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1. Abstract 
 

This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, 

and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, 

energy consumption, and spatiotemporal charging demand. BEAM is an agent-based 

model of PEV mobility and charging behavior designed as an extension to MATSim (the 

Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco 

Bay Area and conduct a preliminary calibration and validation of its prediction of 

charging load based on observed charging infrastructure utilization for the region in 

2016. We then explore the impact of a variety of common modeling assumptions in the 

literature regarding charging infrastructure availability and driver behavior. We find that 

accurately reproducing observed charging patterns requires an explicit representation of 

spatially disaggregated charging infrastructure as well as a more nuanced model of the 

decision to charge that balances tradeoffs people make with regards to time, cost, 

convenience, and range anxiety. 
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2. Introduction and Context 
 

The benefits that accrue from the various programs of the U.S. Department of Energy’s 

Vehicle Technologies Office (VTO) are estimated on a biannual basis in the BaSce 

(Baseline & Scenarios) analysis. To date, the BaSce analysis has estimated the benefits 

and costs of plug-in electric vehicles (PEV). This analysis assumes that large-scale 

deployment will not significantly alter the electric power system or change the benefits 

and costs associated with fueling infrastructure (both for electricity and petroleum). This 

assumption is unlikely to be true in the case of large-scale electrification of transport, 

which would be the result of any VTO success scenario. Hence, Lawrence Berkeley 

National Laboratory (LBNL), in collaboration with Argonne National Laboratory (ANL), 

is improving the BaSce analysis to better estimate the benefits and costs of PEV 

deployment by including the impacts on the power system, smart charging, and changes 

in fueling and charging infrastructure. 

 

LBNL is updating, calibrating and validating the Behavior Energy Autonomy Mobility 

(BEAM) model in order to improve the PEV benefits analysis as described above. As a 

first step, BEAM has been calibrated and validated with mobility and charging data from 

the nine-county San Francisco Bay Area. This progress report describes these efforts in 

detail. Possible research next steps are to link BEAM to the electricity sector production 

cost model, PLEXOS, to estimate power sector benefits and costs and extend to a 

national level using either a reduced form approach or a transferability approach. 

3. Methodology 

3.1. Agent-Based Integrated Systems Modeling 
 

Urban systems are multilayered, interconnected networks of physical and cyber 

infrastructure designed entirely around human beings. The preferences, behaviors, and 

experiences of people are essential to understanding and predicting the impacts of 

emerging technologies and urban development. We therefore center our methodological 

approach on humans and represent their preference and behavior endogenously in our 

modeling framework. At the heart of our model are behaviorally rich and modular agents, 

which live in an artificially created urban environment. This can be used for a wide 

variety of retrospective and prospective analyses. 

 

Agent-based models are conceptually simple. The isolated actions of agents and their 

interactions with the environment and other agents can be defined with a combination of 

technical familiarity and common sense. The emergent outcomes of agent-based models 

are complex. As agent-based modelers, we should spend as much time exploring and 

interpreting outcomes as we do specifying models and simulation experiments.  Through 

this process of interpretation, agent-based models can inspire insight into system 

dynamics that challenge intuition and preconceived notions. 
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3.2. The BEAM Framework 
 

The BEAM Framework (Behavior, Energy, Autonomy, and Mobility) is the collection of 

software tools that we have developed and integrated to enable robust simulation of the 

transportation-electric system. To date, our work has been focused on PEV mobility and 

charging behavior, which we have approached by creating a new extension to the 

MATSim model (Multi-Agent Transportation Simulation [1]). Expanding the scope of 

BEAM by coupling the MATSim model with PLEXOS to resolve grid operations and 

production costs in BEAM can provide further analysis insights. The following provides 

an overview of the key features of the BEAM Framework that are implemented to date. 

3.2.1. MATSim 
 

BEAM is an extension of MATSim, an open source transportation systems modeling 

framework. MATSim – Multi-Agent Transportation Simulation – takes a unique and 

powerful approach to modeling transportation systems. In addition to simulating systems 

with extremely high fidelity (i.e., by explicitly representing individuals and their 

interactions with detailed models of infrastructure), MATSim captures the emergent 

outcomes of self-interested participants in a market.  

 

In the case of traffic modeling, the market is the transportation system itself, within 

which participants have a choice in what goods to procure (e.g., what mode of transport 

to use, what route to take, what time to depart). All participants attempt to maximize their 

individual utility, but their choices have externalities (i.e., congestion), which impact the 

utility of other market participants. MATSim provides a reinforcement learning-based 

framework for resolving the aggregated impact of all agents operating in this market. 

 

Specifically, MATSim allows the modeler to simulate the outcome of agents acting in a 

greedy manner (referred to as “execution” in Figure 1) then observes the outcome of that 

set of actions in terms of the utility of each agent’s experience (“scoring”), then adapt the 

actions of the agents based on the combined service of the system including the 

externalities imposed by the entire population (“replanning”). The simulation is 

iteratively adjusted in this way until it has converged to a state of Nash equilibrium, 

where agents can no longer improve their individual utility by taking adaptive measures 

(also known as “user equilibrium”).  

 

MATSim is a well-documented, thriving open source software project. More can be 

learned about the approach and the key modeling assumptions in [1]. 
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Figure 1: Process flow of the MATSim iterative simulation loop. 

 

3.2.2. BEAM Extension to MATSim 
 

BEAM leverages MATSim and extends some of its existing contributions related to plug-

in electric vehicles (PEVs) [2] [3]. Agent behavior associated with PEV charging and 

corresponding infrastructure interactions have been redesigned in substantial detail to 

allow for more realistic and sophisticated PEV scenario modeling which was not possible 

with the existing models. The utility provided to PEV agent drivers during the simulation 

are combined with the MATSim utility functions associated with mobility. In this way, 

the tradeoffs associated with PEVs and charging are integrated with overall tradeoffs 

associated with mobility. BEAM allows the modeler to therefore simulate PEV charging 

in a manner that is much more realistic given the fact that charging is inextricably linked 

to mobility. 

 

In BEAM, PEVs are explicitly modeled due to practical differences from conventional 

vehicles. Because charging is slow relative to gasoline/diesel refueling, BEAM focuses 

on enabling accurate modeling of energy consumption, charging infrastructure, charging 

behavior, and charge/discharge control. These elements are further described in the 

following sections. 

