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ABSTRACT 
This paper describes how a model-based, feedforward control scheme can improve control 
performance over traditional PID and detect faults in the controlled process. The scheme uses 
static simulation models of the system under control to generate feedforward control action, 
which supplements a conventional PID feedback loop.  The feedforward action reduces the 
effect of plant non-linearity on control performance and provides more consistent disturbance 
rejection as operating conditions change.  In addition to generating feedforward control 
action, the models act as a reference of correct operation.  Faults that occur in the system 
under control cause the PID loop to provide a greater than normal control action to 
compensate for fault-induced discrepancies between the feedforward models and the 
controlled process. By monitoring the level of feedback compensation, faults can be detected 
in the controlled process. The paper presents results from testing the controller with a 
simulated dual-duct air-handling unit. We also discuss recent experiences of implementing the 
control scheme in a real building using the BACnet communication protocol. 
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1 INTRODUCTION 
Heating, ventilating, and air-conditioning (HVAC) systems are typically controlled using 
proportional plus integral (and sometimes plus derivative) PI(D) control law.  In practice, 
HVAC systems exhibit non-linear operating characteristics, which causes control 
performance to vary when operating conditions change.  Poor control performance can lead to 
occupant discomfort in the treated building, greater energy consumption, and increased wear 
on controlled elements, such as actuators, valves, and dampers.   
 
In a conventional PI(D) feedback loop, the controller does not contain much information 
about the process it is controlling. Faults that lead to performance deterioration, or a change in 
system behavior, are often masked within a feedback loop. The control scheme described in 
this paper proposes the use of a feedforward controller as the primary controller, 
supplemented by a conventional PI(D) feedback loop.  The model used in the feedforward 
controller acts as a baseline of correct behavior, and facilitates the detection of faults that 
develop in the controlled system.  Incorporation of a system model in the feedforward control 
scheme reduces the impact of plant non-linearity, leading to more consistent control 
performance as operating conditions change.   
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Several researchers (e.g., Gertler, 1998; Glass et al., 1994; Isermann, 1995; Patton et al., 
1995) have proposed fault-detection and diagnosis schemes based on the use of models.  The 
main trade-off with model-based schemes is configuration effort versus model accuracy.  
Generally, the greater the potential accuracy of the models, the greater the effort required to 
configure the models for operation.  We therefore selected models for the feedforward 
controller that are configurable from performance information typically available in design 
and commissioning records. Although these models may sacrifice some accuracy and fault 
detection sensitivity, we demonstrate that the proposed scheme can detect three important 
faults in the air-handling unit tested, namely reduced heating capacity, valve leakage, and a 
stuck return air damper. 

2 DESCRIPTION OF THE CONTROLLER 
Figure 1 shows the control and fault detection scheme.  The simulation model, which is an 
inverse representation of the system generates a control signal, uFF. An inverse model predicts 
the inputs to a system based on measured outputs.  The signal uFF is supplemented by a 
conventional PI(D) feedback loop, which generates control action uPI based on the error 
between the setpoint and the controlled variable. The model is in static (steady-state) form and 
produces a control action appropriate for the current setpoint and measured disturbances.  
This control scheme is similar to one proposed by Hepworth and Dexter (1994), which used 
an adaptive neural network as the inverse system model. 
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Figure 1: The control and fault detection scheme. 

The inverse model, isolated from the feedback loop, produces responses based on the open-
loop dynamics of the system. Note that because the model is a static model, the predicted 
control signal, uff, will change instantaneously for a change in any of the measured inputs. 
Maintaining the feedback loop speeds the response time of the controller and eliminate offsets 
resulting from model inaccuracies and unmeasured disturbances. Assuming the effect of 
unmeasured disturbances is small, the (steady-state) feedback control action (uPI) serves as an 
indication of the model/system mismatch.  The control action, uPI, thus represents an implicit 
measure of the difference between the predicted and actual control signals for a particular 
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setpoint.  By configuring the model to represent a correctly operating system, the level of uPI 
acts as an indication of fault development.  Faults occurring in the system, which change its 
behavior or performance, create a mismatch between the model and system leading to an 
increase in feedback control action.   
 
