
 

LBNL-62869 
 
 
 
 
 
 

Distributed Generation Dispatch Optimization under 
Various Electricity Tariffs 
 
 
Ryan Firestone and Chris Marnay 

 

Energy Analysis Department 
Ernest Orlando Lawrence Berkeley National Laboratory 
1 Cyclotron Road, MS 90R4000 
Berkeley CA 94720-8136 
 
Environmental Energy 
Technologies Division 
 
June 2007 
 
http://eetd.lbl.gov/ea/EMS/EMS_pubs.html 
 
 
 
accepted to be published in the International Journal of Electronic Business Management 
Vol. 5, No. 3 (2007). 
 
 
 
 
 
 
This research builds on prior energy manager work coordinated by the 
Consortium for Electric Reliability Technology Solutions and funded by the 
California Energy Commission, Public Interest Energy Research Program, under 
Work for Others Contract No. BG 99-396 (00). The Assistant Secretary of 
Energy Efficiency and Renewable Energy, former Distributed Energy Program 
of the U.S. Department of Energy (under contract) and the California Public 
Utilities Commission, Division of Ratepayer Advocates have also provided 
support on related work. 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 



   

   

Disclaimer 
 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither 
the United States Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by its trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof, or The Regents of 
the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof, or The Regents of the University of California. 
 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 



 

LBNL-62869 
 
 

 
 

DISTRIBUTED GENERATION DISPATCH 
OPTIMIZATION UNDER VARIOUS ELECTRICITY 

TARIFFS 
 
 
 

Prepared for the 
 

Office of Electricity Delivery and Energy Reliability 
 

U.S. Department of Energy 
 
 
 
 

Principal Authors 
 

Ryan Firestone and Chris Marnay 
 
 
 

Ernest Orlando Lawrence Berkeley National Laboratory 
1 Cyclotron Road, MS 90R4000 

Berkeley CA 94720-8136 
 
 
 
 
 
 

July 2007 
 
 
 
 
 
 
 
 



   

   

 

 
This research builds on prior energy manager work coordinated by the Consortium for Electric 
Reliability Technology Solutions and funded by the California Energy Commission, Public 
Interest Energy Research Program, under Work for Others Contract No. BG 99-396 (00). The 
Assistant Secretary of Energy Efficiency and Renewable Energy, former Distributed Energy 
Program of the U.S. Department of Energy (under contract) and the California Public Utilities 
Commission, Division of Ratepayer Advocates have also provided support on related work.



Distributed Generation Dispatch Optimization Under Various Electricity Tariffs 
   

i 

Table of Contents 

 

Table of Contents............................................................................................................................. i 

List of Figures and Tables.............................................................................................................. iii 

Acronyms and Abbreviations ..........................................................................................................v 

Acknowledgements....................................................................................................................... vii 

Abstract .......................................................................................................................................... ix 

1. Introduction .................................................................................................................................1 

2. BACKGROUND.........................................................................................................................3 
2.1 Electricity Tariff Structure...................................................................................................3 
2.2 Distributed Generation Optimization...................................................................................4 

3. DISPATCH OPTIMIZATION MODEL.....................................................................................5 

4. CASE STUDY – SAN DIEGO, CALIFORNIA, INDUSTRIAL SITE .....................................7 

5. DATA COLLECTION................................................................................................................9 
5.1 Energy Loads .......................................................................................................................9 
5.2 Energy System Characteristic ............................................................................................10 
5.3 Energy Prices .....................................................................................................................10 
5.4 Solar Insolation ..................................................................................................................13 
5.5 Carbon Emissions ..............................................................................................................13 

6. METHOD..................................................................................................................................13 

7. RESULTS..................................................................................................................................15 

8. CONCLUSIONS.......................................................................................................................29 

9. FUTURE WORK ......................................................................................................................31 

References......................................................................................................................................33 
 
 
 





Distributed Generation Dispatch Optimization Under Various Electricity Tariffs 
   

iii 

List of Figures and Tables 

Figure 1. parameters and variables at time-step i of RT-OPTICOM.............................................. 5 
Figure 2. electric loads for a typical weekday in January............................................................... 9 
Figure 3. electric loads for a typical weekday in July................................................................... 10 
Figure 4. Zone SP15 spot market clearing prices for January 1-7, 2005...................................... 12 
Figure 5. Zone SP15 spot market clearing prices for July 1-7, 2005............................................ 12 
Figure 6. electricity and natural gas prices for January 2004 to August 2006 and the ratio of 

