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Abstract 
Connection of electric storage technologies to smartgrids will have substantial implications for building energy systems. Local 
storage will enable demand response. When connected to buildings, mobile storage devices such as electric vehicles (EVs) are 
in competition with conventional stationary sources at the building. EVs can change the financial as well as environmental 
attractiveness of on-site generation (e.g. PV or fuel cells). In order to examine the impact of EVs on building energy costs and 
CO2 emissions, a distributed-energy-resources adoption problem is formulated as a mixed-integer linear program with 
minimization of annual building energy costs or CO2 emissions and solved for 2020 technology assumptions. The mixed-
integer linear program is applied to a set of 139 different commercial buildings in California and example results as well as the 
aggregated economic and environmental benefits are reported. Special constraints for the available PV, solar thermal, and EV 
parking lots at the commercial buildings are considered. The research shows that EV batteries can be used to reduce utility-
related energy costs at the smart grid or commercial building due to arbitrage of energy between buildings with different 
tariffs. However, putting more emphasis on CO2 emissions makes stationary storage more attractive and stationary storage 
capacities increase while the attractiveness of EVs decreases. The limited availability of EVs at the commercial building 
decreases the attractiveness of EVs and if PV is chosen by the optimization, then it is mostly used to charge the stationary 
storage at the commercial building and not the EVs connected to the building. 
 
Keywords 
carbon emissions, combined heat and power, commercial buildings, distributed energy resources, distributed generation, 
electric vehicle, load shifting, microgrid, optimization, smart grid, storage technologies 
 
1. Introduction 
Several papers analyze the impact of renewable energy sources and EVs on the power grid and electricity prices. For example, 
Sioshansi and Denholm, 2009 look into the possibility of providing ancillary services and storage capabilities to the power grid 
by utilizing plug-in hybrid electric vehicles (PHEVs). Wang et al., 2010 model the impact on electricity prices due to 
additional power grid loads from EVs. Since buildings are the link between the power system and the EVs, this work uses a 
building centric approach and looks into the cost and CO2 benefits for buildings adopting distributed energy resources (DER). 
Furthermore, there are many DERs in a building which will be influenced by EV batteries. Also, stationary storage in buildings 
attracts more research attention and this can create competition between mobile storage and stationary storage. On the other 
hand, when mobile storage is not suitable for EV usage anymore it can be recycled and used as stationary storage in buildings, 
where the battery specifications can be relaxed. This 2nd life of EV batteries attracts the attention of researchers and this might 
also create opportunities for EV batteries (see also TSRC). All these options and interactions of DER in buildings require an 
integrated approach for analyzing the benefits of EVs connected to buildings. 
 
This paper focuses on the analysis of the optimal interaction of electric vehicles (EVs) with commercial smartgrids/microgrids, 
which may include photovoltaic (PV), solar thermal, stationary batteries, thermal storage, and combined heat and power (CHP) 
systems with and without absorption chillers. A microgrid is a group of interconnected loads and DER within clearly defined 
electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect 
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from the grid to enable it to operate in both grid-connected or island mode. An overview of microgrids can be found in 
Hatziargyriou et al., 2007.  
In previous work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM) with 
its mathematical formulation documented in Siddiqui et al., 2005 and Stadler et al., 2008. Its optimization techniques find both 
the combination of equipment and its operation over a typical year that minimizes the site’s total energy bill or carbon dioxide 
(CO2) emissions, typically for electricity plus natural gas purchases, as well as amortized equipment purchases. It outputs the 
optimal distributed generation (DG) and storage adoption combination and an hourly operating schedule, as well as the 
resulting costs, fuel consumption, and CO2 emissions. DER-CAM always takes the perspective of the building owner or 
operator since it is a customer adoption model and does not optimize the benefits of utilities or the society directly. However, 
the results can be aggregated to a state level as shown below, which allows estimating changes in the state’s or the commercial 
sector’s CO2 emissions. 

 
Berkeley Lab has access to the California End-Use Survey (CEUS), which holds roughly 2700 building load profiles for the 
commercial sector in California (see CEUS). These hourly load profiles are needed to make optimal decisions on the operation 
of the DG equipment, which influences the optimal DG investment capacities since DER-CAM considers amortized 
investment and operation costs. Berkeley Lab compiled a database of 139 representative building load profiles for buildings 
with peak loads between 100 kW and 5 MW, and buildings in this size range account for roughly 35% of total statewide 
commercial sector electric sales (Stadler et al., 2009). The 139 load profiles are made up of the following building types in 
different sizes: hospitals, colleges, schools, restaurants, warehouses, retail stores, groceries, offices, and hotels/motels.  
 
Mobile storage can directly contribute to tariff-driven demand response in these commercial buildings. By using EVs 
connected to the buildings for energy management, the buildings could arbitrage their costs. However, since the car battery 
lifetime is reduced due to the increased energy transfer, a model that also reimburses car owners for the degradation is 
required. In general, the link between a microgrid and an EV can create a win-win situation, wherein the microgrid can reduce 
utility costs by load shifting, while the EV owner receives revenue that partially offsets his/her expensive mobile storage 
investment. Previous work done for certain types of buildings shows that the economic impact for the car owner is limited 
relative to the costs of mobile storage for the site analyzed, i.e., the economic benefits from EV connections are modest 
(Momber et al., 2010 and Mendes et al., 2011). However, that work does not consider all possible DER technologies in 
buildings nor does it track the CO2 savings from mobile storage connected to buildings.  
 
