services; we interviewed the president of this firm.  Another firm sells electrical supplies, 
including power-quality mitigation products; we interviewed the principal sales engineer for 
these products. 
 
Participants granted interviews based on the understanding that their responses would be 
confidential.  To respect this agreement and to assemble the information we gathered in a 
coherent presentation, we identified several thematic issues addressed in the interviews and 
organize our results around these topics: 
• The economic cost of power-quality and electricity-reliability problems, 

• Perceptions regarding electricity reliability and power quality, including utility relations, 

• Steps taken to address power-quality and electricity-reliability issues, including paybacks on 
investments; and  

• Barriers to implementing solutions to electricity-reliability and power-quality problems. 

6.1 The Economic Cost of Electricity-Reliability and Power-Quality Problems 

The participants in the pilot study generally place a very high premium on ensuring power 
quality and electricity reliability.  Their participation in this pilot is a direct reflection of their 
business interest in this topic.  Therefore, it was no surprise that they were readily able place a 
quantitative value on these aspects of electricity service. The quantitative values given by our 
study participants are shown in Table 2.  We believe that this level of understanding is likely to 
be limited to sophisticated electricity users such as those who participated in our project.  
 
The first key observation is that, from the customer’s point of view, the costs associated with an 
electricity-reliability or power-quality event depend more on the manufacturing or process 
downtime that results from an event, not necessarily on the duration of the event.  That is, when 
asked about the value or economic costs of electricity reliability and power quality, the 
interviewees generally responded with cost information linked to downtime, not the duration of 
the event.  One participant observed that “Customers do not make distinctions about the causes 
of machine downtime; all they know is that their machinery has stopped functioning.”  We also 
believe this sentiment results, at least in part, from that participant having had relatively rare 
experiences with extended outages (events lasting more than a few minutes) and relatively 
frequent experiences with power-quality events and short-duration interruptions (events lasting a 
few minutes or less). 
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Table 2.  The Economic Costs of Electricity Reliability and Power Quality 

Business Type Event Description Economic Cost ($) 
Manufacturer of 
silicon-chip 
fabrication 
equipment 

Voltage sags and short-duration voltage 
interruptions 

$350,000 per event 

Silicon-chip 
fabrication 

Even an outage of a few minutes can lead 
to 1-1.5 days of downtime 

Up to $500,000 per 
day in lost revenue 

From a few seconds to one half-hour of 
downtime 

Less than 
$1,000,000 

Automotive 
manufacturing 

More than 1 hour of downtime In the millions 
Financial 
clearinghouse 

30 minutes of downtime because of a 
lightning strike 

$12,000,000 

 
Several participants offered supporting information to help place the monetary values in 
perspective.  For example, one offered valuable insight on the often-cited statistic that an outage 
costs silicon-chip fabricators $1 million per event.  He said that this value depends largely on 
whether the chips have already been sold and the plant is currently operating at full capacity.  
The determining factor is whether the downtime results in the firm missing a deadline for 
delivery of chips that have already been sold.  He pointed out that, in 2003, many firms were 
running at less than full capacity.  Under these conditions, lost production from an outage could 
be made up through overtime (which is not possible when a plant is running at full capacity) and 
that the costs of materials lost as a result of the outage were minimal in comparison to the 
financial penalties that would be associated with missing shipping delivery dates.  The chip 
fabricator participating in our study reported that outages of even a few minutes could sometimes 
lead to 1 to 1.5 days of downtime, causing the firm to forego $500,000 per day in revenues. 
 
Traditionally, business-cycle issues such as those noted by this participant are not well-
accounted for in studies of reliability costs.  A related example was provided by the manufacturer 
of silicon-chip fabrication equipment. As a final step before delivery of a new piece of 
fabrication equipment to a customer, the manufacturer must conduct a continuous, 1,000-hour 
factory test, which takes about six weeks.  Any interruption during this period requires restarting 
the entire test from the beginning.  Consequently, the cost of an interruption during this period is 
much greater for this firm than the cost when a new piece of equipment is not undergoing factory 
testing.  This firm reported that it had recently made a $2.5-million investment in equipment to 
improve electricity reliability that paid for itself in nine months, which translates into an implied 
cost per outage of $350,000 per event.  (We discuss the high returns on electricity-reliability and 
power-quality technology investments in the subsection below on steps taken to address 
reliability and power-quality issues.) 
 