The control scheme incorporates fault detection capabilities by monitoring the magnitudes of 
two indicator variables.  The first indictor variable is the output from the PI controller (uPI) - 
the “control signal error” and the second is the difference between the setpoint and the 
controlled variable – the “setpoint error”.  The controller generates an alarm if either of these 
variables exceeds a threshold for a sustained period.   
 
The control signal error reveals changes caused by faults that do not affect the ability of the 
controller to maintain the setpoint, e.g., leakage through a control valve. A prolonged setpoint 
error that is not accompanied by a control signal error indicates a problem at or near to the 
point where the control signal would normally saturate, e.g., a capacity problem when full 
load is demanded. Simultaneous control signal and setpoint errors over a sustained period can 
indicate poor tuning or problems with the control loop.  However, if the control loop is 
oscillatory, the errors may periodically return below their respective thresholds within a short 
enough time avoiding alarm generation.  Sensor errors are also detectable by the control 
scheme.  Those that do not affect the ability of the control scheme to achieve the setpoint will 
be detectable through the control signal error. Large errors in the controlled variable sensor 
that cause the setpoint to become unattainable would also be detectable through the setpoint 
error. 
 
The control scheme triggers an alarm if the control signal error or setpoint error continuously 
exceed a threshold for a predetermined period.  Figure 2 shows the fault detection algorithm. 
Tu is the threshold for the control signal error, Te is the threshold for the setpoint error, and P 
is the maximum transgression period before generating an alarm.  The fault detection part of 
the control scheme thus requires three parameters to configure it for operation: Tu, Te, and P. 

IF |uPI|>Tu OR |error|>Te,
P=P+∆t

ELSE
P=0

ENDIF
IF P>Pmax

FAULT=1
ELSE

FAULT=0
ENDIF  

Figure 2: Fault detection logic. 

Under a PI control regime, the setpoint error is supposed to reach zero in steady-state.  Te, can 
thus be selected heuristically based only on considerations of typical sensor noise and 
tolerable tracking errors.  The parameter, Pmax, relates to the maximum time between periods 
of steady-state.  For HVAC applications, it is reasonable to assume that transience does not 
normally persist for more than 30 minutes between periods of (quasi) steady-state.  We thus 
selected a value of 30 minutes for P.  Selection of the threshold Tu is more difficult and relates 
to the accuracy of the models and the degree of detection sensitivity required.  Ideally, Tu 
should be established through tests on the correctly operating system.  However, as is shown 
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in Section 6, Tu may be also be set heuristically for preliminary testing in order to detect gross 
faults in the system. 

3 MODELS USED IN THE FEEDFORWARD CONTROLLER 
In this paper, we apply the controller to a dual-duct air-handling unit, which has heating, 
cooling, and mixing capabilities. The controller incorporates three separate models: mixing 
box, heating coil, and cooling coil.  Details of the model equations can be found in (Salsbury, 
1998).  The models in the feedforward controller are simplified in several respects. In 
particular, they do not treat: 
 

• Variations in coil thermal conductance with fluid flow rates; 
• Dehumidification in the cooling process;  
• Valve/damper non-linearity 

 
We make the latter simplification because characterization of this non-linearity requires 
parameters that are not easily obtainable or reliable, such as the inherent and installed 
characteristics of the valves and dampers. The simplification is reasonable, as one of the goals 
of the design and commissioning processes is to linearize the relationship between the control 
signal and controlled variable, e.g., by canceling coil non-linearity with valve non-linearity.  
Although the model simplifications reduce potential accuracy and performance of the scheme, 
a major advantage is that the parameter values may be obtained from typically available 
information, rather than requiring calibration data and additional tuning effort. 
 

Table 1: Configuration parameters  

PARAMETER/DESIGN SPECIFICATIONS UNITS 
HEATING/COOLING COIL 
Heat transfer rate kW 
Cold fluid inlet air temperature ºC 
Cold fluid mass flow rate kgs-1 
Hot fluid inlet temperature ºC 
Hot fluid mass flow rate kgs-1 
MIXING BOX 
Minimum fractional outside air flow % 

 
Table 1 lists the parameters required by the models in the feedforward controller and Table 2 
lists the required sensor measurements/variables.  Note that since the considered air-handler is 
a dual-duct system, air temperatures and flow rates are required before the coils in both the 
hot and cold ducts. 