 

Before simulating PEV drivers in BEAM, a final set of travel plans and network 

performance estimates are first determined by using MATSim alone and thus assuming 

first that all vehicles are conventional vehicles. This is achieved by iteratively allowing 

the agents in MATSim to adapt their routes and departure times to relax the congestion in 

the network to a degree that individual utility cannot be increased further through travel 

plan adaptation.  
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Once the user equilibrium network assignment is achieved, the flows and travel times on 

the network are saved to file and used in subsequent BEAM runs as input. The PEVs are 

therefore assumed to be “congestion takers,” not “congestion makers.” That is, the 

routing choices made by PEVs are assumed to not influence travel times.  For larger scale 

simulations, this assumption can be relaxed by iteratively rerunning the MATSim core to 

reestablish user network equilibrium after PEVs have modified their mobility in light of 

constraints around charging and PEV range. 

 

Finally, MATSim is a highly modular simulation tool that has been used extensively for 

planning and analysis of multi-modal urban transportation systems. By using MATSim 

for the BEAM framework, we intend to leverage this capability in the future to conduct 

analysis of PEVs in the context of a multi-modal system. For example, when agents can 

choose their mode, the presence or absence of charging infrastructure will influence 

whether they drive the PEV at all. This capability will also form the basis for future 

analysis of the impacts of mobility-as-a-service and fully autonomous vehicles on the 

dynamics of the transportation-electric system. 

 

3.2.2.1. Plug-in Electric Vehicles 
In BEAM, the vehicle is modeled as a separate entity from the agent. Vehicles can be 

battery electric (BEVs) or plug-in hybrid electric (PHEVs). The key attributes of the 

vehicle can be defined to match existing or future vehicle technologies are listed in Table 

1.  

 
Table 1: Vehicle attributes in BEAM. 

Attribute Description 

Vehicle Name E.g. the make/model or generic vehicle class. 

Electric Energy Consumption 
Model 

See Section 3.2.2.2. 

Petroleum Energy Consumption 
Model 

For PHEVs. See Section 3.2.2.2. 

Battery Capacity Useable capacity of the battery. 

Max Level 2 Charging Power Vehicle imposed limit on Level 2 charging. 

Max DC Fast Charging Power Vehicle imposed limit on DC Fast charging. 

Max Discharging Power Vehicle imposed limit on discharging if V2G 
capable. 

Compatible Plug Types List of plug interfaces compatible with 
vehicle. 
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3.2.2.2. Energy Consumption Models 
 

Energy consumption is evaluated at the spatial scale of the network link and can be 

modeled as a function of a variety of characteristics including average speed of travel, 

link class (e.g., arterial, feeder, local), link inclination, and link congestion. An example 

of an electric energy consumption model from [4] is shown in Figure 2. When a vehicle 

is driven along a route in BEAM, the total energy consumed is the sum of the energy 

consumed along each link of the route. 

 

 
Figure 2: Figure reprinted from [4]: “Energy consumption per unit of distance required to maintain a 
constant speed for several degrees of inclination and experimental runs (Exp.) for 0%, 7.2% and −6.6%.” 

Each vehicle class can have its own energy model. PHEVs have two consumption 

models, the electric consumption model for charge depletion mode and petroleum 

consumption model for charge sustaining mode.  

3.2.2.3. Charging Infrastructure 
 

Charging infrastructure is defined and organized in a hierarchical fashion in BEAM. 

There is a physical dimension and a management dimension to the representation of 

chargers.  

 

The physical chargers are organized as illustrated in Figure 3. Each charging site 

represents a collection of infrastructure in one geographic location (e.g., a parking lot or a 

home). Within a site there can be one or more charging points. A charging point has a 

finite number of parking spaces nearby which allow physical access to the point. Each 

charging point supports one or more charging plugs. Each charging plug is of a particular 

plug type (i.e., this is where port interfaces like J1772 vs CHAdeMO vs Tesla are 

specified).  
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Figure 3: In BEAM, charging sites have multiple charging points which are accessible to limited parking 
spaces and can have multiple charging plugs of various types. 

The management of chargers is organized as follows. Each charging site is associated 

with a charging policy and a charging network operator. The charging policy defines the 

pricing and parking policy associated with the site. The charging network operator is the 

entity that controls the charge/discharge rate of the vehicle during a charging session, 

which can be subject to constraints imposed by the physical infrastructure and the 

vehicle. 

 

Heterogeneous policies and/or network operators at a single parking lot can be 

accommodated in BEAM by defining multiple sites with the same geographic 

coordinates; i.e., the specific location of a site need not be unique. 

 

3.2.2.4. Charging Queues 
 

In BEAM, PEVs that attempt to charge at a single charging point are assumed to enter a 

charging queue. There are two types of charging queues, fast queues (which apply only to 

DC Fast chargers) and slow queues (Level 1 and 2 chargers).  

 

Fast queues are defined at the site level. They assume that drivers attend their vehicles (or 

stay close by) during fast charging. Drivers are assumed to therefore be close enough to 

unplug and remove their vehicle immediately at the conclusion of the charging session so 

that the next vehicle in the fast queue can start its charging session immediately. A single 

fast queue can be served by multiple charging points. This is predicated on the idea that 

vehicles are attended by the drivers and turnover occurs rapidly, so that immediate 

physical access to chargers on arrival is not a concern. The maximum length of the 

charging queue should be based on some realistic estimates for the number of vehicles 

that are expected to wait in line for a fast charge. For the analysis in this report, we 
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assume three times the number of DC 

Fast charging plugs at a site. In other words, we assume no more than three drivers wait 

in line for any single plug. 

 

Slow charging queues are defined for each charging point and are constrained by the 

number of physical spaces that can access the point. Slow charging queues are assumed 

to have a delay between the conclusion of one charging session and the beginning of the 

next. The length of the delay is configurable and can vary depending on whether the 

charger is assumed to have a notification system in place to alert the next driver or 

whether the next session is somehow started automatically. Charging points are assumed 

to be accessible from 2, 4 or 6 parking spaces with an average of 2.4 spaces. 

3.2.2.5. Model Events and Processes 
 

During a BEAM simulation, events occur in chronological order according to a dynamic 

schedule that manages what actions specific agents or infrastructure should take at what 

time. Typically agents schedule themselves to perform specific actions based on the 

process flow diagram in Figure 4. Some actions (such as “dequeue” and “end session”) 

are scheduled by the charging infrastructure though they ultimately lead to actions by the 

agents. Table 2 provides a brief description of the logical flow associated with the actions 

and decisions in Figure 4. 

 

A typical path through the states in diagram in Figure 4 might be the following: 

 

 A driver begins the day at home, their activity ends, and they execute the 
“Departure Decision.” Because their battery is full, they choose to Depart and 
enter the Traveling state. 