The monetary penalties for missing deliveries are especially high in the financial services 
industry.  For these firms, “missed” deliveries refer to financial transactions that cannot be 
executed.  Financial clearinghouses, for example, provide written guarantees for maximum 
allowable downtimes in the contracts they sign with their customers (e.g., banks that offer credit 
cards).  Stringent financial penalties, based in part on the value of foregone or inaccurate 
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transactions, result from exceeding pre-specified limits.  As a measure of the great value placed 
on reliability by this type of firm, we were told that: “These customers never ask how much it’s 
going to cost to fix the problem; they only want to know how quickly the solution can be 
implemented.”  We were told of a financial clearinghouse in Texas that had experienced a $12-
million loss as the result of a 30-minute outage caused by a lightning strike. 
 
We also heard that the costs of downtime have been growing over time for participants.  One 
participant reported that “Problems that used to cost $2-300,000 per event now cost in the 
millions per event.”  We explore some of the reasons for this increase in vulnerability to 
reliability and power-quality problems in the next subsection. 
 
6.2 Perceptions of Power Quality and Electricity Reliability, Including Utility Relations 

Customer awareness of electricity-reliability and power-quality problems and understanding of 
the root causes of these problems are critical factors in evaluating the actions that customers have 
and have not taken to address these problems. 
 
Among the individuals we interviewed, awareness of electricity-reliability and power-quality 
issues is fairly high.  Many had received professional training on the subject. 
However, it is important to recognize that awareness of power-quality issues, in particular, is not 
widespread.  To be aware of the problem, a customer must have equipment that is sensitive to 
power-quality problems, and this sensitivity must have a material effect on operations.  One 
participant indicated that he was not specifically aware of power quality as an issue in operations 
at his firm mainly because the firm does not have much susceptible equipment and more 
importantly, because he has not received complaints that could be traced to power-quality 
problems.   
 
Power-quality problems manifest, as noted earlier, in faulty operation of equipment.  However, 
power-quality problems are only one possible cause of equipment malfunction and are also 
difficult to observe, so it is not a simple matter for a customer to definitively determine that a 
power-quality event has caused an equipment problem.  One participant in our study said that his 
primary clue that a power-quality event was to blame for equipment problems was the 
simultaneous failure of multiple pieces of equipment.  His participation in the pilot study was 
motivated by the desire to confirm when power-quality issues are the sources of manufacturing 
problems.  He noted that regular maintenance of equipment (to avoid downtime) was currently a 
bigger issue for his firm than power quality (in part because power-quality solutions had already 
been incorporated in the most critical of his company’s processes).  Another participant indicated 
that a key measure of the success of his firm’s training programs is whether students can 
correctly identify power-quality problems (versus software problems) as the cause of an 
equipment fault. 
 
Interestingly, the emergence of industry standards, such as SEMI F47 (for semiconductor 
manufacturers) and ITI/CBEMA (for office PCs), may have indirectly contributed to reducing 
awareness of the possibility that power-quality problems may affect operations.  That is, some 
argue that specifying equipment that is in compliance with these standards means that power-
quality problems have been adequately addressed.  In fact, both standards only articulate 
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thresholds above which equipment is expected ride through power disturbances; disturbances 
below these thresholds will still cause faulty operation or failure of equipment. 
 
Understanding of the root causes of electricity-reliability and power-quality problems was mixed 
among our study participants.  Some view “power quality” as an “internal” problem on the 
customer side of the meter and “reliability” as an “external” problem on the utility side of the 
meter.  Yet in reality, power-quality problems may emerge from actions arising on either side of 
the meter. 
 