This paper will specifically focus on the new EV equations in DER-CAM, e.g. EV specific electric balance equation or CO2 
emissions from EV electricity exchange, and assess the impact of EVs connected to different types of commercial buildings in 
2020. The 139 buildings are grouped in different climate zones in California and within the three major utility service 
territories of Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and San Diego and Gas Electric (SDG&E). 
Please note that this paper does not model the impact on electricity prices due to additional power grid loads from EVs and the 
assumed tariffs for the three used service territories are assumed to be static. For impacts on marginal energy prices please 
refer to (Wang et al., 2010). Furthermore, this work uses an area constraint for the maximum possible PV and solar thermal 
adoption as well as for the available EV parking space. This constraint has a significant impact on the DER adoption and 
operation and can drive up building energy costs. 
 
The structure of this paper is as follows: 

• Section 2 describes the Distributed Energy Resources Customer Adoption Model (DER-CAM) 
• Section 3 discusses how EVs are modeled in DER-CAM 
• Section 4 presents the data used for the analyses performed here 
• Section 5 provides the results and discusses the impact on mobile and stationary storage adoption 
• Section 6 summarizes the paper, discusses its limitations, and provides directions for future research in this area. 

 
2. DER-CAM 
DER-CAM is a mixed-integer linear program (MILP) written and executed in the General Algebraic Modeling System 
(GAMS). Its objective is typically to minimize the annual costs or CO2 emissions for providing energy services to the modeled 
site, including utility electricity and natural gas purchases, plus amortized capital and maintenance costs for any DG 
investments. Other objectives, such as carbon or energy minimization, or a combination are also possible. The approach is 
fully technology-neutral and can include energy purchases, on-site conversion, both electrical and thermal on-site renewable 
harvesting. Furthermore, this approach considers the simultaneity of results. For example, building cooling technologies are 
chosen such that the results reflect the benefit of electricity demand displacement by heat-activated cooling, which lowers 
building peak load and, therefore, the on-site generation requirement, and also has a disproportionate benefit on bills because 
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of demand charges and time-of-use (TOU) energy charges. Site-specific inputs to the model are end-use energy loads, detailed 
electricity and natural gas tariffs, and DG investment options. In general these load profiles can be simulated and gathered 
from building simulation tools (EnergyPlus) or taken from building information systems in the case of existing buildings. 

 
Figure 1 shows a high-level schematic of the possible building energy flows modeled in DER-CAM. For this we use Sankey 
diagrams, which show in a graphical way how loads can be met by different resources at given efficiencies (Schmidt, 2006). 
Thus, a Sankey diagram provides a full view of possible resources that can be considered within the optimization.  
 
Available energy inputs to the site are solar radiation, utility electricity, and utility natural gas. The location-specific solar 
radiation will impact the adoption of PV and solar thermal technologies. Previous work has shown that the utility electricity 
prices and utility natural gas prices are a main driver for natural gas fired distributed technologies. The gross margin of a gas-
fired power plant from selling a unit of electricity (spark spread) determines the attractiveness of the plant. In case of TOU 
tariffs, the spark spread increases dramatically during the expensive (normally noon) hours, which increases the attractiveness 
of gas-fired technologies. 
 
DER-CAM solves the mixed integer linear problem over a given time horizon, e.g., a year, and selects the economically or 
environmental optimal combination of utility electricity purchase, on-site generation, storage and cooling equipment required 
to meet the site’s end-use loads at each time step. In other words, DER-CAM looks into the optimal combination/adoption and 
operation of technologies to supply the services specified on the right hand side of Figure 1. All the different arrows in Figure 
1 represent energy flows, and DER-CAM optimizes these energy flows to minimize costs or CO2 emissions. Black arrows 
represent natural gas or any bio-fuel, light grey represents electricity, and darker grey heat and waste heat, which can be stored 
and/or used to supply the heat loads or cooling loads via absorption cooling. 
 
The outputs of DER-CAM include the optimal DG/storage adoption and an hourly operating schedule, as well as the resulting 
costs, fuel consumption, and CO2 emissions. The approach does not consider EVs in isolation but rather alongside the rest of 
the DER equipment. All available technologies compete and collaborate, and simultaneous results are derived. In this way, it 
can be shown that PV and stationary electric storage can compete in certain situations. If the focus of the optimization is on 
cost minimization and a TOU rate with high costs during noon hours is used, then it can be demonstrated that stationary 
electric storage will be discharged at the same time when the PV system is operational (Stadler et al., 2009b). The on-site fuel 
use and carbon savings are, therefore, quite accurately estimated and can deviate significantly from simple estimates. Also, the 
optimal pattern of utility electricity purchase is accurately delivered. Finding likely solutions to this complex problem for 
multiple buildings would be impossible using simple analysis, e.g. using assumed equipment operating schedules and capacity 
factors. Because CEUS buildings each represent a certain segment of the commercial building sector, results from typical 
buildings can readily be scaled up to the state level in order to provide policymaking insights. 
 