 Upon arrival to their place of work, they execute the “Arrival Decision.” 
Because there were no chargers within their initial search distance, they 
choose to Expand Search and re-execute the “Arrival Decision.” They find 
chargers in their new search radius and select one of them for a charging 
session, executing the “Selected Charger” action.  

 The charger is unoccupied, so the driver changes state to Pre-Charge and 
then the “Dequeue” action is immediately executed, changing their state to 
Charging. When the batter is full the “End Session” action is executed and the 
driver state is changed to Post-Charge. 

 When the driver’s work activity ends, they execute the “Departure Decision” 
and again elect to execute the Depart action since their battery is full. 

Figure 4: States (dark blue), actions (yellow), and decisions (light blue) of agents in BEAM. 
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Figure 4: States (dark blue), actions (yellow), and decisions (light blue) of agents in BEAM. 

Table 2: Description of agent actions and decisions in BEAM. 

Name Description 

Arrival Decision Agent senses charging infrastructure around their activity and 
decides whether to  

a) engage in a charging session (triggering the "Selected 
Charger" action) 

b) expand the search area for nearby chargers ("Expand 
Search" action) 

c) abort the search for chargers (transition to Parked state and 
then execute the "Abort" action) 

PRE-CHARGE

CHARGING

POST-CHARGE

ChargeEvent

PARKED

TRAVELING

EN ROUTE TO 
CHARGE

Arrival
Decision

Departure
Decision

Try Again

Selected
Charger

Expand 
Search

Dequeue

End Session

Selected
En Route

Depart

Abort En 
Route

Abort

Reassess
Engage
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d) search for chargers at a later time (transition to Parked 
state then execute the "Try Again" action). 

Abort In this action, the agent has chosen not to charge during their 
current activity, in which case they schedule the "Departure 
Decision” to occur at the time of departure defined by the agent's 
mobility plan. 

Try Again The agent has chosen not to charge at the present moment, but 
rather to schedule themselves to perform the "Arrival Decision” 
again at a configurable amount of time later (assumed 30 minutes 
for this analysis). 

Expand Search In this action, the agent immediately repeats the "Arrival Decision” 
but with a search radius twice as large as the previous search. This 
search radius is initialized to 200m and is limited to a maximum of 
2 miles. 

Selected Charger The agent has selected a charger and transitioned to the Pre-
Charge state which puts the agent in the queue to charge (see 
Charging Queues in Section 3.2.2.4). The charger schedules the 
"Dequeue" action to occur immediately or at some point in the 
future when the queue has dissipated. 

Dequeue The agent is discharged from the charging queue and changes state 
to Charging, thereby beginning the charging session. The "End 
Session" action is scheduled by the charging network operator. 

End Session The charging session is completed, the agent state transitions to 
Post Charge, and the vehicle is assumed to remain plugged in to 
the charger until either the agent departs or another vehicle  
dequeues from the charging queue. 

Departure 
Decision 

The agent senses charging infrastructure around their current and 
next activities in addition to along the route connecting the two 
activities. The agent decides whether to engage in an en-route 
charging session. If yes, the agent executes the “Selected En 
Route” action. Otherwise, the "Depart" action is executed 
immediately. 

Selected En Route The agent transitions to the En Route to Charge state and 
schedules the "Reassess” decision to occur at the moment of 
arrival to the en-route charger.  

Reassess  Once the agent arrives to the en-route charging site, they sense 
the state of the charging infrastructure at that site and make a final 
decision on whether to engage in a session. Charging will only 
occur if at least one charger at the site is accessible. If a charger is 
found, the "Engage" action is executed; otherwise the "Abort" 
action is executed. 
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Engage The agent has selected a charger; they transition to the Pre-Charge 
state, which puts them in the queue to charge (see Charging 
Queues in Section 3.2.2.4). The charger schedules the "Dequeue" 
action to occur immediately or at some point in the future when 
the queue has dissipated. 

Abort En Route The agent has chosen not to charge, transitions to the Traveling 
state, and schedules itself to execute the "Arrival” decision upon 
arrival at its next destination. 

Depart The agent transitions to the Traveling state and schedules itself to 
execute the "Arrival” decision upon arrival at its next destination. 

 

3.2.2.6. Charging Behavior 
 

Agents in BEAM are assumed to have the following foresight and sensing capabilities 

with respect to mobility, traffic, and charging infrastructure: 

 

 They have a pre-determined plan for their day’s activities, including the 
ending time of each activity, the type of activity, and the location 
(latitude/longitude coordinates). 

 They choose routes through the road network that minimizes travel time 
(see Section 3.2.2 for further information on how routing and traffic is 
modeled in BEAM).  

 They are aware of the state and attributes of their vehicle (i.e., the state of 
charge, remaining range, charging/discharging power capacities, etc.). 

 They are aware of the current state of the charging infrastructure at all times, 
including: what chargers are located within a given search radius, whether 
charging plugs are available (not in use and with open parking spaces), 
accessible (in use but with open parking spaces), or inaccessible (no ability 
to park within reach of a plug), and all attributes of the charger (i.e. price, 
power capacity, distance to their activity).  

 

Based on some or all of the above factors, drivers make two key decisions during a 

BEAM simulation (see “Arrival Decision” and “Departure Decision” in Figure 4 and 

Table 2 above). BEAM provides a flexible framework for the modeler to define the form 

of these decisions. Each decision model is designed to be capable of making a choice for 

both decision points in Figure 4. To date, three decision models have been implemented 

in BEAM, which are described in Table 3. 
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Table 3: Decision models currently implemented in BEAM. The agent population can be programmed to 
use any or all of these models during any simulation. 

Decision Model Description 

Always Charge On 
Arrival 

The agent always chooses to charge during the "Arrival Decision” 
unless there are no accessible chargers within the search radius. If 
no charger is found, the "Expand Search" action is scheduled until 
the maximum search distance is exceeded. If multiple chargers of 
different levels are found, the agent prioritizes Level 2 followed by 
DC Fast followed by Level 1.  
 
On departure, the agent always chooses to "Depart" rather than 
“Selected En Route.” 

Uniform Random The agent chooses to charge with 50% probability during the 
"Arrival Decision” unless there are no accessible chargers within 
the search radius. In no charger is found, the "Expand Search" 
action is scheduled until the maximum search distance is 
exceeded. If multiple chargers of different levels are found, the 
agent prioritizes Level 2 followed by DC Fast followed by Level 1.  
 
On departure, the agent always chooses to "Depart" rather than 
“Selected En Route.” 