electricity to natural gas price ......................................................................................... 13 
Figure 7. monthly costs under TOU tariff and three control strategies from 2004 to 2006 ......... 15 
Figure 8. monthly costs under CPP tariff and three control strategies from 2004 to 2006 .......... 16 
Figure 9. monthly costs under RTP tariff and three control strategies from 2004 to 2006 .......... 16 
Figure 10. annual energy costs under TOU tariff and three control strategies ............................. 17 
Figure 11. annual energy cost savings over do-nothing control strategy under TOU tariff ......... 17 
Figure 12. annual energy costs under CPP tariff and three control strategies .............................. 18 
Figure 13. annual energy cost savings over do-nothing control strategy under CPP tariff .......... 18 
Figure 14. annual energy costs under RTP tariff and three control strategies.............................. 19 
Figure 15. annual energy cost savings over do-nothing control strategy under RTP tariff .......... 19 
Figure 16. optimal electric supply under TOU tariff for the first full week of January 2004 ...... 20 
Figure 17. optimal electric supply under TOU tariff for the first full week of July 2004 ............ 20 
Figure 18. optimal electric supply under CPP tariff for the first full week of January 2004 ....... 21 
Figure 19. optimal electric supply under CPP tariff for the first full week of July 2004 ............. 21 
Figure 20. optimal electric supply under RTP tariff for the first full week of January 2004 ....... 22 
Figure 21. optimal electric supply under RTP tariff for the first full week of July 2004 ............. 22 
Figure 22. optimal electric supply under TOU tariff for the first full week of November 2005.. 23 
Figure 23. optimal electric supply under CPP tariff for the first full week of November 2005 ... 23 
Figure 24. optimal electric supply under RTP tariff for the first full week of November 2005... 24 
Figure 25. electrical load offset ordered by spot market clearing price under all tariffs in January 

2004 – 20-hour rolling average ....................................................................................... 25 
Figure 26. electrical load offset ordered by spot market clearing price under all tariffs in July 

2004 – 20-hour rolling average ....................................................................................... 25 
Figure 27. electrical load offset ordered by spot market clearing price under all tariffs in 

November 2005 – 20-hour rolling average ..................................................................... 26 
Figure 28. cost/carbon Pareto curve.............................................................................................. 27 
Figure 29. generator part-load electrical efficiency...................................................................... 35 
Figure 30. Two-state Markov model of generator availability ..................................................... 35 
 
Table 1. TOU and CPP rates for SGD&E small industrial customers, 2005................................ 11 
Table 2. Pareto curve maximum and minimum points ................................................................. 27 
Table 3. carbon intensity of electric load offset from grid and on-site sources............................ 27 
 
 
 





Distributed Generation Dispatch Optimization Under Various Electricity Tariffs 
   

v 

Acronyms and Abbreviations 

 
CAISO  California Independent System Operator 
CHP  combined heat and power 
COP  coefficient of performance 
CPP  critical peak pricing 
DG  distributed generation 
EIA   U.S. Department of Energy's Energy Information Administration 
HHV  higher heating value 
kWh  kilowatt hour 
MILP  mixed integer linear program 
P&DC  USPS Processing and Distribution Center 
PV  photovoltaics 
RT-OPTICOM Real Time Optimal Control Model 
RTP  real time pricing 
SDG&E  San Diego Gas and Electric 
TOU  time of use 
USPS  United States Postal Service 

 





Distributed Generation Dispatch Optimization Under Various Electricity Tariffs 
   

vii 

Acknowledgements 

 
This research builds on prior energy manager work coordinated by the Consortium for 

Electric Reliability Technology Solutions and funded by the California Energy Commission, 
Public Interest Energy Research Program, under Work for Others Contract No. BG 99-396 (00). 
The Assistant Secretary of Energy Efficiency and Renewable Energy, former Distributed Energy 
Program of the U.S. Department of Energy (under contract) and the California Public Utilities 
Commission, Division of Ratepayer Advocates have also provided support on related work.  

The authors would also like to thank: 
• Bill Golove and Joe Vandenberg for their help and permission to access data for the San Diego 

P&DC, 
• Russel Seibert for providing an extensive site tour of the San Diego P&DC, 
• Todd Cahill for providing historic SDG&E tariff data, and  
• Owen Bailey, Alex Farrell, Karl Magnus Maribu, Afzal Siddiqui, and Michael Stadler for 

input at various stages of this project. 
 