Table 2: Required sensor signals/variables  

SENSOR SIGNAL UNITS 
Return air temperature ºC 
Outside air temperature ºC 
Air flow rates (hot and cold ducts) kgs-1 
Pre-coil air temperatures (mixed air) ºC 
Setpoints (mixed, hot-air, cold-air) ºC 
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4 SIMULATION TEST SYSTEM 
The control scheme is evaluated using a simulation of an air-handling unit developed in the 
MATLAB environment using component models adapted from HVACSIM+ (Clark, 1985). 
The simulation replicates a real system installed in a large (1.4 million square feet) federal 
building in downtown San Francisco, USA.  Figure 3 depicts the air-handling unit, which is a 
dual-duct type having three thermal subsystems: mixing box, cooling coil, and heating coil.  
The air-handling unit has the capacity to deliver 74kg/s of air and provide 850kW of heating 
and 1260kW of cooling. 
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Figure 3: Schematic of the dual-duct air-handling unit. 

 
Each thermal subsystem has its own controller.  The mixing box controller modulates three 
sets of dampers to maintain mixed air conditions.  There is a minimum outside-air 
requirement based on damper position (20% minimum outside-air) and a temperature-based 
economizer.  The hot duct houses a steam-to-air heating coil regulated by a two-way valve, 
and there is a water-to-air cooling coil having a three-way valve in the cold duct. The fan 
speed varies according to load changes in the zones in a conventional VAV arrangement to 
maintain constant static pressure in the supply ducts.   

5 SIMULATION TEST RESULTS 
We evaluated the control scheme in two respects:  
 

• Setpoint tracking performance; 
• Ability to detect faults in the three thermal subsystems. 
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Twelve hours of test (simulated) data, sampled at 5-second intervals were used to evaluate the 
control scheme.  The test data contain real measurements of ambient and return air 
temperatures from the building.  We varied the supply airflow rate in a sequence of arbitrary 
steps and ramps in order to provide excitation similar to VAV control. Figure 4 shows the 
variation in return and ambient air temperatures in addition to the variation in airflow (at the 
supply fan) during the test data.  Note that the supply airflow split between the hot and cold 
ducts.  We also varied the setpoints for each of the three subsystems to facilitate a rigorous 
assessment of the controllers.  
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Figure 4: Disturbances other than setpoint changes during the test period. Note that airflow is 

at the supply fan, i.e., before the duct splits. 

5.1 Control Performance 
This section compares the performance of the feedforward controller with that of a 
conventional PI controller.  We tuned each of the PI control loops using a standard open loop 
tuning rule (Zeigler-Nichols) based on the highest gains exhibited in the range of conditions 
in the test data.   
 
Figure 5 shows the simulated performance of the PI controller when subjected to the test data.  
The upper graph shows the three controlled variables and setpoints and the lower graph shows 
the control signals to each of the subsystems.  For these conditions, the PI controller provides 
satisfactory performance for the test data.  We characterized control performance by 
calculating the sum of the mean absolute errors (MAE), listed in Table 3. 
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Figure 5: Control performance with PI control. 

Figure 6 shows the performance of the same PI controllers, but this time with the inclusion of 
supplemental feedforward action.  The graphs show improvements in the responses to the 
disturbances, particularly for the heating coil control-loop, which exhibits tighter control 
toward the end of the test data.  
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Figure 6: Control performance with feedforward control. 

Table 3 lists the mean absolute errors in each control loop over the period of the data.  The 
smallest improvement in performance is in the mixing control-loop, which shows only a 10% 
reduction in the MAE.  This is due to the ambient and return air temperatures not varying 
significantly during the test data, leading to a reasonably invariant gain in this subsystem.  In 
practice, variations in ambient air temperature significantly affect the mixing box gain and 
lead to instability in this loop.  Previous work has shown that the feedforward controller can 
significantly improve the mixing box control-loop in the face of highly variable 
environmental conditions (Salsbury, 1998).  The cooling coil control performance improves 
by 42%, while the heating coil shows a slightly greater improvement of 43%. 