More than one participant perceived the majority of power-quality problems to result from 
improper or poor grounding practices, which is an internal problem; one participant stated that 
up to 95 percent of all power-quality problems could be attributed to grounding problems within 
a customer’s premises.  Participants suggested that proper grounding practices, as prescribed by 
the National Electric Code in part to prevent power-quality problems, are often not implemented.  
Renovation and expansion of existing facilities were noted as frequently leading to grounding 
problems and thus to power-quality problems. 
 
Other participants were aware that power-quality problems could emerge from actions and 
events on the utility side of the meter.  Many had implemented power-quality solutions based on 
careful assessments of the frequency of power-quality events coming from the utility side of the 
meter.  At least one large customer had worked successfully with his utility to change the 
schedule for a routine utility operation that regularly disrupted his plant’s operations. 
 
Participants’ experiences with utility power-quality and reliability issues varied widely.  We 
have already cited the experience of one participant who was not specifically aware of power-
quality events significantly affecting his operations.  Others had detailed recollections.  Among 
industrial electricity consumers, we found the number of power-quality-related experiences were, 
by and large, correlated with the voltage at which each customer took service from the utility.  
On the low end, the one participant with service at transmission voltage recalled four to five 
voltage sags during the past five years or about one sag per year on average.  On the high end, 
one participant with service at distribution voltage based his decision to invest in a power-quality 
solution on a desire to avoid an average of nine events per year based on data taken during three 
years. 
 
Perceptions of utility responsiveness to power-quality problems were neutral to slightly positive.  
More than one participant noted that the utilities had made efforts to be responsive to power-
quality concerns.  As noted earlier, more than one participant cited their utility’s willingness to 
modify its operations to eliminate recurring voltage sags that took place during a critical time for 
the customer’s operations.  It is important to bear in mind that several of the participants are very 
large electricity consumers, so it is not surprising that utility service representatives are very 
responsive to these customers.   
 
Apparently, utilities in the recent past offered power-quality consulting services to customers. 
However, these efforts have been dropped as a result of changing corporate priorities at utilities 
and customers’ preferences for third-party assistance in identifying and addressing power-quality 
problems. 
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6.3 Steps Taken to Address Electricity Reliability and Power Quality, Including Payback 
on Investments 

Each of the participants in our study has taken action to address reliability and power-quality 
issues.  These actions have mostly been highly cost effective – often more cost-effective than 
standard investment criteria (e.g., less than a two-year payback).  Hardware solutions have 
tended to dominate.  We will explore some of reasons for this bias in the final subsection on 
barriers, below. 
 
Perhaps the most common theme of the strategies undertaken by participants to address 
electricity-reliability and power-quality issues was reliance on a “bottom-up” approach.  
Insulating or hardening individual equipment or, in some cases, the controls for equipment was 
the most common approach selected by participants.  Typically, a dedicated uninterrupted power 
supply (UPS) was installed.  In one case, constant-voltage transformers were installed to protect 
the controls for each piece of equipment in a manufacturing process. 
 
Increasingly, equipment manufacturers are addressing reliability and power-quality issues in 
response to customer demands.  Specifying equipment that is in compliance with SEMI F47 or 
CBEMA is now a common practice.  Many manufacturers offer power conditioning systems 
embedded in their machines as the means of ensuring compliance. 
 
Where susceptible processes were or could be co-located, we found more systematic solutions.  
These solutions typically involved UPS integrated with back-up generation serving multiple 
machines or processes. Data-processing facilities were commonly centralized and hardened in 
this manner. 
 
Recognition that most power-quality events were the result of routine operations on the utility’s 
distribution system has led some customers take utility service at a higher voltage.  This strategy 
has been expensive but highly effective for some participants in our study.   
 