Distributed Generation Dispatch Optimization Under Various Electricity Tariffs 
   

ix 

Abstract 

The on-site generation of electricity can offer building owners and occupiers financial benefits as 
well as social benefits such as reduced grid congestion, improved energy efficiency, and reduced 
greenhouse gas emissions. Combined heat and power (CHP), or cogeneration, systems make use 
of the waste heat from the generator for site heating needs. Real-time optimal dispatch of CHP 
systems is difficult to determine because of complicated electricity tariffs and uncertainty in 
CHP equipment availability, energy prices, and system loads. Typically, CHP systems use 
simple heuristic control strategies. This paper describes a method of determining optimal control 
in real-time and applies it to a light industrial site in San Diego, California, to examine: 1) the 
added benefit of optimal over heuristic controls, 2) the price elasticity of the system, and 3) the 
site-attributable greenhouse gas emissions, all under three different tariff structures. Results 
suggest that heuristic controls are adequate under the current tariff structure and relatively high 
electricity prices, capturing 97% of the value of the distributed generation system. Even more 
value could be captured by simply not running the CHP system during times of unusually high 
natural gas prices. Under hypothetical real-time pricing of electricity, heuristic controls would 
capture only 70% of the value of distributed generation.
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1. Introduction 

The on-site generation of electricity can offer building owners and occupiers financial benefits as 
well as social benefits, such as reduced grid congestion, improved energy efficiency, and reduced 
greenhouse gas emissions. Combined heat and power (CHP), or cogeneration, systems make use 
of the waste heat from the generator for site heating needs. Heat can also be used to provide 
cooling using a heat-activated chiller or to reduce electric cooling loads using a desiccant 
dehumidifier. CHP applications are typically what make on-site fossil-fired thermal generation 
both economic and energy and carbon efficient. 
 
This distributed generation (DG) of electricity is becoming economically attractive for more, 
varied, and smaller commercial and industrial sites. While the economics of DG have become 
compelling in many cases, there are often significant and even insurmountable barriers to 
adoption. Many of these barriers are identified in [1] and categorized as:   
• technical – utility requirements that may be redundant to DG system equipment capabilities, 
• business practice –  contractual and procedural requirements of the utility for 

interconnection, and identification of people within the utility with knowledge of the 
technology and the authorization to act on the utility’s behalf, and  

• regulatory – tariff structures specific to DG customers may burden the customers with 
excessive fixed costs or penalties. 

 
An additional barrier to DG adoption is institutional, as described in a business case study of an 
industrial DG site [13]. The barrier consists of 1) the need within an institution for an individual 
or individuals to champion an activity that departs from the status quo (both within the institution 
and the industry, and 2) the risk to reputation and status that championing brings with it.  
 
These barriers are being weakened as DG becomes more prevalent. While DG has traditionally 
been adopted by large (> 1-2 MW) industrial and commercial sites, reduced barriers, along with 
reduced equipment costs, public incentives, and increased public awareness, have made DG 
accessible to smaller, less sophisticated owners.  
 
The optimal dispatch of a DG system is the least-cost solution to the supply of a site’s energy 
demand by utility purchase, DG, or a combination of the two. Optimality requires minimizing a 
complicated cost function dependent on a non-linear electricity tariff, fuel prices that are 
changing over time, and stochastic site energy loads, equipment availability, and, in some cases, 
real-time electricity prices. Smaller DG installers typically rely on heuristic control strategies 
devised when the system was installed because custom-designed, intelligent controls were 
unavailable or prohibitively expensive. 
 
Complicating matters is debate over appropriate electricity tariff structures. The marginal cost of 
central electricity production and delivery is time and location dependent. Traditional electricity 
tariffs have not efficiently passed such price fluctuations on to customers. Recent deregulation 
and improvements in metering capabilities are enabling tariff design that more accurately reflects 
the true costs of providing electricity.  
 



Distributed Generation Dispatch Optimization Under Various Electricity Tariffs 
   

2 

This analysis quantifies the value of intelligent DG dispatch controls for a light industrial site in 
southern California. This is done by comparing energy costs and DG dispatch resulting from 
optimal and heuristic control strategies under three different tariff structures. The patterns of 
consumption under optimal control are also examined. Finally, the trade-off between cost-
minimization and carbon-minimization is evaluated. 
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2. BACKGROUND 

Optimal dispatch of a DG installation at each time-step depends on current site loads, energy 
prices, and DG system availability, as well as the actual structure of tariffs and uncertain 
forecasts of these parameters at future time-steps. This section describes common electricity 
tariff components and structures and recent research on DG dispatch optimization.  
 
2.1 Electricity Tariff Structure 

Unlike most goods, whose prices are set in open markets, the end-use supply of electricity is 
considered a natural monopoly good whose price is regulated on a cost-of-service basis. Utilities 
and their regulators typically set tariff elements to cover three kinds of costs: 
• Fixed charges are invariant $/month prices. These are intended to recoup the infrastructure 

costs of supply and delivery that are incurred by the customer regardless of its energy 
consumption.  