3. EV Approach 
Once EVs are connected to commercial buildings, electricity from their batteries can be transferred to and from the sites. The 
building energy management system (EMS) can use this additional battery capacity to lower its energy bill and/or carbon 
footprint. Whenever possible, economically attractive energy from a renewable energy source or CHP system at the building 
could be used to offset EV charging at home. In this paper, DER-CAM is used to find the optimal charging and discharging 
schedule for the EV batteries. Decision variables are, therefore, the activity levels of all available energy sources so that energy 
loads are met, as well as the optimal installed capacity, making it a three-level assignment problem: energy loads, supply 
scheduling, and installed capacity. Included in these variables are utility energy purchases, local energy production, and EV 
interactions, which are the focus of this paper. It is assumed that the EV owner will receive compensation for battery 
degradation caused by the commercial building EMS and is reimbursed for the amount of electricity charged at home and later 
fed into the commercial building (see equations 1 & 5). On the other hand, if the EV is charged by electricity originating from 
the commercial building, then the car owner needs to pay the commercial building for the electricity. 
 
               (1) 
 

Cbat EV battery degradation annual costs caused by the 
commercial building, $ 

EEV total annual electricity exchange through the EV 
battery, caused by the commercial building, kWh 

CL capacity loss factor, dimensionless 
RCbat replacement cost of the EV battery, $/kWh 
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The monetary losses attributable to charging and discharging as well as the decay will be covered by the commercial building. 
However, since this work also reports on the environmental impact of EVs connected to commercial buildings, the modeling of 
the marginal CO2 emissions is important. The marginal CO2 emissions when the EVs are plugged in at residential buildings for 
charging are tracked as this is necessary to be able to calculate the proper CO2 changes in the commercial buildings (see 
equations 6 & 7). Consider the abstract state of charge (SOC) pattern (solid black line) for an EV connected to an office 
building in Figure 2, and it is obvious that the commercial building benefits from energy (area A) that has a carbon foot print 
that is related to times when the EV is not connected to the commercial building. Since the state of charge at disconnection 
(SOCout) is less than at connection (SOCin), a net energy transfer to the commercial building takes place and that energy might 
have a different carbon content since it originates from other sources at different times. Therefore, tracking the CO2 emissions 
and different cases is an important feature within DER-CAM. This becomes even more complicated if the EVs are connected 
to different buildings during a certain period of time10.  
 
The high-level formulation used in DER-CAM follows the standard linear programming approach: 
 
             (2) 
  
   
     
 
where: 

c cost coefficient vector 
x decision variable vector 
A constraint coefficient matrix 
b constraint coefficient vector 
L decision variable lower boundary vector 
U decision variable upper boundary vector 

 
This translates to DER-CAM in the simplified11 mathematical formulation explained below, where an emphasis is given to EV 
specific formulation. Please refer to Figure 3 for the representative MILP solved by DER-CAM 
 

3.1 Input Parameters 

a. Indices 
m month index (1,2,… 12)
h hour index (1,2,… 24)

 

b. Market data 

Cfix m fixed electricity costs, $ 
CO2 EV-home m,h macrogrid CO2 emission during home charging period, kgCO2/kWh.  

These are the CO2 emissions of energy transferred to the commercial 
building. CO2EV-home m,h is calculated based on the emissions when the 
EV is connected to the residential building. 

 

c. EV parameters 
 EV battery capacity, kWh 
 EV battery maximum charge rate, dimensionless 

 EV battery maximum discharge rate, dimensionless 

pEV EV electricity exchange price, $/kWh.  
Set to residential charging rate for EVs 

 EV battery maximum state of charge, dimensionless 

 EV battery minimum state of charge, dimensionless 
c EV battery charging efficiency, dimensionless 
dc EV battery discharging efficiency, dimensionless 
 electricity storage loss factor for the EV battery, dimensionless 

                                                           
10 Multiple building connections are not considered in this work. 
11 The full DER-CAM code consists of roughly 5600 lines of code for equations, parameters, and data sets. Please note that the full detailed mathematical 
formulation of DER-CAM is roughly 17 pages. 
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d. Customer loads 
DB m,h electricity demand from the building, kWh 

 

3.2 Decision Variables 

a. Costs 
Ctotal total annual energy cost of the commercial building, $ 
Celec electricity costs, $ 
CDER distributed energy resources costs (amortized capital costs of investments), $.  
Cfuel fuel costs, $ 
CDR demand response costs for other non-storage technologies, $ 
Cbat EV battery degradation costs, $ 

Cvar m,h variable electricity costs (energy and demand charges), $ 
CEV m,h EV electricity costs, $ 

 

b. CO2 emissions 
CO2_total total annual CO2 emissions, kgCO2 
CO2_elec CO2 emissions from electricity consumption, kgCO2  
CO2_fuel CO2 emissions from DG fuel burning, kgCO2 
CO2_EV CO2 emissions from EV electricity exchange, kgCO2 

 

c. Electricity exchange with the micorgrid/building 
SU m,h electricity supplied by the utility, kWh 

SDER m,h electricity supplied by distributed energy resources, kWh 
SSt m,h electricity supplied by local/stationary storage, kWh 
Vm,h electricity sales, $ 

 

d. Electricity exchange with EVs 
DEV m,h electricity demand from EVs, kWh 
DSt m,h electricity demand from local/stationary storage, kWh 
Ecr

m,h electricity flow from car to residential building,  
Ecr  0, kWh 

Erc
m,h electricity flow from residential building to car, kWh 

ESEV m,h electricity stored in EVs, kWh 
i m,h EV storage input, kWh 
o m,h EV storage output, kWh 

SEV m,h electricity supplied by EVs, kWh 

 

3.3 Objective Function – cost minimization 

The most commonly used goal function in DER-CAM is total energy cost minimization. This includes electricity 
related costs, amortized capital costs of DER equipment, fuel costs, demand response measure costs, EV battery 
degradation costs, and sales. 
 