We asked participants about recent heightened concerns in California over rolling blackouts and 
the trend toward outsourcing of operations.  We speculated that moving operations out of the SV 
area might be perceived as an effective strategy for addressing reliability and power-quality 
concerns.  By and large, the typical response was that the economic forces driving firms to move 
manufacturing (including power-quality-susceptible processes) out of the SV area were related to 
larger-scale concerns than power quality.  One participant observed that moving manufacturing 
to Southeast Asia simply amounted to trading vulnerability to Silicon Valley power-quality 
problems for vulnerability to the power-quality problems of Southeast Asian utilities.  Only one 
participant cited reliability and power quality as a consideration in a corporate decision to move 
data processing to a central facility in another part of the U.S. where the firm’s new facility had 
been specifically designed to insure higher levels of resilience to reliability and power-quality 
problems (among other features that were incorporated into its design). 
 
Most of the actions taken by the firms we interviewed to reduce vulnerability to electricity-
reliability and power-quality problems have been highly cost effective.  Payback periods that 
were disclosed for specific investments were generally shorter than two years.  It was noted that 



Pilot Evaluation of Electricity-Reliability & PQ Monitoring in CA’s Silicon Valley with the I-Grid System   

30 

in the electronics industry, investments with payback periods longer than two years longer are 
simply not considered.  One participant said his firm’s payback criterion was 18 months. 
 
With respect to paybacks, it appears that there is much low-hanging fruit.  One participant cited a 
recent $2.5-million investment that paid for itself in nine months.  Another investment paid for 
itself in six months by preventing a single shutdown; shutdowns had previously been occurring 
once or twice a year. 
 
Back-up generation was a subject that drew mixed reactions.  Fears of rolling blackouts had led 
many firms to make substantial investments in back-up generation during 2001 and 2002.  
However, few firms actually experienced rolling blackouts.  Some firms are served by municipal 
utilities that were not affected by the rolling blackouts of 2000 and early 2001.  Several firms 
joined PG&E’s Optional Binding Mandatory Curtailment program, which allowed them to avoid 
subsequent rolling blackouts in return for immediately dropping load in response to a call from 
the utility.11  But, most important of all, there were no calls for rolling blackouts during the 
summer of 2001 or 2002.  At least one participant indicated that there was some bitterness 
among firms that had invested in back-up generation to protect against rolling blackouts that did 
not materialize. 
 
6.4 Barriers to Iimplementing Electricity-Reliability and Power-Quality Solutions 

In an earlier subsection, we touched broadly on the lack of awareness and understanding as 
barriers to implementation of electricity-reliability and power-quality solutions.  In this final 
subsection, we address barriers specifically by focusing on the roles of education/training, 
company organizational structure, and corporate practices and decision making. 
 
Education/Training  
Participants involved in the pilot project had all received modest to significant professional 
training in electricity-reliability and power-quality issues.  One had authored a standard industry 
textbook on power-quality monitoring.  These participants, in our opinion, are not representative 
of the majority of staff in firms addressing electricity-reliability and power-quality issues in the 
industry today. 
 
Several participants mentioned education and training as the key to improving businesses’ ability 
to address electricity-reliability and power-quality issues in an economically efficient manner.  
One participant proposed that the current bias toward hardware solutions was a direct result of 
the poor understanding among many facilities staff members of the root causes of most power-
quality problems (namely, grounding problems within facilities).   
 
One participant opined that, “Generally, approaches to addressing reliability problems are 
reactionary and made hastily; they are often not well thought-out.  The result is to try to fix what 

                                                 
11 An interesting anecdote we heard was that many firms found that they could easily shed 30 percent of 
load with little or no impact on operations.  Some recognized these as energy-efficiency opportunities 
(i.e., as evidence that this load could be reduced all the time, not just in response to system emergencies); 
nonetheless, these opportunities to save energy were not usually implemented.  It was never suggested 
that these low-cost opportunities to save energy were passed up to maintain a higher baseline. 
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appears to be hurting without determining the real underlying problems.  This lack of 
understanding often leads to overspending on expensive hardware solutions when a much less 
expensive solution would be equally (or more) effective.  For example, rotating machinery can 
ride through a momentary loss of power, so protecting the controls alone, rather than sizing a 
UPS to carry the load of the entire machine, would be a much cheaper solution.” 
 