• Volumetric charges are proportional to the amount of energy consumed. They are expressed 
in $/kWh and may vary by time of day or by monthly consumption. Volumetric rates are 
intended to cover the variable costs of producing electricity, such as fuel and variable labor 
requirements.  

• Demand charges are expressed in $/kW and levied on the maximum power consumption 
during a specified time range (such as the on-peak hours of the month), regardless of the 
duration or frequency of that level of power consumption. Demand charges are intended to 
collect the fixed costs of infrastructure shared with other customers by raising revenue in 
proportion to the amount of power required by the customer when assets are stressed. 

 
Volumetric charges for large customers typically have a time-of-use (TOU) structure: electricity 
is priced differently for pre-specified on-peak and off-peak hours (or for a greater number of 
time slices). However, TOU rates do not reflect the dynamic nature of deregulated energy 
markets. Market volatility and the potential for exercise of market power are stoked by 
consumption behavior that does not respond to market clearing prices: regular consumption 
during irregularly high or low prices keeps prices irregular, whereas consumption that responds 
inversely to price changes stabilizes prices [5].  
 
Real-time pricing tariffs (RTP), which pass market clearing prices directly to customers, have 
become optional or mandatory in some U.S. jurisdictions. Critics of real-time pricing argue that 
consumers are unlikely to be diligent “energy brokers,” continuously responding to variations in 
price, but could be responsive to occasional large price spikes during times of severe system 
shortages. This is the rationale behind critical peak pricing (CPP), which uses a TOU structure 
punctuated by very high price spikes during anticipated critical episodes. The economic 
efficiency of RTP tariffs is demonstrated in simulation in [4], which also qualitatively shows that 
CPP tariffs would capture much of the efficiency improvements over flat rate tariffs, while TOU 
tariffs would not capture much. This paper does not specifically consider consumers with on-site 
generation, whose demand elasticity could be much greater than consumers without on-site 
generation because of the ability to switch between utility purchase and self-generation without 
reducing site demand. Recent utility experience with RTP tariffs is described in 3. 
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2.2 Distributed Generation Optimization 

Common DG devices are reciprocating engines, gas turbines, microturbines, and fuel cells. For 
prime-power applications (as opposed to back-up power) in the United States, these devices are 
typically fueled by natural gas, biogas, or propane. In CHP applications, the heat generated by 
these devices is harnessed for application to site space, water, and process heating needs or to 
satisfy cooling loads using a heat activated chiller. Wind power or solar energy harvested by 
photovoltaics and/or solar thermal collectors are also options.  
 
In addition to engineering constraints on DG system performance, regulators may impose 
constraints for environmental or other reasons. For example, in California, DG systems must 
maintain an annual average system efficiency of 60% to be eligible for certain subsidies. 
California has also recently mandated reductions in its greenhouse gas emissions; this may result 
in explicit carbon constraints on power production.  
 
The economically optimal control of DG systems is complicated by uncertainty, nonlinearities, 
and intertemporal constraints. End-use loads, energy prices, and equipment availability are all 
uncertain; demand charges are nonlinear; and constraints such as annual minimum efficiency and 
emissions limits are inter-temporal. These conditions require that, at a given time, optimal 
scheduling must include not only dispatch for the current time, but also an optimal strategy for 
all points in the future. 
 
A threshold control strategy for CHP dispatch optimization in the presence of demand charges is 
proposed in [8]. The authors assume deterministic loads and 100% reliable equipment. Prior to 
the start of each month, monthly system operation and costs are simulated under varying 
threshold levels. The threshold level with least-cost results is selected. For several Ontario, 
Canada, buildings examined, this paper illustrates that using threshold control, rather than 
control based solely on volumetric price ($/kWh), can lower the payback period of a CHP system 
investment by 2 to 3 years. This is one of the few papers to identify the dependency of DG 
system value on control strategy, particularly under the influence of demand charges. The 
authors also discuss excessive start-stop cycles as a practical concern of analytic dispatch 
optimization strategies. 
 
The concept of a real-time, automated energy manager that receives relevant information about a 
building energy system (loads, costs, and equipment performance) and makes optimal dispatch 
decisions is discussed in [12]. Dispatch decisions might also include limited load curtailment or 
rescheduling opportunities. This concept is realized in an actual mathematical program described 
[11] in which it is used to evaluate the value of integrating a limited, voluntary electricity 
curtailment program into a building energy system that has already installed DG. 
 