                  (3)12 
 

              (4) 

 

    



        (5) 

 
3.4 Objective Function – CO2 minimization 

As mentioned previously, a second objective function is also available to DER-CAM. In this case, the objective 
becomes minimizing total CO2 emissions, which includes emissions linked to utility electricity and fuel usage, 
but also to the CO2 emissions associated with the use of electricity from EVs and their charging at different time 
periods. 
 
            (6)13 

                                                           
12 Please note that only the EV relevant variables of equation 3 are shown in more detail. For Cbat please refer to equation 1. 
13 Please note that only the EV relevant variables of equation 6 are shown in more detail. 
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         (7) 

 
3.5 Constraints 

a. Balance equations 
This includes electric, heating and cooling balance equations, but we focus on the electric balance (equation 8), as 
this relates to the EV interactions. Another relevant example is the EV battery specific electric balance equation 
(equation 9). 
 
               (8) 
 
               (9) 

 
b. Operational constraints 

Operational constraints are applied to all technologies involved in DER-CAM, and are used, for instance to 
model technology behavior. Highlighted here are the net input and output electric flows from EVs (equations 10 
&11), as well as capacity related constraints (equations 12, 13 &14). 
 
            (10) 

  


        (11) 

 
               (12) 

             (13) 

            (14) 

 
4. Input Data, Technology Specification, and Parameters 
The starting point for the hourly load profiles used within DER-CAM is the CEUS database, which contains 2790 premises in 
total. DER are very common at industrial buildings with electric peak loads above 5 MW, but mostly overlooked for 
commercial buildings with loads below 5 MW. Thus, the focus here is on mid-sized buildings, between 100 kW and 5 MW 
electric peak load, and the assumption that DER will not be attractive for <100 kW buildings. This assumption results in the 
consideration of 35% of the total commercial electric demand in the service territories of PG&E, SCE, and SDG&E. 
 
As is typical for Californian utilities, the electricity tariff has a fixed charge plus TOU pricing for both energy and power 
(demand) charges. The latter are proportional to the maximum rate of consumption (kW), regardless of the duration or 
frequency of such consumption over the billing period. Demand charges are assessed monthly and may be for all hours of the 
month or assessed only during certain periods, e.g. on-, mid-, or off-peak, or be assessed at the highest monthly hour of peak 
system-wide consumption. For example, for buildings with electric peak loads above 500 kW in PG&E’s service territory, the 
E-19 TOU tariff is used as the 2020 estimate. This tariff is used for the PG&E school example in the next section. The E-19 
consists of a seasonal demand charge between $13.51/kW (summer) and $1.04/kW (winter), the TOU tariff varies between 
$0.16/kWh (on-peak) and $0.09/kWh (off-peak) in the summer months (May-Oct). Winter months show only $0.01/kWh 
difference between mid-peak and off-peak hours. Summer on-peak is defined from 12:00-18:00 on weekdays. All details of E-
19 can be found at (PG&E E-19 tariff). It is assumed that in PG&E and SCE service territory the EVs can be charged at home 
at night for 6c/kWh (PG&E E-9 tariff) and in the SDG&E for 14c/kWh. All used commercial utility tariffs for this paper can 
be found at (Stadler et al., 2009). The demand charge in $/kW/month as well as the on-peak energy costs are a significant 
determinant of technology choice and sizing of DG and electric storage system installations as can be seen in the next section.  
 
As described in previous sections, DER-CAM finds the optimal combination of technologies in order to reach the objective, 
defined in the specific runs. The available investment options comprise of technologies for distributed generation of electricity, 
heating and cooling energy, as well as storage technologies. DER-CAM distinguishes between discrete and continuous 
technologies to improve the optimization speed of DER-CAM: the former can only be picked in discrete sizes, whereas the 
latter may be selected in any size. However, discrete technologies allow modeling of economies of scale in a better way than 
continuous ones, and therefore, some important technologies, e.g. CHP are considered as discrete ones. For discrete 
technologies please refer to Table 1 and for continuous ones to Table 2. 
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In DER-CAM, there are two types of internal combustion engines (ICE) and fuel cells (FC) available – with and without heat 
exchangers (HX) (see Table 1). HX can enable waste heat utilization for hot water usage and absorption cooling, thereby 
allowing total energy conversion efficiencies of up to 80%. Their technical specifications and costs are based on historic data 
and our own estimates (Goldstein et al., 2004, Firestone, 2004, and SGIP, 2008). The continuous technologies available in 
DER-CAM at this point are PV, solar thermal collectors, absorption chiller systems as well as thermal and electric storage, and 
EV batteries. Costs of continuous technologies available in 2020 are derived from various sources and are displayed in Table 
2. For storage technologies, the economic performance and, hence, the adoption by the building EMS is also affected by some 
key technical parameters (see Table 3). First, there is the charging and discharging efficiency of the storage. For both electric 
and thermal storage, a charging and discharging efficiency of 90% is assumed, thus representing a technology status likely to 
become standard in 2020. Another important parameter is the decay of the storage systems, which defines their degradation 
due to usage. Finally, there is the maximum charging and discharging rate, which is a key input for the building energy 
management system, since it determines the maximum energy flow that the storage can provide to the building at every time 
step.  
 