Organizational Structure 
As we learned more about how firms addressed electricity-reliability and power-quality 
problems, we gained a greater understanding of how firms’ organizational styles affected their 
ability to address these problems.  Most participants in the pilot study were staff from the 
facilities engineering departments of their firms and were generally responsible for all utility 
services, including electricity, gas, and water.  Facilities staff typically become involved in 
addressing electricity-reliability and power-quality problems when these problems are raised by 
production staff (“something is not working; please fix it now.”) 
 
As noted previously, we were led to believe that facilities staff generally do not have extensive 
training in electricity-reliability and power-quality issues.  At one participating firm, we 
interviewed a third party that had been hired specifically to provide specialized expertise in 
addressing electricity-reliability and power-quality issues.  In this instance, expertise was 
brought in house by outsourcing this aspect of the firm’s facilities maintenance and operations. 
 
In some firms with highly specialized equipment, facilities staff share responsibility with 
production engineering staff for identifying and addressing electricity-reliability and power-
quality problems.  Production engineering staff typically propose solutions for individual 
equipment; facilities staff may be able to take a more systematic view of solutions to the 
problems.  In these collaborative settings, ensuring good communication and coordination 
between these two staffs is critical to addressing problems effectively. 
 
One participant suggested that neither facilities nor production staff was the appropriate 
organizational entity to address electricity-reliability and power-quality issues.  In his opinion, 
quality-control staff were the appropriate entity to recommend solutions to these problems 
because these staff members are in the best position to assess solutions from the standpoint of the 
net impact on a firm’s productivity. 
 
Corporate Practices and Decision Making 
A final set of barriers to addressing electricity-reliability and power-quality issues is corporate 
practices and decision making.  To some extent, we believe this barrier to be the most 
fundamental and challenging.  That is, addressing both of the types of barriers discussed above, 
education and training and organizational structure, depends ultimately on corporate recognition 
of and motivation to address electricity-reliability and power-quality problems. 
 
One participant observed that a major challenge for firms addressing power-quality and 
electricity-reliability problems is that traditional accounting systems make it difficult to quantify 
the full dollar impact of these problems.  If these cost impacts are not reliably accounted for, 
economic justification of actions or investments to address them is very difficult. 
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Even with reliable accounting, capturing the attention of senior management is an ongoing 
challenge.  More than one participant noted that the attention of senior management is a scare 
commodity.  Problems must rise to a significant level to gain attention.  Although focused 
attention may be devoted to solving a problem that is perceived as significant, attention is often 
easily diverted, if a solution is not found quickly, to other newer problems that appear more 
pressing.  In this regard, heightened public awareness of electricity issues in California has likely 
had a positive effect on firms’ effectiveness in addressing electricity-reliability and power-
quality issues.  According to one participant: “Deregulation moved electricity, as an issue, to the 
board room.” 
 
Related to this observation, another participant offered “Power quality has always been a tough 
sell from the beginning.  No one wants to buy insurance.  The motivators are the usual ones: fear, 
uncertainty, and doubt.”  He went on to relate “Executive interest is directly related to the time 
since the most recent bad experience: today, no one is buying gen-sets.  I call this the “half-life” 
of pain.” 
 
Even with awareness and attention to electricity-reliability and power-quality problems, 
idiosyncrasies of corporate decision making sometimes take precedence.  One participant 
recounted an anecdote in which a power-quality solution with a 7.5-hour payback was passed up 
because, if installed, it would take up space that would require reducing the number of machines 
that could operate in the facility.  With the power-quality solution, the throughput of the 
remaining fleet of machines would have more than compensated for the lost output of the 
machine that would have more than compensated for the lost output of the machine that would 
have been displaced. 
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7. Toward Development of a Living National Database of Electricity Reliability and 
Power Quality  

One aim of this pilot project was to evaluate the I-Grid system as a vehicle for improving the 
quantity and quality of information about power quality that is available in the public domain.  
The I-Grid system has two key features that could facilitate creation of a living, national database 
of power-quality information.  First, the low cost of the I-Grid monitors makes possible much 
wider deployment than would be possible with reliance on traditional, more expensive monitors.  
Second, uploading of the information from individual monitors to a central database enables easy 
access, aggregation, and analysis of information from a large number of monitors.    
Synchronization of all sensors to the central database server, and of the server to the NIST 
standard clock, allows aggregation across wide areas. 
 