The model described in [11] is used in this work to determine the optimal dispatch for a case-
study site. This optimal dispatch and resulting energy cost is compared to the current, heuristic 
control strategy employed at the site under three different tariff structures: TOU, CPP, and RTP. 
Section 3 describes the dispatch optimization model. Section 4 introduces the case-study site, a 
light industrial site in San Diego, California. Data collection procedures are described in Section 
5. Section 6 describes the methods used in the analysis, and results of the optimization are 
presented in Section 7. Finally, Section 8 discusses these results and offers conclusions. 
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3. DISPATCH OPTIMIZATION MODEL 

The Real-Time Optimal Control Model (RT-OPTICOM) described in [11] is used to determine 
the optimal dispatch of a DG system with limited curtailment opportunities subject to uncertainty 
in energy loads, energy prices, and DG equipment availability. RT-OPTICOM is a mixed integer 
linear program (MILP), for which various robust commercial solvers are available 
.  
In order to be expressed as a MILP, randomly generated scenarios are used to represent 
stochastic parameters. Each scenario contains randomly generated values of energy loads (non-
cooling electric, electric, and heating), electricity prices, DG availability, and solar insolation.  
The optimization problem is discretized into time-steps in the range of minutes to an hour. It is 
solved sequentially at each time-step, although dispatch decisions made at each time-step must 
be made for the current time-step as well as for all future time-steps. All future dispatch 
decisions are conditional on future conditions; i.e., there is a separate decision for each scenario 
at each future time-step. Future optimization, or a strategy, is necessary because 1) electricity 
demand charges are non-additive, but rather are determined by the maximum over all time-steps 
in the month and 2) there are inter-temporal (annual) constraints such as regulatory limits on 
system efficiency and emissions.   
 
RT-OPTICOM can be used for two purposes: real-time dispatch optimization and system 
simulation. For real-time dispatch optimization, past and current information is the actual 
information about the energy system (loads, equipment availability, prices), whereas for system 
simulation, the “actual values” are an additional randomly generated scenario or set of historic 
actual values. For either purpose, “actual values” for a particular time-step are not revealed to 
RT-OPTICOM until that time-step. 
 
Figure 1 illustrates the parameters and variables at time-step i of timespan length T. Rows are 
different parameter or variables types. Columns are time-steps. Each box in the figure represents 
a set of data or variables for a particular time-step, t. The actual parameter values for all past and 
the current time-step (0 ≤ t ≤ i) are known and sent to RT-OPTICOM. For future time-steps (t > 
i), sets of stochastic possible parameter values are also sent to RT-OPTICOM. Finally, all 
previous dispatch decisions are sent to RT-OPTICOM. The program then determines the actual 
dispatch for the current time-step, i, and a set of dispatch plans, contingent on future parameter 
values, for all scenarios 1,...,n at all future times i+1,…,T. 

  

timestep,t
1 2 … i … T

actual parameters APt parameters sent to RT-OPTICOM unknown
stochastic SP1,t unnecessary parameters
parameters SP2,t sent to

… RT-OPTICOM
SPn,t

actual dispatch ADt parameters sent to RT-OPTICOM unknown
dispatch strategy DS1,t unnecessary variables

DS2,t determined

… in RT-OPTICOM
DSn,t  

Figure 1. parameters and variables at time-step i of RT-OPTICOM 
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Figure 1 is explained mathematically in equation (1). 
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where  
• i is the current time-step 
• T is the last time-step of the timespan 
• E(cost()) is the expected energy costs for the timespan 1 to T 
• ADt is the actual dispatch at time-step t (a parameter for t < i , a variable for t = i) 
• APt is the actual scenario parameter values (known for t ≤ i) 
• SPj,t is the randomly generated parameter values for stochastic scenario j at time-step t 

(known for all t, but replaced by APt for all t ≤ i ) 
• DSj,i is the planned dispatch for stochastic scenario j at time t (a variable for all j and for all t > 

i) 
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4. CASE STUDY – SAN DIEGO, CALIFORNIA, INDUSTRIAL SITE 

In order to examine optimal control and the effects of tariff structure on system control and 
performance, the United States Postal Service’s (USPS) Margaret L. Sellers Processing and 
Distribution Center (P&DC) in San Diego, California, was selected as a case study. This site 
sorts and routes all outgoing mail from the San Diego region, and receives and routes all 
incoming mail to the region. In all, it handles approximately 12 million pieces of mail daily.  
Energy consumption patterns are conducive to DG. Due to the schedule of mail collection and 
sorting, the site has a nighttime peak electricity load of approximately 2.5 MW. Loads are 
dominated by the large mail-handling machines, which in turn necessitate a significant cooling 
load. The year-round moderate climate and consistent machine loads result in a year-round 
cooling demand. 
 