For the mobile storage systems, it is assumed that Li-Ion batteries with a capacity of 16 kWh are used. This is roughly the size 
of current EVs or plug-in hybrid vehicles and is used as a proxy for vehicle batteries connected to the commercial building 
(GreenCarCongress). For mobile storage systems, a charging/discharging efficiency of 95% is assumed, a value likely to be the 
standard in 2020, given the dynamic progress in this field. Battery decay is an important parameter for mobile storage as well, 
since it defines the degradation cost that has to be covered by the commercial building when using mobile storage capacities 
(see section “EV Approach”). Table 5 shows the assumed times when vehicles are connected to the different building types 
and can be used by the EMS in principle. This, of course, neglects the stochastic nature of the driving patterns. However, 
sensitivity results show that the main results for the charging and discharging strategies for mobile storage, derived from this 
deterministic work will basically hold under consideration of uncertain driving patterns. Driving patterns just changes the 
connection periods to the buildings, but not the main drivers for the charging cycles - the electricity prices. Finally, Table 6 
shows the area constraint used for PV, solar thermal, and EV parking space. Based on the CEUS database, the average floor 
space was taken as an estimate for the maximum area available for these technologies. Since no detailed building information 
can be collected from CEUS, no other information is available.  
 
The marginal carbon emissions of the macrogrid for 2020 are taken from Mahone et al. 2008. 
 
5. DER-CAM Results 
Results for cost minimization, CO2 minimization, and multi-objective optimization for two selected buildings of the CEUS 
building stock are shown in this section. A large school in the San Francisco Bay Area with 3340 m2 floorspace and 550kW 
electric peak load as well as a healthcare facility in San Diego with 3260 m2 floorspace and 400kW electric peak load are 
selected. These two examples are used to demonstrate how mobile storage capacity is adopted in commercial buildings 
considering an area constraint for PV, solar thermal, and EV adoption, and how it interacts with buildings’ DG output and 
stationary storage. At the end of this section, we show the aggregated results on CO2 savings, number of EVs used, and 
capacity of PV, as well as other DG for the state of California, considering the building types and climate zones from CEUS. 

 
DER-CAM allows optimization of the weighted building energy costs and CO2 emissions at the same time by using a multi-
objective approach (see equation 15). By increasing w, more focus on CO2 emission reduction is placed, and this approach 
allows showing the trade-off between costs and CO2 emissions14 in a building. 
 

     
   




     (15) 

 
where: 
 weight factor [0..1] 

  parameter to make equation unit less
  parameter to make equation unit less  
 

By analyzing the cases of minimal costs (=0) and four further cases with increasing  (S1 to S4), we approximated the multi-
objective frontier of the school building and the healthcare facility in two different parts of California. The principal 
connection periods of EVs to the commercial buildings differ for each building type and are shown in Table 5. In both the 
school and healthcare buildings, it is assumed that the EVs connect to the commercial buildings at 8 AM and disconnect at 6 
PM. During that time, the building EMS can manage the mobile storage in combination with other DER technologies, and 
                                                           
14 Please note that DER-CAM tracks the CO2 emissions transferred to the commercial building by mobile storage. 

11



different optimization strategies can apply. From 6 PM to 8 AM, the EVs are disconnected from the commercial buildings and 
are subject to driving and charging/discharging at the residential building. Both scenarios are subject to very different EV 
charging tariffs at the residential buildings. In the San Francisco Bay Area, EVs can be charged for 6cents/kWh compared to 
14cents/kWh in San Diego. This difference in price will influence the overall level of EV adoption, but still, general insights 
can be derived from these two cases. 
 
Figure 4 and 5 show that total energy costs can be reduced by using EVs in the building (see do-nothing vs. min cost in Figure 
4 and 5), but more focus on CO2 emission reduction results in fewer EVs connected to the building (mobile storage curve in 
Figure 4 and 5). Despite the major difference in electricity tariff rates, both cases show a similar pattern and show increasing 
stationary storage capacities combined with decreasing numbers of EVs connected to buildings. The space constraints impact 
the results dramatically as evidenced by the nearly vertical multi-objective frontier from S2 and S1 in Figures 4 and 5, 
respectively. The maximum area available for PV and solar thermal is 3340 m2 for the large school building and 3260 m2 for 
the healthcare facility. Also, the parking space for EVs is constrained by 3340m2  and 3260 m2 respectively. Another finding 
from the optimization runs shown in Table 7 and 8 is the importance of natural gas fired fuel cell systems with CHP. Due to 
the heat requirement and as well as the area constraint, efficient fuel cell systems, which allow total efficiencies up to 80%, 
will be used during times when solar thermal or PV cannot be selected. For more detailed results for all optimization cases, 
please refer to Tables 7 and 8. 
 
The major cost reduction strategy derived from the DER-CAM optimization is to charge EVs with cheap electricity at home 
and provide that energy during connection times to the commercial building (Figure 6 and 9). The higher residential EV 
charging rates in San Diego, however, reduce the connected numbers of EV in Figure 5. Figures 6 to 8 show the optimal 
diurnal electric pattern for different optimization cases for the large school building in the San Francisco Bay Area. Figure 6 
clearly shows that EVs will be used to minimize utility related energy and demand charges, since the mobile storage will be 
discharged during expensive mid- and on-peak hours (9 AM to 6 PM). No other DER technologies will be adopted at the 
school. 