Nested Logit The agent uses a nested logit discrete choice model to make 
separate "Arrival Decision” and "Departure Decision.” The models 
are described in detail in Section 3.2.2.7. 

 

3.2.2.7. Nested Logit Charging Decision Model 
 

A nested logit decision model is a hierarchical discrete choice model that is composed of 

a series of nested multinomial logit choice models. An example of how this model is 

structured for charging decisions in BEAM is presented in Figure 5. Ultimately, the 

specific alternatives of the overall choice are the leaves of the nested tree. But the nested 

structure allows the model to more appropriately capture the correlation among 

alternatives within a nest. For example, if a new charger is added as an alternative to the 

“yes” nest, then the probability of selecting all other alternatives will decrease to “make 

room” for the new entrant. But most of the change in probability should come from the 

other charger alternatives in the “yes” nest, rather than equally from all alternatives 

including those in the “no” nest. Employing a nested logit specification rather than a flat 

multinomial specification makes it possible to capture this correlation. 
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Figure 5: Structure of the arrival decision model in BEAM for deciding what site/level charger to select 
or – if charging is not chosen – what adaptation strategy to elect. 

 

The nested logit model specification from [5] is used in BEAM, but in the special case 

where all mixture coefficients are given a value of one. Given some nest 𝑚 is certain to 

be chosen, the probability of choosing one of the alternatives 𝑛 from all possible 

alternatives 𝑁𝑚within that nest, is expressed as a multinomial logit formulation, i.e.: 

𝑃(𝑛|𝑚) =
(𝑒𝑉𝑛)1/𝜇𝑚

∑ (𝑒𝑉𝑛′ )1/𝜇𝑚
𝑛′𝜖𝑁𝑚

 

 

Where 𝑉𝑛 is the utility of alterative 𝑛 (the utility functions used in BEAM are described 

below) and 𝜇𝑚 is the nest elasticity (a value between zero and 1), which is a measure of 

the relative correlation between the nest and all alternatives or nests at higher levels of 

the nested logit tree. Once we relax the assumption that nest 𝑚 will be chosen, then to 

find the marginal probability of alternative 𝑛 among all alternatives requires an 

application of the chain rule: 

 

𝑃(𝑛) = ∑ 𝑃(𝑛|𝑚)𝑃(𝑚)

𝑚

 

 

Where 𝑃(𝑚) is based on the expected maximum utility of the alternatives within that 

nest: 

 

𝑃(𝑚) =
(∑ (𝑒𝑉

𝑛′ )1/𝜇𝑚
𝑛′𝜖𝑁𝑚

)
𝜇𝑚

∑ (∑ (𝑒𝑉𝑛′ )1/𝜇𝑚
𝑛′𝜖𝑁𝑚

)
𝜇𝑚

𝑚

 

 

This structure can be adopted for any number of nests and alternatives. In BEAM, the 

choice model consists of one parent nest and two sub nests: “yes” and “no” (Figure 5).  

 

To execute the decision, a search of all accessible chargers within the search radius is 

performed. For each unique combination of charging site and plug type, an alternative to 

the “yes” nest is created. The utility of that alternative is calculated by gathering the 

required data needed to evaluate the utility function described below. Once the utilities of 
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all alternatives are determined, the marginal probability of each alternative is calculated 

and a choice is randomly sampled from the resulting discrete probability distribution. 

 

The utility of the charging alternatives are expressed as linear functions of the attributes 

of the agent and alternative, according to the following model: 

 

𝑉𝑛 =  𝛽𝑥 + 𝛾𝑦 
 

Where 𝛽 and 𝛾 are vectors of coefficients and 𝑥 and 𝑦 are vectors of agent and charger 

attributes, respectively, as listed in Table 4. The coefficient values in Table 4 are the 

result of the calibration process described below in Section 5.2. 

 

3.2.2.8. Charge/Discharge Control 
 

As described in Section 3.2.2.3, the charging network operator is the entity that controls 

the duration and speed of the charging session. For the analysis in this report, there is 

only one network operator defined, called “Unmanaged.” In this case the rate and timing 

of charging represents how chargers behave when no management occurs, namely, the 

battery in the vehicle is charged at the maximum rate permitted by the charger and 

vehicle (each has its own limit, the lesser of the two is used by the “unmanaged” network 

operator). The time of the charging session as determined by the “unmanaged” operator is 

therefore the energy needed to fill the battery divided by the rate of charge.  

 

Control of the charging rate and duration of charging sessions are managed by the 

network operator to allow the modeler to create other types of operators that manage 

charging sessions in order to achieve objectives associated with supporting the electric 

grid or exploiting economic opportunities in the electric system. BEAM is designed to 

support these alternative scheduling and charging capabilities and to do so in a manner 

that simulates a system with heterogeneity in how charging sessions are managed. For 

example, there could be a variety of network operators with competing shares of the 

market and competing interests managing separate charging sessions in one model run. 
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Table 4: Utility function attributes and coefficients in the calibrated nested logit model in BEAM. 

Utility 
Function 

Attribute 
Type 

Name Units Calibrated 
Coefficient 

Charging 
Site/Level 

Agent Remaining Range mi -0.025 

 
Agent Remaining Travel Distance in Day mi 0.005  
Agent Next Trip Travel Distance mi 0.05  
Agent Planned Dwell Time hr 0.25  
Agent Is BEV dummy 2.5  
Charger Cost $ -4.5  
Charger Capacity kW 0.001  
Charger Distance to Activity mi -1  
Charger At Home and Is Home Charger dummy 2.5  
Charger Is Available dummy 2.5  
N/A Intercept dummy 5 

Try Later Agent Remaining Range mi -0.05  
Agent Remaining Travel Distance in Day mi 0.025  
Agent Next Trip Travel Distance mi 0.05  
Agent Planned Dwell Time hr 0.35  
Agent Is BEV dummy -2.5  
Agent At Home dummy 0  
Agent Search Radius mi 1.5  
N/A Intercept dummy -2.5 

Expand 
Search 

Agent Remaining Range mi -0.05 

 
Agent Remaining Travel Distance in Day mi 0.025  
Agent Next Trip Travel Distance mi 0.05  
Agent Planned Dwell Time hr 0.35  
Agent Is BEV dummy 2.5  
Agent At Home dummy -5  
Agent Search Radius mi -3  
N/A Intercept dummy -0.5 

Abort Agent Remaining Range mi 0.05  
Agent Remaining Travel Distance in Day mi -0.025  
Agent Next Trip Travel Distance mi -0.05  
Agent Planned Dwell Time hr -0.35  
Agent Is BEV dummy -2.5  
Agent At Home dummy 2  
Agent Search Radius mi 1  
N/A Intercept dummy 5 
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4. Model Application 
 

The purpose of our initial application of BEAM is to simulate PEV mobility and charging 

patterns in the San Francisco Bay Area based on current (mid 2016) estimates of personal 

mobility, vehicle ownership, and charging infrastructure. We then compare the simulated 

charging demand profiles to observed profiles, which were obtained by systematically 

polling the availability of charging infrastructure on public station locator tools. This 

comparison serves as a means to calibrate the charging decision models in BEAM, such 

that observed patterns of charger utilization can be reproduced more accurately. 