A DG system was recently installed at the site consisting of a 1.5 MW natural gas fired 
reciprocating engine coupled to a 1 MW (280 ton) absorption chiller. At rated capacity, the 
absorption chiller offsets 250 kW of electric load from the compression chillers. Additionally, 12 
kW of PV are installed at the site. 
 
The CHP equipment is owned and operated by a third party. Electricity and heat are provided at 
lower cost than the electricity and natural gas utility provides. The system uses a load-following 
control; i.e., the generator is run as high as possible at all times.  
 
For this research, the cogeneration owner and the P&DC site are treated as a single entity; i.e., 
the structure of transactions between the two parties is not considered here. This is realistic 
because the utility bills of both parties are additive, and any payments between them are internal 
transactions that do not affect the total paid to the local utility.  
 
This research examines the economic efficiency of this load-following control strategy by 
comparing energy costs from a load-following strategy to those from an optimal dispatch control 
strategy. Additionally, it examines the optimal control results under other tariff structures. 
Critical peak pricing (CPP) tariffs are already offered as an optional tariff by the utility. Real-
time pricing (RTP) could possibly be offered or imposed in the future.  
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5. DATA COLLECTION 

This section summarizes the data collection process. The appendix describes the stochastic 
models of energy demand, DG availability, energy prices, and solar insolation that are based on 
these data. 
 
5.1 Energy Loads 

Utility electricity consumption data at the site were available electronically from December 2002 
until the present. Detailed chiller logs and total electricity consumption were available from a 
similar P&DC site in Redlands, California [2]; from these data, the correlation of cooling loads 
to total electric loads was determined separately for daytime and nighttime periods in each month 
and applied to the San Diego site, thus developing a cooling load model. Redlands heating loads 
were scaled to the size of the San Diego site; these loads are minor relative to the electric loads at 
the site.  
 
Figure 2 and Figure 3 show electric loads, disaggregated by non-cooling and cooling loads, for 
typical weekdays in January and July respectively. Non-cooling electric loads include the mail 
handling machinery, lighting, and office equipment. The magnitude of these loads varies by day 
of week and time of year, primarily because of variations in mail volume. Cooling loads are 
present at all hours of the day, during all months because the heat given off by the machinery 
must be removed from the building. Cooling loads are correlated to non-cooling loads, and also 
outside temperature. From these figures, the sites’ night-time peaking load can be observed – 
most mail sorting (i.e. machinery running) is done at night because mail is collected during the 
day. 
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Figure 2. electric loads for a typical weekday in January 
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Figure 3. electric loads for a typical weekday in July 

 
5.2 Energy System Characteristic  

 
Details of the CHP system were obtained through interviews with relevant managers and 
operators at the site, and manufacturer specifications. The generator has an electrical efficiency 
of 36% (higher heating value) at rated capacity, and the absorption chiller has a coefficient of 
performance (COP) of 0.7. System availability was estimated from the site’s electric load data by 
observing the times since the CHP installation that an offset in utility consumption was not 
present. An availability of 98% was used for this research. The electric chillers at the site have a 
COP of 4. The photovoltaic system output is assumed to be proportional to solar insolation. 
 
5.3 Energy Prices 

Electricity prices were collected from San Diego Gas and Electric (SDG&E) for the years 2004 
to 2006 [14] and [17]. The default tariff for this site is a TOU structure with an optional CPP 
tariff also available.  
 
A hypothetical RTP tariff was constructed because the utility does not currently offer one. 
Demand charges and the delivery portion of volumetric charges from the reported TOU tariff 
were used. In the place of the TOU rates for electricity supply, however, the actual spot market 
clearing prices for the San Diego region, SP15, from January 2004 through December 2006 [6] 
were used. These prices were correlated to the month of the year, hour of the day, and day-type 
(weekday or weekend) to develop a model of clearing prices, including stochastic terms.  
It should be noted that in the models developed, the site energy loads were not correlated to spot 
market clearing prices, other than through monthly variation in the load and clearing price 
models. In reality, these two variables are strongly correlated for many customers, particularly 
during hot weather, when air conditioners raise site loads and (often) clearing prices. Similarly, 
in regions with significant amount of electric heating, very cold weather can have the same 
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effect. However, for this particular site, the omission probably does not have a large effect: San 
Diego has a very mild year-round climate and the site’s loads, including peak loads, are 
dominated by mail handling machinery, not by air-conditioning. Furthermore, significant air 
conditioning loads are always present (see Figure 2 and Figure 3); the incremental increase in 
cooling loads because of hot weather is not as dramatic as for a typical customer.  
 