 
Figure 7 illustrates the electric pattern for the school building with a multi-objective function for point S2. In this case, 
considerable PV of 352 kW and stationary storage capacity of 2068 kWh is installed. The connected mobile storage is 
practically negligible (14 kWh, or one vehicle) and so is the transferred electricity. There is a significant difference between 
summer and winter days in the way how stationary batteries are used. In summer, they are charged in the afternoon with 
excessive PV power and discharged at the beginning of the evening before CHP is activated (see Figure 7). In winter, they are 
charged during night hours with excessive CHP capacity and discharged in the morning hours before sufficient PV power is 
available (see Figure 8). In this case, stationary storage plays an important role for the electricity supply of the building 
especially in winter days.  

 
Figure 9 shows the electric pattern for the San Diego healthcare facility on a summer day with cost minimization 
(corresponding to the point min. cost, w=0 in Figure 5). In this case, the electricity for the building is mainly supplied by DG 
and by the utility. During peak hours, energy transfer from mobile storage is used to cover marginal demand. In the cost 
minimization case, there is no PV installed and no stationary battery capacity. One reason for this is the way capital costs of 
storage systems are considered within DER-CAM. Stationary storage is owned by the building, and therefore, the annualized 
capital costs for stationary storage will be considered in the optimization. In contrast, mobile storage is owned by the car 
owner, and therefore, no major capital cost reimbursements are assumed – the cars are simply around and utilized. However, 
this also means that stationary storage has considerable disadvantages in a pure cost minimization strategy. 

 
Figure 10 depicts the S1 case from Figure 5. In this case, PV is used to cover large parts of the total demand during day hours, 
thereby replacing CHP generation and consumption from the utility. During peak hours, energy from EVs is used to cover 
some demand. In the afternoon, EVs are used to balance supply and demand when DG/CHP is activated, and they absorb 
excessive electricity. Later, when demand decreases and CHP is shut down again due to a must take from PV and a 50% 
minimum capacity15 constraint on CHP, they feed electricity back to the building. Stationary batteries are charged in the 
morning and are discharged in late afternoon where they compensate the reduction in supply when EVs are leaving the 
building. Figure 10 also shows that waste heat utilization and absorption cooling reduces the electricity demand during 
expensive day hours and contributes to cost reductions (see cooling offset at the top of Figure 10). 
 
                                                           
15 To limit non-linear effects, the adopted discrete technologies need to be shut down at a minimum capacity of 50% of the nameplate capacity. 
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With increasing priority to CO2 reduction, as assumed in S2 (Figures 11 and 12), the full PV potential of the building is 
exploited. In summer, PV can cover almost the entire demand between 10 AM and 2 PM. Electricity from EVs is transferred to 
the building during shoulder hours (9-10 AM and 2-4 PM). In winter days, the total load of the building is considerably lower 
mainly because of lower cooling demand. This is why excessive supply from PV can be used to transfer electricity to the 
stationary storage around midday to be used in afternoon and evening hours. In the afternoon, PV is used to charge EVs (see 
Figure 12).  

 
Summing up the results for the two buildings, analyzed in detail with respect to EVs, we have seen that the use of mobile 
storage capacity from EVs is driven by the objective of cost minimization rather than efficiency improvement (Figures 6 and 
9). The availability of EV storage capacity to the building is also strongly dependent on the tariff for home charging of EVs. 
The lower the residential charging rate, the more EV users to provide energy to the commercial building during the day. This 
effect is clearly shown in Figures 6 and 9. For Figure 6, a home charging rate of 6 cents/kWh and for Figure 9 14 cents/kWh is 
assumed, and this reduces the mobile storage SOC considerably in Figure 9 compared to Figure 6. 

 
In most cases, EVs are charged at the residential building, and only some cases show that renewable energy is transferred from 
the commercial building to the residential building. EVs are always used to reduce the demand charges and energy-related 
costs at peak or shoulder hours when PV or other DG/CHP is not fully available. Also, we have seen that all cases with 
increasing focus on CO2 emission show increasing capacities for stationary storage, and this makes the case for considering the 
2nd life of mobile storage, meaning to re-use EV batteries in buildings after they have decommissioned from EV usage due to 
tighter performance requirements in EVs. 

 
Finally, we show the aggregated results for California. Table 9 shows the results for CEUS building stock with electric peak 
loads between 100 kW and 5 MW assuming a CO2 minimization strategy. When assuming a full CO2 minimization strategy 
(w=1), a maximum cost increase boundary needs to be imposed. Without such a cost constraint, the optimization algorithm 
could adopt any size of equipment, which would create very unrealistic adoption patterns as well high investment costs. For 
the aggregated results shown in Table 9, a cost increase constraint of 30 % was used, which is considered as realistic increase 
that customers can accept by 2020. 

 
The considered commercial buildings can reduce their CO2 emissions by adopting DER by roughly 37%. To achieve this 
reduction, roughly 15 GWh of stationary storage needs to be adopted. The utilized mobile storage is roughly 12.5 GWh, and 
this shows the importance to consider second life of mobile storage in form of stationary storage. The 4.55 GW of adopted PV 
are used to charge the stationary storage and not to charge the mobile storage (see also the diurnal electric patterns above). 
Finally, Table 9 also shows that CHP plays an important role in CO2 minimization strategies and 3.5 GW of CHP systems will 
be adopted.  

 

6. Conclusions 
The emergence of smart grids and EVs provides opportunities for transitioning towards a more energy efficient, less costly, 
and greener energy system. However, deployment of these resources by commercial microgrids requires decision support that 
simultaneously treats investment and operations. Furthermore, there is likely to be a tradeoff between costs and CO2 emissions 
barring more substantial policy reforms. In order to illustrate the benefits and challenges of the incorporation of EVs into a 
microgrid, we model the decisions of various types of California users in different geographical regions for the year 2020.  
 