This section reviews experiences from the pilot project that highlight considerations and issues 
relevant to wider deployment of the I-Grid.  The information has been grouped under the 
following subtopics: recruiting participants and installing monitors; improving central database 
infrastructure; and improving data aggregation and analysis. 
 
7.1 Recruiting Participants and Installing Monitors 

Recruitment of participants for the pilot project was a time-consuming process.  Weeks and 
sometimes months passed between firms’ initial agreements to participate, and the final 
installation of monitors.  Although recruitment was straightforward, installation was hampered 
by key site-specific considerations. 
 
Recruitment 
Generally speaking, reaching agreement to participate was very straightforward.  There was 
strong interest in the project.  Participants were motivated both by the desire to acquire power-
quality information at low cost and by a sense of good corporate citizenship to support a DOE 
study. Guarantees of the confidentiality of firms’ proprietary information, though important, did 
not appear to be major consideration in the decision to participate, with one exception.  We 
assume that future deployment of I-Grid monitors will be driven by the business interests of 
either customers or utilities. Customers will have a need for power-quality monitoring; utilities 
will be seeking to improve customer service by providing enhanced power-quality monitoring.  
Thus, recruitment is not likely to be a significant issue. 
 
Installation 
Installation of monitoring sensors was not such a simple matter, however.  The process was 
hampered by two, key, site-specific considerations.  First, the monitors require phone lines for 
uploading information to the central database and downloading software upgrades. Access to 
phone lines was complicated by: 1) the need to schedule phone-line installation (often involving 
another department or requiring a contractor); 2) difficulties in installing phone lines at locations 
where it was most desirable to monitor power quality (e.g., at specific machines/processes on a 
factory floor); and 3) initial opposition from IT Department personnel in some companies to 
sending data our of their buildings.  Second, for the three-phase monitor, it is necessary to 
coordinate installation with scheduled downtime and to employ the services of a trained 
electrician. 
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SoftSwitching Technologies is developing an I-Grid monitor that is based on wireless 
communications technology.  This development should facilitate installation of future monitors.  
However, it also increases the cost of the monitors.  
 
7.2 Central Database Infrastructure 

Currently, the I-Grid sensors upload information to a central database.  The database exhibited 
no problems handling the information provided by the 22 I-Grid monitors in this study as well as 
information from roughly 800 additional I-Grid monitors that were installed independent of this 
study. However, a nationwide array of perhaps 50,000 monitors would require reassessment and 
likely enhancement of the existing database infrastructure to increase data acquisition, storage, 
and analysis capabilities.   
 
In addition, system modifications should be undertaken to accommodate information from a 
wide variety of power-quality monitors.  The richness of the database and the rate at which it can 
be populated will be greatly enhanced if power-quality monitors produced by other 
manufacturers can contribute information.  Open data-transmission protocols should be 
developed to facilitate achievement of this goal. 
 
7.3 Aggregation and Analysis of Data 

This pilot project demonstrates that electricity-reliability and power-quality data can be collected 
from remote sites and aggregated and analyzed, permitting conclusions to be drawn about 
specific individual participants as well as about the state of the larger grid from which the 
participants receive power.  For this project, many of these analysis activities were performed 
manually.  Increasing the scale and scope of data collection requires the automation and 
standardization of aggregation, analysis, and reporting of information from the database—
including the careful normalization of data put into the public domain.  These efforts should be 
prioritized by the specific objectives of those who will use the information.   
 