Table 3: Comparative performance of controllers 

 MAE (K) 
PROCESS COOL MIX HEAT 
PI control in isolation 0.19 0.31 0.23 
PI + feedforward control 0.11 0.28 0.13 
Improvement (%) 42 10 43 

 
5.2 Fault Detection Performance 
In this section, we describe tests to evaluate the ability of the control scheme to detect faults 
in the three thermal subsystems. Note that we used the same test data as in the control 
performance tests. 

5.2.1 No Fault Condition 
First, we tested the control scheme with the system in its correctly operating condition. Figure 
7 shows the indices associated with the fault detection.  The top graph shows the control 
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signals generated by the three feedback control loops in the air-handler (heat – solid line; cool 
- dashed line; mixing – dash-dot line).  Recall that the PI control signal represents an implicit 
measure of the difference between the predicted and actual control signals for a particular 
setpoint.  If the models used in the controller were perfect representations of the system under 
control, these control signals would asymptotically approach zero following each disturbance.  
 
Figure 7 shows that there are modeling errors in each of the models.  The errors vary during 
the data due to transient effects and because the models approximate the system better in 
certain parts of the operating range than in others.  The cooling coil exhibits the greatest level 
of inaccuracy (e.g., around 10 hours), this being most likely due to the extra simplifications in 
this model, such as non-treatment of dehumidification.  The heating coil model appears to 
represent the system well, with the feedback contribution being the lowest of the three 
subsystems.  The bottom three graphs in Figure 7 show the fault detection output for each 
loop (1 for presence of a fault, 0 for no fault).  A fault is deemed to have occurred if the 
feedback control signal rises above the threshold and stays above it for a sustained period (set 
to 30 minutes for these tests). 

0

0.2

0.4

U
p
i 
(-
)

m ix
heat

coolthreshold

0
2
4
6
8

e
rr
o
r 
(K

)

m ix heat cool
threshold

0

0.5

1

M
IX

F a ult D etection (1/0)

0

0.5

1

C
O
O
L

0 2 4 6 8 10 12
0

0.5

1

H
E
A
T

T im e (H ours)
 

Figure 7: Fault detection indicator variables – correctly operating system. 

The selection of a threshold is primary to the performance of the fault detection scheme. We 
selected a threshold using the correct operation data based on a 99% confidence interval 
determined for each of the indicator variables.  For simplicity, we calculated a single 
threshold for all three subsystems. In practice, individual thresholds could be obtained by 
performing closed-loop tests on each of the subsystems during the commissioning process.  
These tests could be set up so that selected setpoints exercise the systems at strategic points in 
their operating ranges.  Alternatively, thresholds could be estimated during an on-line learning 
phase, whereby maximum steady-state feedback action is monitored over an assigned period.  
Alternatively, if empirical determination is not possible, default threshold values could be 
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determined for particular classes of HVAC systems based on statistically significant tests on 
similar equipment. 

5.2.2 Reduced Heating Capacity Fault 
Using the thresholds established from the correct operation data, we tested the fault detection 
capability of the controller under the condition of a 50% reduction in the capacity of the 
heating coil.  We altered the heat transfer rate in simulated system by changing the UA of the 
coil.  In practice, a reduction in heating capacity can occur for a number of reasons, such as: 
coil fouling, reductions in boiler efficiency, reductions in steam flow, etc.   
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Figure 8: Control performance – reduced heat capacity fault. 

Figure 8 shows the behavior of the controller with the reduced-capacity heating coil.  The 
upper graph in the figure shows that the setpoint is unattainable during certain periods in the 
data, due to the effect of the fault.  The heating coil control signal saturates for much of the 
data at 100%, corresponding to a fully open valve. Figure 9 shows the fault detection 
indicators in the presence of the reduced heating capacity fault. The fault is evident in both the 
control signal error and the controlled variable error.  The fault is detectable from the control 
signal error for the entire data set, but masked from the setpoint error at certain times, e.g., 
during the middle of the test day. The software triggers an alarm after 30 minutes into the data 
set and sustains the alarm throughout the remaining data. 
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Figure 9: Fault indicator variables – heating capacity fault. 