Via a MILP, we find that the use of mobile energy storage provided by EVs in commercial buildings is driven more by cost 
reduction objectives than by CO2-reduction/efficiency improvement objectives. Under pure cost minimization, EVs are mainly 
used to transfer low-cost electricity from the residential building to the commercial building to avoid high demand and energy 
charges during expensive day hours. By contrast, with CO2 minimization strategies, EVs are used to reduce the utility demand 
charges and energy-related costs at peak or shoulder hours when PV or CHP is not fully available. Here, the use of stationary 
storage is more attractive compared to EV storage, because stationary storage is available at the commercial building for 24 
hours a day and readily accessible for energy management. In particular, stationary storage can shift PV supply during the day 
to off-peak hours, when the building would otherwise be supplied by more carbon-intensive electricity from the utility. To 
benefit from the stationary storage and PV CO2 reduction potential, stationary storage should get a major focus in R&D 
funding and policy making. To be able to use mobile storage in 2nd life, special focus needs to be put on the process of 
recycling mobile storage in buildings since this creates larger CO2 savings. Finally, we find that the number of connected EVs 
varies widely depending on the residential charging rate and possibility of arbitrage. 
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Although the analysis presented here attempts to model a cost- or CO2-minimizing decision maker, it is limited by several 
assumptions and simplifications. First, it assumes a given pattern of EV arrival and departure, which is only a rough 
approximation of reality. Second, electricity prices are subject to uncertainty, but here they are assumed to be deterministic. In 
general, a stochastic model of the investment and operational decisions would better capture the risks and tradeoffs faced by a 
typical decision maker. Third, the model does not consider investment timing or subsequent upgrades to installed technology 
based on changing market conditions. Again, these features could be incorporated into a real options or stochastic 
programming framework. Fourth, the model assumes that in spite of the arbitrage, the energy tariffs remain unchanged. In 
reality, the utility is likely to respond in the long run to such forces, which would necessitate a game-theoretic model and 
change the incentives of the decision maker. 
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Figure 1. High level schematic of DER-CAM (Stadler et al., 2009) 
 
 

 
Figure 2. Hypothetical charging/discharging at a commercial (office) building, SOCin means mobile storage state of charge at 
the time when the EV connects to the building, SOCout means state of charge at the time when the EV disconnects from the 
building. 
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Figure 3. Representative MILP solved by DER-CAM 
 

 
Figure 4. Results, multi-objective frontier for the large school building in the San Francisco Bay Area (PG&E service territory) 
and storage capacity 
 

 

MINIMIZE 

Annual energy cost:

energy purchase cost 

+ amortized DER technology capital cost 

+ annual O&M cost

SUBJECT TO

Energy balance:

- Energy purchased + energy generated exceeds demand

Operational constraints:

- Generators, chillers, etc. must operate within 

installed limits

- Heat recovered is limited by generated waste heat 

Regulatory constraints:

- Minimum efficiency requirements

- Maximum emission limits

Investment constraints:

- Payback period is constrained

Storage constraints:

- Electricity stored is limited by battery size

- Heat storage is limited by reservoir size
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Figure 5. Results, multi-objective frontier for the healthcare facility in San Diego (SDG&E service territory) and storage 
capacity 
 

 
Figure 6. Diurnal electric pattern at cost-minimization on a July work day, large school in the San Francisco Bay Area (PG&E 

service territory) 
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Figure 7. Diurnal electric pattern for point S2 on a July work day, large school in the San Francisco Bay Area (PG&E service 
territory) 
 

 
Figure 8. Diurnal electric pattern for point S2 on a January work day, large school in the San Francisco Bay Area (PG&E 

service territory) 
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Figure 9. Diurnal electric pattern on a July work day for minimal costs for the healthcare facility in San Diego (SDG&E 
service territory) 

 

 
Figure 10. Diurnal electric pattern for point S1 on a July work day for the healthcare facility in San Diego (SDG&E service 
territory) 
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Figure 11. Diurnal electric pattern for point S2 on a July work day for the healthcare facility in San Diego (SDG&E service 
territory) 
 

 
Figure 12. Diurnal electric pattern for point S2 on a January work day for the healthcare facility in San Diego (SDG&E service 
territory) 
 

23



Table1. Available discrete technologies16 in 2020 (Goldstein et al., 2003), (Firestone, 2004), (SGIP, 2008) 

  IC
E

 

F
C

 

  S M S M 
capacity (kW) 60 250 100 250 

installed cost ($/kW) 
 2721 1482 2382 1909 
w/HX 3580 2180 2770 2220 

maintenance cost ($/kWh) 0.02 0.01 0.03 0.03 
electrical efficiency17 (%) 29 30 36 36 
heat to power ratio (if w/HX) 1.73 1.48 1.00 1.00 
lifetime (years) 20 20 10 10 

 

Table 2. Available continuous DER technologies in 2020 (Firestone, 2004), (SGIP, 2008), (EPRI-DOE, 2003), (Mechanical 
Cost Data 31st Annual Edition, 2008), (Stevens and Corey, 1996), (Symons and Butler, 2001), (Electricity Storage 

Association) 
 ES TS AC ST PV 

capital cost ($) 295 10000 93911 0 3851 
variable cost ($/kW or $/kWh when referring to storage) 193 100 685 500 3237 
maintenance cost ($/kWh) 0 0 1.88 0.50 0.25 
lifetime (years) 5 17 20 15 20 
ES – stationary electrical storage, TS – thermal storage, AC - absorption cooling, ST-solar thermal, PV-Photovoltaics 