4.1. San Francisco Bay Area 
 

The focus of the analysis in this report is on the nine San Francisco Bay Area counties, 

which are San Francisco, San Mateo, Santa Clara, Alameda, Contra Costa, Solano, Napa, 

Sonoma, and Marin. The reason for limiting the scope to the Bay Area is a matter of data 

availability and the fact that the Bay Area is one of the highest metropolitan regions 

nationwide for PEV adoption and charging infrastructure deployment. 

4.2. Urban Mobility 
 

Based on work by [6] and [1], BEAM leverages the mobility plans of the canonical Smart 

Bay model. Smart Bay features agent plans derived from the San Francisco Bay Area 

Metropolitan Transportation Commission’s (MTC) activity-based travel demand model. 

In addition to being spatially and temporally explicit, the activities are further 

disaggregated by purpose (one of: home, work, shopping, dining out, university, school, 

social, escort, and other).  

 

While the full Bay Area population consists of ~2.6M households, for computational 

tractability, a down-sampled population of 463,000 agents was used as the basis for a 

calibration of Smart Bay to traffic data from the Caltrans Performance Measurement 

System. The calibration process involves running MATSim until user equilibrium is 

achieved and then comparing simulated versus observed traffic counts on screen lines 

throughout the Bay Area road network. By iteratively adjusting model parameters 

associated with queuing on links and flow capacities, the Smart Bay model was calibrated 

to reproduce observed traffic flows with the virtual population. 

 

The MTC activity plans can be replaced by state-of-the-art mobility plans produced by 

[7] through sampling from an Input-Output Hidden Markov Model (IO-HMM) that was 

fit to anonymized cellular-derived locational data in the San Francisco Bay Area. The 

process of sampling activities from the IO-HMM yields individual daily plans for an 

arbitrary number of hypothetical residents of the Bay Area. 

4.3. PEV Ownership 
 

For the analysis presented in this report, we assumed vehicle ownership to be captured 

spatially and by vehicle type from the database of claimed PEV rebates available through 
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the California Clean Vehicle Rebate Project [8] (CVRP). The data from CVRP includes 

the make and model of each rebate in addition to the zip code of the applicant. Based on 

these data, we show the uptake of PEVs in the Bay Area by make and vintage in Figure 6. 

 

 
Figure 6: Rebates claimed in the San Francisco Bay Area as mid-2016 by vehicle make and year (data 
from California Clean Vehicle Rebate Project). 

 

In total, there were ~59,000 rebate claims in the Bay Area by mid-2016. We use the 

spatial and vehicle type distributions from the CVRP database directly as inputs to the 

BEAM model with 59,000 agents. These agents are then assigned daily mobility plans by 

sampling from the original set of 463,000 Smart Bay model plans. During this sampling 

process it was made sure that agent home locations are in line with the spatial distribution 

present in the CVRP data. 

 

While the CVRP data is highly specific and useful for calibrating BEAM, we recognize 

that rebates only mark the location of a PEV owner at the time of purchase. More ideal 

would be to use DMV records, which are renewed every year. We have an agreement 

with NREL to make use of statistically representative DMV data from the SERA 

(Scenarios, Evaluation, Regionalization, and Analysis) model [9], which can be used with 

BEAM. 

 

The vehicle attributes are summarized in Table 5. The source for these data were a 

combination of resources from OEM model specifications and the U.S. DOE fuel 

economy website [10]. The electric energy consumption models for all PEVS are based 

on the work of [4]. The PHEVs use a petroleum consumption model corresponding to a 

constant rate of consumption per mile traveled that varies by make/model of vehicle as 

presented in Table 5. 
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Table 5: Vehicle attributes assumed in BEAM. 

Make Class 
Battery Capacity 

(kWh) 

Level 2 
Charging 

Limit (kW) 

DC Fast 
Charging 

Limit (kW) 

Gas Fuel 
Economy 

(MPG) 

Nissan BEV 21 7 50  

Chevrolet PHEV 11.78 7 50 42 

Tesla BEV 68.64 20 125  

Ford PHEV 7.35 7 125 38 

Toyota PHEV 3.19 7 50 52 

FIAT BEV 24.36 7 50  

Volkswagen PHEV 24.07 7.2 50 30 

BMW BEV 21.87 7.4 50  

Mercedes-
Benz 

BEV 34.8 10 50  

Smart BEV 21.76 3.3 50  

Kia BEV 29.76 6.6 50  

Honda BEV 23.78 6.6 50  

Zero BEV 2.15 3.3 50  

Audi PHEV 6.08 3.3 50 35 

Mitsubishi BEV 17.7 3.3 50  

Cadillac PHEV 16.4 3.3 50 25 

Hyundai PHEV 9.18 6.6 50 40 

Th!nk BEV 7.83 6.6 50  

Other BEV 22.4 6.6 50  

4.4. Charging Infrastructure 
 

The Bay Area application of BEAM uses charging infrastructure data from the U.S. DOE 

Alternative Fuels Data Center, a public nationwide repository of PEV charging station 

and other alternative fueling station locations and attributes. Table 6 and Table 7 list 

attributes and market penetration of charger types and network operators. Figure 7 

depicts the composition of public chargers in the Bay Area by network operator.   

 

In addition to public charging infrastructure, BEAM explicitly represents residential 

chargers that are exclusively accessible to each agent when at home. Based on results 

from a California survey of PEV owners [11], we assume 90% of drivers have a Level 2 

charger installed at home. The remaining 10% are assumed to only have a Level 1 

charger available. See Section 4.3 for details on how drivers are assigned to home 

locations in the Bay Area application of BEAM. 

 

 

 



 

23 
 

Table 6: Power capacity and the market penetration of charger types in the Bay Area application of 
BEAM. 

Name Power Capacity (kW) # in SF Bay Area 

CHAdeMO 50 113 

J-1772-1 1.92 180 

J-1772-2 19.2 1127 

SAE-Combo-3 240 34 

Tesla-2 20 89 

Tesla-3 120 8 

 
Table 7: The assumed price of charging and market penetration of network operators in the Bay Area 
application of BEAM. 