5.2.3 Valve Leakage 
Leakage through the control valve of a heat exchanger is a common fault in HVAC systems, 
but often persists unnoticed due to feedback masking and compensatory actions of other 
systems.  This fault can lead to wastage of energy, not only in the subsystem where the fault 
occurs, but also in other downstream systems that provide compensatory action.  In this test, 
we set up the cooling coil valve model in the simulation so that the closed valve leaked by 
20% of maximum flow.  Figure 10 shows the behavior of the control scheme for the leakage 
fault.  The 20% leakage causes the cooling coil to provide too much cooling during most of 
the test data, which makes the feedback loop saturate the control signal at zero.  The 
controller only attains the setpoint for a higher cooling demand, e.g., during the middle of the 
data. 
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Figure 10: Control Signals and Temperatures – Leaking Cooling Valve Fault. 
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Figure 11: Fault Indicator Variables – Leaking Cooling Valve Fault. 
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Figure 11 shows the fault detection indicators for the leakage fault case.  The top graph shows 
that the feedback control action exceeds the threshold for a large portion of the day.  
Correspondingly, the cooling fault indicator graph (second from bottom in the figure) 
indicates a fault for much of the data.  The control signal error is largest at low load regions 
due to this being the part of the operating range where the fault is most evident.  When the 
coil operates at a higher load, the feedback compensation drops below the threshold.  The 
scheme therefore only detects faults when the considered subsystem is operating at a point 
where the effects of the fault are evident.  Note that toward the end of the data, control signal 
saturation masks the fault on the control-signal error indicator. However, the leaking valve 
makes the setpoint unattainable leading to an alarm signal. 

5.2.4 Stuck Return Air Damper 
A stuck damper in the mixing box is another common fault in HVAC systems.  This fault can 
be due to various causes, such as a failed actuator, damper obstruction, de-coupled linkage, 
etc.  The fault is difficult to detect in practice as it does not cause complete failure of the 
mixing process, but instead alters its characteristics and restricts its operating range. Figure 12 
shows the performance of the controller when the re-circulation damper is stuck at 50% open.  
The feedback loop masks the effect of this fault at the beginning and end of the day by 
maintaining the setpoint quite well. However, control performance deteriorates in the middle 
of the day when the controller demands 100% outside air. 
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Figure 12: Control performance – stuck mixing damper. 

Figure 13 shows the fault indicator variables for the stuck damper condition.  The feedback 
control action to the mixing box indicates the fault when the effect is masked in Figure 12.  
During the middle part of the day, unwanted re-circulation through the mixing box reduces its 
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operating range so that setpoints close to the ambient air temperature become unattainable. 
The combination of the control signal error and the controlled variable error allow detection 
of the fault during all the data, with the exception of the first 30 minutes (which was the time 
set for Pmax). 
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Figure 13: Fault indicator variables – stuck mixing damper. 

6 IMPLEMENTATION IN A REAL BUILDING 
We developed the control and diagnostics algorithms into a stand-alone software program for 
testing in a real building on a dual-duct air-handler that formed the basis of the simulated 
system described in Section 4.  We initially deployed the tool in a passive mode with the 
intention of validating the models and establishing thresholds. 
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Figure 14. Interaction of Control Software with PI-Loop When in Passive Mode 

 
Figure 14 depicts how the controller software was set up to interact with a PI loop in passive 
mode.  In this mode, the feedforward control signals generated by the models do not affect the 
control operation and the system remains under PI-only control.  In terms of fault detection, 
instead of using the PI control signal (uPI) as a measure of the difference between the 
predicted and actual control signals, the difference is calculated explicitly, i.e., uPI - uFF.   
 