 

Table 3. Assumed stationary energy storage parameters (Stevens and Corey, 1996), (Symons and Butler, 2001) 
 ES TS 
charging efficiency 0.9 0.9 
discharging efficiency 0.9 0.9 
decay 0.001 0.01 
maximum charge rate 0.1 0.25 
maximum discharge rate 0.25 0.25 
minimum state of charge 0.3 0 
Notes: all parameters are dimensionless; ES – stationary electrical 
storage, TS – thermal storage;  

 

Table 4. EV battery specifications 
charging efficiency  0.95 
discharging efficiency  0.95 
battery hourly decay  
(related to stored electricity) 

0.001  

capacity  16 kWh 

 

Table 5. Principle EV connection periods for different building types18 
building type building connection period EV owners 
Hotel 19h-8h guests 
Office 9h-18h employees 
School/College 8h-18h employees 
Retail 9h-18h employees/customers 
Restaurant 18h-21h employees/customers 
Warehouse 8h-18h employees 
Grocery 9h-18h employees/customers 
Healthcare 8h-18h employees 

  
                                                           
16 DER-CAM distinguishes between discrete and continues technologies. Discrete technologies can only be picked in discrete sizes and continues ones in any 
size. The usage of continues technologies increases the optimization performance and reduces the run time. Also gas turbines and micro turbines are available, 
but they were never selected in the optimization, and therefore, not shown here. 
17 Higher heating Value.  
18 For clarity, some of the formal building types were aggregated (i.e large and small offices). 
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Table 6. Area constraints for PV, solar thermal, and EVs (CEUS and own calculations) 
building type area constraint A (m2) 

Hotel 3600 

Small Office 175 

Warehouse 1390 

School 3340 

Retail 800 

Restaurant 300 
Refrigerated 
Warehouse 5560 

Large Office 16200 

Healthcare 3260 
Grocery 540 

College 5600 

 

Table 7. Detailed optimization results for large school building  

  

do- 
nothing 
(DN) min cost S1 S2 S3 S4 

equipment 

inernal combustion CHP (kW)     250 60 120 420 

fuell cell CHP (kW)       100 350 350 

abs. Chiller (kW in terms of electricity)       106 142 113 

solar thermal collector (kW)   91 308 779 961 779 

PV (kW)     193 352 315 352 

stationary electric storage (kWh)     790 2068 1769 2068 

mobile electric storage (kWh)   3563 3563 14 91 53 

thermal storage (kWh)     767 2932 3063 2932 

annual building costs (k$) 

electricity  269.24 212.38 90.21 65.98 36.07 40.81 

NG 73.74 67.88 94.36 94.33 115.90 109.77 
onsite DG technologies (amortized 
costs)   15.02 179.02 367.91 451.71 552.57 

total 342.97 295.28 363.58 528.22 603.68 703.15 

% savings compared to do-nothing   13.90 -6.01 -54.01 -76.02 -105.02 

annual utility consumption (GWh)             

electricity  1.74 1.39 0.58 0.36 0.15 0.17 

NG 1.74 1.60 2.23 2.24 2.76 2.62 

annual building carbon emissions (t/a)             

emissions 1203.92 1203.79 833.18 586.99 575.33 559.94 

% savings compared to do-nothing   0.01 30.79 51.24 52.21 53.49 
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Table 8. Detailed optimization results for healthcare facility 

  

do- 
nothing 
(DN) min cost S1 S2 S3 S4 

equipment 

inernal combustion CHP (kW)   250   180 180 180 

fuell cell CHP (kW)     250 550 300 500 
abs. Chiller (kW in terms of 
electricity)     67   64 43 

solar thermal collector (kW)     792 280 323 305 

PV (kW)     337 441 433 436 

stationary electric storage (kWh)     281 1061 986 1017 

mobile electric storage (kWh)   929 405 293 95 170 

thermal storage (kWh)     0 440 15582 23353 

annual building costs (k$) 

electricity  336.07 83.70 19.37 33.48 42.41 39.97 

NG 62.74 173.57 118.77 106.00 105.90 110.37 
onsite DG technologies (amortized 
costs)   70.70 284.62 474.72 553.64 667.26 

total 398.81 327.97 422.76 614.20 701.94 817.60 

% savings compared to do-nothing   17.76 -6.01 -54.01 -76.01 -105.01 

annual utility consumption (GWh)             

electricity  2.33 0.58 0.06 0.19 0.18 0.10 

NG 2.13 5.91 4.04 3.61 3.60 3.76 

annual building carbon emissions (t/a)             

emissions 1574.39 1389.53 767.38 748.68 741.65 732.06 

% savings compared to do- nothing   11.74 51.26 52.45 52.89 53.50 

 

Table 9. Aggregated results for CO2 minimization 

energy cost savings buildings compared to do-nothing* [%] -30.00 

CO2 emission reduction of buildings compared to do-nothing  [%] 37.13 

number of cars energy management system (EMS) would like 
to utilize 

[million cars] 0.78 

mobile storage capacity  [GWh] 12.45 

PV in buildings [GW] 4.55 

stationary storage [GWh] 14.71 

combined heat and power (CHP) and other distributen 
generation (DG) 

[GW] 3.50 

*) the average max cost increase due to CO2 minimization was set to 30% and is constrained within 
DER-CAM 
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