Network Operator Price for L1 / L2 / DC Fast ($/kWh) # in SF Bay Area 

ChargePoint 0.3 / 0.4 / 0.5 785 

Blink NA / 0.5 / 0.6 117 

EVGo NA / 0.4 / 0.5 94 

Tesla NA / 0.4 / 0.5 97 

Other 0.3 / 0.4 / 0.5 458 

Home 0.15 / 0.15 / NA 59000 
 

 

 
Figure 7: Charging Infrastructure in the San Francisco Bay Area as of mid-2016 according to data from 
the Alternative Fuels Data Center. 
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4.5. Charging Utilization 
 

Charging network operators (e.g. ChargePoint, EVGo, and Blink) publish station locators 

online to assist PEV drivers in finding nearby chargers. These locators also feature real-

time availability information on a subset of charging stations (specifically, those chargers 

that are connected to the internet through a LAN or cellular connection). By 

systematically polling these publicly available APIs, we have developed a database of 

instantaneous charger availability throughout the United States. Temporally, the data are 

relatively low-resolution (samples are taken approximately twice per hour) but when 

analyzing patterns at sufficient levels of aggregation (e.g., at the scale of a county or 

metropolitan region) and average over a sufficiently large number of observed days, the 

data set is a valuable resource for validating the aggregated emergent outcomes of a 

simulation model like BEAM. 

 

In Figure 8 and Figure 9, we present observed average hourly utilization of public 

charging infrastructure for the whole Bay Area and by county, respectively. These data 

were produced by averaging the hourly counts of chargers in use for all non-holiday 

weekdays over a period of three months from June through August 2016. In Section 5.2 

below, we use these data directly in the process of calibrating the decision model used in 

BEAM. 

 

These utilization data are not the most ideal data source for analyzing charging patterns 

and grid impacts of PEV adoption. Namely, they don’t distinguish between a vehicle that 

is drawing power and one whose battery is full but is still plugged in and engaged in a 

charging session (most chargers meter by the hour).  BEAM is capable of producing 

spatiotemporal patterns of both charger utilization in this sense as well as profiles of 

power consumption. For calibration, the former is used to enable an apples-to-apples 

comparison of infrastructure utilization, while the latter is used for analysis of the impact 

of model assumptions on charging profiles. In future work, we plan to obtain data directly 

from a charging network operator to allow additional calibration that considers both 

utilization and instantaneous power consumption. 

5. Results and Analysis 

5.1. PEV Trip Demand 
 

The PEV trip demand for our Bay Area BEAM application comes directly from the 

mobility inputs described in Section 4.2. In Figure 10 and Figure 11, we show the 

temporal distribution of trip departures in the mobility data disaggregated by activity 

type. In Figure 10, the activity types refer to the activity being completed at the time of 

departure while in Figure 11 the types refer to the destination activity. In Figure 12 we 

show the distribution of travel distances in the Bay Area application, both by individual 

trip and by total travel distance each day. 
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Figure 8: Observed utilization of chargers on a weekday aggregated across San Francisco Bay Area. 

 

 
Figure 9: Observed utilization of chargers on a weekday by county across San Francisco Bay Area. 
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Figure 10: Departure times in San Francisco Bay Area application of BEAM by type of activity from which 
the agent is leaving. 

 
Figure 11: Departure times in San Francisco Bay Area application of BEAM by type of activity to which 
the agent is going. 
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Figure 12: Distribution of travel distances in Bay Area application of BEAM. 

 

5.2. Preliminary Model Calibration and Validation 
 

The calibration exercise was designed to do a preliminary calibration of the parameters of 

the nested logit choice model before engaging in further analysis. The ideal method of 

parameterization would be a combination of discrete choice analysis from revealed and 

stated preference data sets. To date, there has been some stated preference survey and 

choice modeling in the literature. We took advantage of the work of [12] [13] and [14] to 

choose an initial set of parameter values that approximate the tradeoffs between the 

attributes of the chargers and agents in Table 4. We could not solely rely on data from the 

literature because the structure of the models and experimental design in those studies 

was not identical to the kind of information available to agents in BEAM. For example, 

in [12], the model was designed to predict a binary choice: would the respondent charge 

given a situational circumstance (e.g. remaining range in vehicle) and attributes of one 

charging station (e.g. cost and charger level). But in BEAM, agents can sense multiple 

charging station alternatives and therefore are confronted with a more complicated 

decision. 

 

In order to parameterize this more complicated decision, we first conducted a series of 

sensitivity analyses, which focused mostly on the intercept of each utility function. By 

adjusting these intercept parameters, we ensured that no single alternative was 

dominating the other alternatives (or conversely, was dominated by the other 

alternatives). We also used the sensitivity analysis to ensure that the direction of change 

in the alternative probabilities moved in the expected direction with changes in the 

attribute space. An example of one result from this sensitivity analysis is presented in 

Figure 13. Here we demonstrate that the choice probability of choosing to charge at a 

single site (“oneSite”) or, analogously, of choosing to charge at any of the sites in the 

choice set (“allSites”) decreases as the remaining range in the vehicle increases. 
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Similarly, the probability of aborting any charging attempt (“abort”) increases with 

remaining range while the probability of adaptive measures that may lead to a charging 

session decrease (“searchInLargerArea” and “tryChargingLater”).  

 

Once the gross probabilities of the choices were adjusted to have reasonable values in the 

judgment of our modeling team, we proceeded to do a more empirical calibration of the 

Bay Area BEAM model by comparing simulated charging profiles to observed patterns. 

The calibration process was executed at a spatially aggregated scale due to the fact that 

the nested logit parameters are spatially lumped and therefore making changes to them 

would not have an appreciable impact on spatially disaggregated charging patterns. 

However, we did temporally disaggregate the observed charging profiles. 

 

In Figure 14, we show the result of running BEAM with four separate sets of parameters 

for the nested logit choice model. The x-axis corresponds to observed numbers of 

chargers in use by hour of the day (hour is represented by color) and the y-axis 

corresponds to the simulated number of chargers in use. The results are additionally 

disaggregated by charging level (Level 2 vs. DC Fast which is indicated by point shape).  