6.1 Software Architecture and Connection to the EMCS 
We developed the software based on three separate modules, as shown in Figure 15.  The user 
interface provides diagnostic information to the user and allows the user to change parameters 
of the feedforward models, and other configuration information.  The central module contains 
the control and diagnostics algorithms that function according to configuration information 
set by the user and data obtained from the energy management and control system (EMCS) 
network.  The third module (control system interface) handles acquisition of data from the 
EMCS.  The building in which we performed the tests was the subject of a recent large-scale 
EMCS retrofit, which included replacing a large part of the system with BACnet (ASHRAE, 
1995) compliant control devices.  We thus developed the control system interface to use the 
BACnet communication protocol. Use of this communication protocol opens the way for 
testing the control software on any other BACnet compliant system regardless of the 
manufacturer. 
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Figure 15. Software Module Interaction and Connection to the Control System 

 
Figure 16 shows the user interface, which depicts the dual-duct air-handler used for the tests. 
Note that the two fans in the return duct have their speeds tracked to the speed of the supply 
fan, which is regulated in order to maintain the average of the hot- and cold-duct static 
pressures at a setpoint.  
 

 
Figure 16. User Interface Showing the Dual-Duct Test Unit 
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6.2 Obtaining a Points List 
Before we could carry out the tests, we had to obtain a point list of the sensors and control 
signals required by the software tool.  This task is unavoidable for any application that needs 
to poll data from an EMCS network.  The devices on the network that relate to the physical 
sensor and control-signal measurements required by the application require identification so 
they can be mapped onto the variables in the application program.  The process of acquiring 
the necessary information can be both time consuming and subject to human error.  
 
6.3 Sensor Availability and Accuracy 
One problem encountered during the testing of the feedforward controller concerned sensor 
availability. In the test system, direct measurements of airflow in the hot and cold ducts were 
not available.  The feedforward models use these measurements to calculate temperature 
rises/drops across the coils and the model predictions are quite sensitive to these variables.  
We therefore had to proxy the air flow rates using other sensor measurements that were 
available.  We applied simple models to calculate airflow from the supply fan VFD control 
signal and static pressure measurements in the hot and cold ducts.  The proxy was difficult to 
assess for accuracy, as we were only able to obtain point measurements of actual airflow at 
sporadic operating points. 
 
6.4 Initial Test Results 
The original aim of the first phase of testing was to validate the models to establish the 
threshold values, Tu.  However, it became apparent in the early stages of testing that blindly 
using data from the system in its “normal operation” state to set thresholds was inappropriate.  
We found that normal operation did not necessarily mean “correct operation”.  The initial test 
described in this section therefore entailed detecting pre-existing faults in the system. We 
discovered that the tool was useful as a re-commissioning aid and could be used in this way 
by setting Tu heuristically before carrying out the tests. 
 
As explained earlier, the software operated in passive mode and maintained its fault detection 
capability by calculating the difference between the feedforward control signal and the 
measured PI control signal explicitly.  During the test, the supply fan-speed and static 
pressures remained relatively constant, which reduced the effect of errors stemming from the 
airflow proxy.  In addition, the return and ambient air temperatures did not vary significantly 
during the tests.  The effect on the AHU behavior from variations in measured disturbances 
was therefore small during the test period. Figure 17 shows the return and ambient air 
temperatures and the airflow proxy in the hot and cold ducts.  
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Figure 17. Measured Disturbances Affecting AHU Performance During Initial Test 

 
Figure 18 and Figure 19 show the test results. The top graph in Figure 18 shows the controlled 
temperatures and their setpoints and the lower graph shows the control signals to each of the 
three subsystems. Figure 19 shows the control signal errors and the setpoint tracking errors in 
the upper two graphs and the fault detector indicators in the three lower graphs.  The first 
feature to note from Figure 18 is that the controllers are unable to regulate at the setpoints 
very well, despite relatively constant measured disturbances and constant setpoints.  The 
source of much of the instability appears to be the mixing box, which is cycling about its 
setpoint.  This causes the mixed air temperature to vary, which in turn affects the load on the 
heating and cooling coils in their respective ducts downstream of the mixing process.  The 
cooling coil reacts to the cycling in the mixing process with more extreme variations, causing 
the cooling valve to vary across its entire range.  The disturbances in the mixing process 
influence the heating process to a lessor degree. However, the heating coil controller is still 
unable to regulate very well the controlled variable at the setpoint. 
 