Several types of analysis are of particular interest, including: 
 
1. Increasing understanding of the extent of what can be learned from a network of monitors 

with and without knowledge of grid topology.  We postulated that events recorded 
simultaneously on many monitors originated on the transmission system.  We were also able 
to identify events that were localized to smaller geographic areas.  It would be useful to 
assess the directionality of initiating events by examining timestamps more closely.  A more 
densely concentrated network of monitors could also provide more precise localization of 
initiating phenomena. 

 
2. Developing standard statistical reports, based on emerging industry standards for recording 

and reporting power-quality events, for use in benchmarking electricity reliability and power 
quality. 

 
3. Integrating global information system (GIS) capabilities into the database, which would 

greatly improve our ability to determine the extent of outages or power-quality events. 
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Appendix. I-Sense Monitor Summary Specifications 

Table A1 contains summary specifications for the I-Sense web-enabled monitors.  All user 
controls and data viewing are available through the I-Grid website; website summary 
specifications are included in Table A2.  The only requirement for client software is a W3C 
HTML 4.01 compliant web browser. 
 
Table A- 1. Summary I-Sense Monitor Specifications 

 

Voltage Ratings - 120 V, 1-phase, 50/60 Hz 
- 120 V(L-N)/208V(L-L), 3-phase, 50/60Hz 
- 480 V(L-L), 3-phase, 50/60 Hz 

Input Range 0 to 120% of peak nominal voltage.  Input saturation (clipping) is flagged 

Accuracy Typically ±0.2% of full scale, Max. ±1% of full scale 
True rms voltage computation 

Sample Rate 32 samples/cycle reported (with 3-times over sampling) 

Event Detection (1) half-cycle RMS voltage deviation: <87% or >115% of nominal 
(2) Adaptive wave shape deviation algorithm 

Event Time stamp Based on SNTP Time Protocol, Synchronized to UTC, NIST reference via the I-Grid 
servers. Individual Sense monitors are typically synchronized to ± 0.1 s 

Event rms voltage recording - rms voltage captured every half-cycle (8.3 ms) on each channel. 
- For sustained interruptions, first 2 minutes of rms voltage data are captured. 

Event waveform recording 32 points per cycle, up to 3 phases; maximum of 8 cycles captured:  from –1 to +3 
cycles at start of event, and –3 to +1 cycles at end of event end 

Data Logging Non-volatile event memory 
   Up to 200 events (1-phase units) 
   Up to 70 events (3-phase units) 
Event time stamp, synchronized to UTC 
10-minute min/max/avg. rms data 
Event Transmission criteria is user programmable 
Verified event transmission to I-Grid servers clears internal data store 

Communications V.32bis (14.4kbps)/V.42 internal modem 
Shared analog telephone line compatible 
HTTP, TCP/IP, PPP, XML protocols for Internet communication to I-Grid servers 
Local Internet POP provided for most locations 

User Interface LED/button shows status, 
other options configurable from I-Grid website 

Internal battery Rechargeable, long-life, 9V size 
Enables dial out on sustained power interruption  

Temperature 0ºC to 45ºC 

Certifications UL, CSA, FCC, CE, ICES 

Software Field upgradeable via modem communication with I-Grid servers 
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Table A- 2.  Summary I-Grid Website Specifications 

 

User Interface http://i-grid.com or https://I-grid.com (secure) website 

Event Display - Time stamp 
- rms voltage profile and voltage waveforms, for each channel (phase)  
- Magnitude vs. Duration plots of user selected events 
- Display events against ITI and SEMI F47 equipment susceptibility curves 

Events classified According to IEEE 1159: sags, swells, under-voltages, over-voltages, interruptions 

Time Stamp Based on SNTP Time Protocol, Synchronized to UTC, NIST reference 

Event Storage (on-line) Database capacity: greater than 10,000 events per monitor 

Response Data posted typically 90-120 s after event 

Event Notification Via email, with user-configurable notification criteria.  
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