 

 
Figure 13: Log odds of five alternatives from a nested logit model with preliminary parameters across a 
wide range of charger and situational attributes. The situational attribute “remaining range” is varied 
along the x-axis. The box plots represent the distribution of log odds computed as all other model 
attributes are varied. 
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5.2.1. Aggregated Comparison of Simulated and Observed Charging Profiles 
 

 
Figure 14: Simulated vs. observed charger utilization for four sets of parameter values in the nested logit 
decision model in BEAM. Each point represents a comparison of the number of public chargers in use by 
charger level and hour according to BEAM outputs versus observed from charging networks in the Bay 
Area in mid-2016. 

The four parameter sets shown in Figure 14 are not comprehensive of all the sets 

explored in the calibration analysis. Therefore, we examined the result of running BEAM 

with dozens of combinations of parameters. The selected results give an idea of the range 

of outcomes that we observed by making reasonable adjustments to the nested logit 

parameters.  

 

Ultimately, the scenario titled “Iteration Final” was taken to be the final set of parameters 

we used for further analysis (which are the parameter values presented in Table 4). While 

in this report, we call this a “final/calibrated” BEAM model, we acknowledge that this 

parameter set is, in reality, a starting point for our current work. This means that more 

work is needed to achieve better agreement between spatially disaggregated charging 

patterns in BEAM and the observed charger utilization (Figure 15). We therefore intend 

to continue the calibration of the decision model as we improve our modeling 

assumptions and access more realistic and comprehensive data sources.  
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5.2.2. Spatially Distributed Comparison of Simulated and Observed Charging 
Profiles 

 
Figure 15: Simulated vs. observed charger utilization for the preliminary calibrated nested logit decision 
model by county in BEAM. Each point represents a comparison of the number of public chargers in use 
by charger level and hour according to BEAM outputs versus observed from charging networks in the 
Bay Area in mid-2016. 

5.3. PEV Charging Behavior 
 

Based on the models of decision-making described in Section 3.2.2.6, Table 3, including 

the preliminarily calibrated nested choice model, we conducted some preliminary 

analysis with BEAM to illustrate the value of simulating regional mobility and charging 

behavior with such a detailed, agent-based, spatially explicit approach.  

5.3.1. Impact of Constrained Infrastructure on Charging Profiles 
 

Modelers make a series of simplifying assumptions when simulating PEV mobility and 

charging demand in order to rapidly produce results for a variety of analytical purposes. 

One common simplification is to ignore the fact that charging infrastructure in the public 

sphere is constrained. In order to test the impact of this simplifying assumption, we 

created two charging infrastructure scenarios for the Bay Area application of BEAM. The 

“Constrained” scenario is the baseline scenario based on the actual number of chargers 

installed in the region according to the Alternative Fuels Data Center. The “Abundant” 

scenario involved siting a very large number of charging plugs (approximately 150 times 

the number actually installed in 2016) throughout the road network. 

 

The BEAM model was run under both scenarios with the “Always Charge on Arrival” 

decision model enabled. As shown in Figure 16, there is a dramatic difference in the 

charging profile of the agents when infrastructure is abundant versus constrained. Since 

the decision model is highly simplistic (always charge if a charger within 2 miles is 

available) it can readily be concluded that the current charging infrastructure in the San 
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Francisco Bay Area is insufficient to allow all PEVs to charge whenever and wherever 

they arrive at a destination.  

 

 
Figure 16: Instantaneous charging demand for PEVs in the Bay Area under a scenario with abundant and 
constrained charging infrastructure. Demand is disaggregated by charger type (Level 2, DC Fast, or 
residential). The charging decision model used is “Always Charge on Arrival.” 

5.3.2. Impact of Spatially Dispersed Charging Infrastructure on Charging 
Profiles 

 

Another common simplifying assumption in some PEV models is to ignore the 

complication of explicitly representing space in the simulation. The “constrained” 

infrastructure scenario in Figure 16 also provides a useful basis for testing the importance 

of adopting a spatially explicit model approach as we have done in BEAM. The temporal 

distributions in Figure 17 were produced from the same model run as the “constrained” 

scenario in Figure 16. In other words, the charging infrastructure is based on mid-2016 

chargers in the Bay Area and the decision model for charging was “Always Charge on 

Arrival.” Based on the results presented above, it is clear that if agents could access 

chargers within a reasonable radius of their activity locations, they would. But as shown 

in Figure 17, a large fraction of total charging plugs in the constrained scenario are not 

being used. The reason is because at any given point in time, the majority of chargers are 

not co-located with the agents, so they sit idle. 

 

In addition to demonstrating the value of spatially explicit modeling, this result also 

represents a fundamental challenge to the business viability of installing charging 

infrastructure. Namely, because lower power chargers need to be installed where vehicles 

park (in contrast to DC Fast or conventional fueling stations which are destinations for 

vehicles), they are necessarily sparsely distributed across the landscape, making it very 

difficult to achieve duty factors high enough to build a thriving business model on 

supplying chargers. 
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Figure 17: Plug availability for the baseline Bay Area BEAM scenario with the “Always Charge on Arrival” 
decision model. Here, availability is defined as plugs that are not actively charging any vehicle and are 
accessible by empty parking spaces, though they could be plugged into a vehicle. 

5.3.3. Impact of Alternative Models of Charging Decisions on Charging Profiles 
 

Finally, in Figure 18, we examine a set of scenarios using the baseline charging 

infrastructure and then we vary the charging decision model used by the agents. It is clear 

that the choice model has a large degree of influence on emergent charging profiles.  

 

In the public sector, there is some similarity between the charging profiles under the 

“Uniform Random” and the “Nested Logit” decision models. With some further 

parameterization of the uniform random model, it could be possible to reproduce 

aggregate charging patterns even more closely matching the nested logit profiles. 

Because this kind of choice model is simpler and faster to execute, it could be preferable 

when a high degree of granularity in choice mechanism is not of interest to a modeler. 

However, there are some ancillary benefits to using the nested logit choice model, which 

we describe in Section 6.3, and believe it could enable a highly computationally efficient 

methodology to site charging infrastructure without making great sacrifices in the 

spatiotemporal resolution of the analysis.  

6. Remaining Research Gaps 

6.1. Method of incorporating this work into the BaSce analysis 
 

The results from the BEAM-PLEXOS work, when completed, can be used in the next 

BaSce analysis to estimate all PEV related benefits. Benefits and costs that accrue to the 

power system due to the deployment of electric vehicles can be estimated in several 

scenarios including ones where we use the PEV fleet to provide grid services in both one-

way control and V2G configurations. The precise reporting metrics need to be further 



 

33 
 

 
Figure 18: Instantaneous charging demand for PEVs in the Bay Area under the baseline infrastructure 
scenario and three different models of charging decisions. Demand is disaggregated by charger type 
(Level 2, DC Fast, or residential). 

defined. 