In Figure 19, operational problems in the AHU are evident with the indicator variables 
exceeding thresholds for sustained periods. Thresholds on the control signals and the 
controlled variables were set arbitrarily for this test and were thus not established empirically 
from training data.  The control signal thresholds were set to 0.25 (25% of range) and the 
controlled variable thresholds to 2K.  The cycling in the mixing process triggers an alarm due 
to the controlled variable being more than 2K outside of the setpoint for more than the half-
hour time limit (Pmax in Figure 2) set for the tests.  Onsite inspection of the mixing process 
revealed that leakage existed through the return-air dampers and this contributes to the control 
signal error exceeding the threshold at certain times, particularly when the controller 
demanded full outside-air (u=1).   
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Figure 18. Control Performance 
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Figure 19. Fault Indicator Variables 

 
Whenever the cooling process becomes active (i.e., the control signal is greater than zero), the 
error between the predicted and actual control signals is large, as shown in Figure 19. 
However, these large errors do not lead to an alarm, due to the cycling of the valve bringing 
the valve back to its closed position, where there is little prediction error before the half-hour 
time limit.  The software thus only generates an alarm toward the end of the data when the 
coil valve stays open.  The reason for the large error between the cooling control signal and 
the measured value was determined to be due to the chillers being disabled in the building 
during the test period.  The cold water inlet temperature to the cooling coil was thus higher 
than expected since any cooling effect came only from the cooling towers.  As the cold-water 
temperature is a parameter in the controller software and not a variable input, the models 
predict a greater degree of cooling than is actually produced.  The software therefore 
demonstrates a capability for detecting faults in the primary plant systems. 
 
There are two periods in the test data when the software generates alarms for the heating coil 
system.  The first alarm instance is caused by a sustained error between the predicted and 
actual control signals.  Examination of Figure 18 shows that in the period before the alarm, 
the heating valve is near or at its closed position while there is still a large difference in 
temperature across the coil.  This behavior is inconsistent with the expectation of correct 
operation.  The reason for the behavior is uncertain, but operators had reported leakage 
problems with the pneumatic valves on both the heating and cooling coils.  The discrepancy 
between the predictions and measurements could thus be due to a large leakage through the 
valve.  The second alarm instance is caused by simultaneous threshold transgressions in both 
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the control signal and setpoint errors.  The error between the controlled variable and the 
setpoint is quite significant as verified in Figure 18.  It is possible that the simultaneous 
setpoint and control signal errors were due to a de-activation of the control loop, although we 
were unable to confirm this.  The fact that the controller does not start to reduce the 
magnitude of the heating control signal as the setpoint error increases is strong evidence for a 
problem with the controller rather than with the heating process. 

7 CONCLUSIONS 
This paper has demonstrated the potential for using simplified simulation models as part of an 
HVAC control scheme. The simulation test results showed that the scheme was able to 
improve control performance and detect three different types of faults in a dual-duct air-
handling unit.  Results from the first phase of tests on a real AHU installed in a large office 
building demonstrated the fault detection capability of the control scheme and served to 
highlight practical implementation issues.   
 
The performance of the control scheme and its ability to detect faults in the controlled process 
depends on the accuracy of the models.  Realizable accuracy is affected by errors in the 
models, selection of model parameter values, and reliability of the sensor signals.  The tests 
on the real AHU demonstrated the difficulty in establishing a baseline of “correct operation” 
with which to determine thresholds and validate the models.  A decision thus has to be made 
at the time of establishing thresholds whether to accept observed behavior as being “correct” 
or to fix/tune the system to improve its performance.  In the tests, the controller proved useful 
as a re-commissioning tool allowing detection of pre-existing faults such as leaking valves 
and dampers based on default thresholds. However, if these kind of faults were ignored by 
setting high threshold values the overall sensitivity of the tool would be reduced making new 
faults difficult to detect.  The paper thus highlights the need for carrying out proper 
commissioning (and periodical re-commissioning) in order to ensure a fault-free starting 
condition upon the introduction of any fault detection device to an operational HVAC system. 
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