Table 1 summarizes 2005 electricity prices for TOU and CPP. The CPP tariff has a TOU 
structure with exaggerated on-peak costs during CAISO determined critical event days. The 
tariff limits the number of critical event days to 6 per month, 12 per year. From 12 p.m. to 3 p.m. 
on a critical event day, on-peak prices are 2.3 times higher than the on-peak TOU rate. From 3 
p.m. to 6 p.m., on-peak prices are 5.9 times higher than the on-peak TOU rate. In exchange for 
this price increase, on- and mid-peak rates during noncritical days are reduced by 10% over the 
TOU rates. Real-time clearing prices for zone SP15 in the first weeks of January and July 2005 
are shown in Figure 4 and Figure 5. A distribution charge of $0.015/kWh is added to the clearing 
prices to complete the hypothetical RTP volumetric charge. 
   
Table 1. TOU and CPP rates for SGD&E small industrial customers, 2005 

source: CAISO (2006) 
 

2005 TOU electricity prices 
summer winter

fixed ($/month)
volumetric on-peak 0.119 n/a
($/kWh) mid-peak 0.076 0.083

off-peak 0.066 0.068
demand on-peak 18.11 n/a
($/kW) mid-peak 2.5 n/a

off-peak 0 n/a
all hours

335

7.56  
2005 ratio of CPP to TOU volumetric prices

ratio
noncritical on-peak hours 0.9
noncritical mid-peak hours 0.9
noncritical off-peak hours 1
critical moderate peak*** 2.3
critical high peak**** 5.9   
*there is a maximum of six critical episodes per month
**there is a maximum of 12 critical episodes per year
*** moderate peak is from 12:00 PM to 3:00 PM
**** high peak is from 3:00 PM to 6:00 PM  
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source: CAISO (2006) 
Figure 4. Zone SP15 spot market clearing prices for January 1-7, 2005   
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source: CAISO (2006) 
Figure 5. Zone SP15 spot market clearing prices for July 1-7, 2005 

 
Current natural gas prices were collected from SDG&E. Data from the U.S. Energy Information 
Administration (EIA) for city gate natural gas prices in California were added to current 
distribution costs to estimate historic natural gas prices. For each month long 
simulation/optimization, the price of natural gas was assumed to be constant and deterministic. 
These prices for 2004 through 2006 are plotted in Figure 6, along with the average California 
retail industrial electricity price, as reported by the EIA. The ratio of electricity to natural gas 
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price is also plotted to illustrate the volatility of this ratio, or spark spread, which has ranged 
from 2.3 to 5.3 in less than three years. Given that DG converts natural gas to electricity, optimal 
dispatch must be responsive to the relative fluctuations in these two commodities’ prices. 
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source: EIA 
Figure 6. electricity and natural gas prices for January 2004 to August 2006 and the ratio of 
electricity to natural gas price 

 
5.4 Solar Insolation  

Historic solar insolation data were collected from [16].  
 
5.5 Carbon Emissions  

The average marginal rate of carbon emissions for SDGE reported in [15], 0.181 kgC/kWh, was 
used to determine site specific carbon emissions from utility electricity consumption. The carbon 
intensity of natural gas is 0.052 kgC/kWh; this is the higher heating value (HHV). 
 
6. METHOD 

Simulations of site energy demand and production were performed in order to determine optimal 
dispatch and compare optimal performance to performance under heuristic control. Energy 
performance at the site was simulated for each of the 36 months from January 2004 to December 
2006 (estimates of energy prices were used for October, November, and December 2006). 
Simulations were repeated for three different tariff structures (TOU, CPP, and RTP) and for four 
control strategies: 
• optimal dispatch – The full optimization program is used to make dispatch decisions. 
• load-following – The generator is run as much as possible, mimicking the site’s current 

strategy. 
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• no-DG – The generator and absorption chiller are not run, showing site behavior prior to DG 
installation. 

• heat-following – The generator is dispatched to run at a level for which all recovered heat 
will be useful to the absorption chiller. 

 
The simulation was carried out separately for each combination of tariff structure and control 
strategy. The same stochastic load, equipment availability, and solar insolation data were used 
for each combination of tariff structure and control strategy. Although not used directly for 
pricing, the same RTP prices were used in the CPP simulations to identify critical periods for the 
CPP tariff that were aligned with the critical periods in the RTP simulations. By using the same 
parameter values for each combination of tariff structure and control strategy, the true 
performance comparison of different control strategies and different tariff structures was 
possible. 
 