6.2. Additional Calibration Work 
 

As described in Section 5.2, the current preliminary parameterization of the nested logit 

choice model was insufficient to recreate spatially disaggregated charging pattern 

observed in the Bay Area. We have two potential refinements to the model inputs and 

assumptions that could rectify the discrepancy. The first is described in Section 4.3, 

namely, that if we base our assumptions of the home location of agents on vehicle 

registration data instead of PEV rebate data, our spatial distribution of charging behavior 

may become more accurate.  

 

Secondly, the sampling of mobility plans from the full MTC data set were based only on 

home location. It is also a fact that PEV drivers systematically drive fewer miles on 

average than drivers of conventional vehicles. We may be able to remove some bias in 

our model assumptions by weighting our sample of mobility plans by the total miles 

driven in a day. This can be done based on reported daily mileage from surveys such as 

[11] or through data licensing with OEMs. 

 

6.3. Charging Infrastructure Siting Methodology 
 

Once the Bay Area application of BEAM is fully specified and calibrated, our analysis 

can develop projections of future PEV fleets and the corresponding charging 

infrastructure that will serve those vehicles. As we have established in this report, the 

impact of constrained charging infrastructure is very important to the resulting 

spatiotemporal charging profiles. Taking a robust approach to charger infrastructure 

siting is an important step to producing reliable projections of future electricity demand 
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and estimating the potential for load flexibility from PEVs. The following describes some 

of the challenges associated with siting charging infrastructure and an approach we have 

developed to overcome those challenges. 

6.3.1. The Computational Challenge 
 

As explored in [15] and [16], the problem of robustly siting spatially resolved charging 

infrastructure in a region is challenging primarily due to computational burden. The 

approach in those studies was to use a relatively complex, agent-based model of PEV 

mobility and charging demand to evaluate the efficacy of a hypothetical distribution of 

chargers. By exploring the decision space (consisting of the number of chargers to be 

sited in each zone of the model for each alternative level of charger), it is possible to 

maximize the quality of service provided to the population of PEV drivers subject to a 

budget constraint.  

 

The advances made by the BEAM model (as presented in this report) permit an 

unprecedented level of realism and richness in the simulation of PEV mobility and 

charging infrastructure interaction. However, running a single day of mobility and 

charging for 60,000 agents takes anywhere from 15 to 60 minutes of time on a modestly 

powerful personal computer.  

 

In addition, in our previous work, we had to aggregate the travel analysis zones in a 

region from hundreds of thousands to dozens in order to reduce the dimension of the 

search space. However, these kinds of simplifications do not allow us to easily account 

for detailed heterogeneity within a zone despite the fact that our data sources permit such 

resolution.  

 

We therefore have devised an approach that allows us to site chargers in large increments 

(tens to hundreds at a time) simultaneously across a region in a manner that distributes 

the chargers according to need. 

6.3.2. Deriving a Metric for Spatiotemporal Charging Infrastructure Need 
 

Where are chargers needed? How much are they needed and when? These are 

complicated questions to untangle with a high degree of certainty due to the complexities 

surrounding when, where, and for whom charging is needed. In the process of defining 

and calibrating the nested logit decision model for BEAM, we have identified the choice 

model itself as a highly valuable summary of all of the characteristics relevant to the need 

for charging infrastructure. 

 

Namely, each time a driver makes a decision about charging infrastructure, they collect all 

of the data needed to understand whether or not that location in time and space is a 

location with available and high quality charging infrastructure. In transportation 

engineering, this metric of quality is called "accessibility." It is defined as the log of the 

denominator in a multinomial logit model. In the case of a nested logit model, it is the log 

of the denominator of the top-level nest of the model. 
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For BEAM, we intend to use the "accessibility" of the charging infrastructure in a manner 

similar to the infrastructure siting approach taken by [17], which involved simulating 

PEV mobility and then recording the location (like dropping a pin on a map) when the 

battery reached some low state of charge. In our approach, we associate the accessibility 

of a charging decision with the time and location when the decision is made. After a 

model simulation is complete, we take all of the accessibility metrics and do further 

analysis to recast them into a measure of need for charging infrastructure.  

 

Each accessibility metric is associated with a particular link in the road network. We 

divide all of the metrics by the length of the corresponding pins to normalize for the 

heterogeneity in link size. Then we take the arithmetic inverse of the metric by 

subtracting all of the metrics from the maximum value. The new metric is now a metric 

of need, where the agent who had the maximum value for accessibility is considered to be 

in a time and location where there is no need for additional infrastructure.  

 

Finally, the need metrics are then aggregated to the link and hour of day, enabling a 

spatiotemporal analysis of charging need. In Figure 19 we show the temporal distribution 

of charger need by hour of day and by county. It is clear that charging infrastructure need 

is well correlated with mobility demand as seen in Figure 10.  

 

To use this metric of need to site chargers, we perform a random draw from a discrete 

probability distribution of length equal to the number of links in the road network and 

with probability in proportion to the total need on each link. We can repeat the random 

draw multiple times to site chargers simultaneously. In Figure 20, we show the spatial 

distribution of charger need (in red) and the corresponding result of sampling 500 

charging sites from the spatial distribution.  

 

 
Figure 19: Charging infrastructure need by hour of day and county. 
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6.3.1. Incremental Siting of Infrastructure 
 

When we employ the siting approach described above, we can do so in a way that reflects 

a reasonable progression of events, where the penetration of PEVs in the local fleet and 

composition of that fleet evolve over time along with the introduction of charging 

infrastructure. Fleet composition in particular will be critical to our analysis, given that 

BEVs with larger battery capacities are soon to enter the market at competitive price 

points (e.g. the Chevrolet Bolt and Tesla Model 3 with over 200 miles of range). The 

charging infrastructure should be co-sited along with these evolving adoption patterns in 

order to project a future transportation electric system that reflects the path dependency 

of how technology and markets evolve over time.  

 

  
Figure 20: Example of siting 500 charging sites (blue circles) in road network by sampling from a 
probability distribution based on link by link infrastructure need. 
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7. Conclusion 
 

We find that accurately reproducing observed charging patterns requires an explicit 

representation of constrained and spatially disaggregated charging infrastructure. 

Chargers are not ubiquitous and therefore they must be treated as a finite resource in 

order to analyze realistic load profiles from charging. In addition, drivers balance 

tradeoffs with regards to time, cost, convenience, and range anxiety when deciding about 

whether to charge. We find that simulating these decisions explicitly improves modeling 

accuracy and can provide a useful metric for siting new charging infrastructure. 
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