For the optimal control strategy, each month-long simulation iteratively applied the optimal 
dispatch algorithm described above to each successive hour of the month. For non-optimal 
control strategies (load-follow, no-DG, and heat-follow), dispatch was constrained to follow the 
specified control strategy. 
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7. RESULTS 

Monthly energy costs (electricity and natural gas) for the site are plotted in Figure 7 through 
Figure 9. Each figure plots these costs under each control strategy for a single tariff structure. 
Heat-follow results have been omitted from these figures and all subsequent results because they 
are nearly identical to the load-follow results; i.e., the cooling load is large enough and consistent 
enough that there is always a use (the absorption chiller) for any heat the generator produces. For 
TOU and CPP structures, optimal dispatch and load-following result in nearly identical costs for 
all but a few months in 2005 and 2006. These are months of relatively high natural gas prices. 
These graphs illustrate that load-following results in near-optimal energy costs for most months. 
However, these graphs also show that during months of particularly high natural gas prices 
(September 2005 – January 2006) it is more expensive to run the DG as much as possible than 
not at all. For the RTP tariff structure, the costs under optimal control are lower than under either 
load-follow or no-DG, suggesting that a more sophisticated control strategy is justified. 
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Figure 7. monthly costs under TOU tariff and three control strategies from 2004 to 2006 
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Figure 8. monthly costs under CPP tariff and three control strategies from 2004 to 2006 
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Figure 9. monthly costs under RTP tariff and three control strategies from 2004 to 2006 

 
Figure 10 through Figure 15 summarize the annual energy costs and energy cost savings (over 
no-DG dispatch) for the three years considered under each of the three tariff structures. For a site 
considering DG, these values could be used to determine if the investment in DG is economic, 
given the cost of a proposed DG system. From these figures, the added benefit of optimal control 
over load-follow control is observed: for TOU, the average annual added benefit is $19,000, for 
CPP, it is $28,000, and for RTP, it is $90,000. 
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Figure 10. annual energy costs under TOU tariff and three control strategies   
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Figure 11. annual energy cost savings over do-nothing control strategy under TOU tariff 
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Figure 12. annual energy costs under CPP tariff and three control strategies 
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Figure 13. annual energy cost savings over do-nothing control strategy under CPP tariff 
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Figure 14. annual energy costs under RTP tariff and three control strategies 
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Figure 15. annual energy cost savings over do-nothing control strategy under RTP tariff 

 
Figure 17 through Figure 21 show how electricity demand is met by utility purchase and site 
equipment for the first full weeks (Monday – Sunday) of January 2004 and July 2004 under each 
of the tariff structures and optimal control. Where DG generation goes from significant to zero 
indicates a generator outage. These figures suggest that optimal control under TOU and CPP 
tariffs is simply load-following. Optimal control under RTP is more complicated and clearly 
responsive to market clearing prices. 
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Figure 16. optimal electric supply under TOU tariff for the first full week of January 2004  
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Figure 17. optimal electric supply under TOU tariff for the first full week of July 2004 
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Figure 18. optimal electric supply under CPP tariff for the first full week of January 2004 
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Figure 19. optimal electric supply under CPP tariff for the first full week of July 2004 
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Figure 20. optimal electric supply under RTP tariff for the first full week of January 2004  
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Figure 21. optimal electric supply under RTP tariff for the first full week of July 2004 

A very different result is obtained in November 2005 during a natural gas price spike. Figure 22 
through Figure 24 show how electricity demand is met by utility purchase and site equipment for 
the first full week of this month. These figures suggest that optimal control under TOU and CPP 
tariffs is simply the no-DG control strategy. Under the RTP tariff, however, there are still 
opportune times to dispatch the DG. 
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Figure 22. optimal electric supply under TOU tariff for the first full week of November 2005  
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Figure 23. optimal electric supply under CPP tariff for the first full week of November 2005 



Distributed Generation Dispatch Optimization Under Various Electricity Tariffs 
   

24 

recip. enginepurchase

0

500

1000

1500

2000

2500

1 25 49 73 97 121 145
hour

el
ec

tri
c 

su
pp

ly
 (k

W
) abs. cooling offset

 
Figure 24. optimal electric supply under RTP tariff for the first full week of November 2005 

Under RTP, the site is responding to the fluctuations in price and is more price responsive. 
Figure 25 through Figure 27 illustrate this demand elasticity. In these figures, the hours of the 
month are sorted by the real-time price and plotted on the right vertical axis. The offset of utility 
electricity purchase achieved through DG and absorption chilling for this same ordering of hours 
is plotted on the left vertical axis. In other words, drawing a vertical line through one of the plots 
illustrates how much electricity the site chooses not to purchase from the utility at a given spot-
market clearing price. The lines showing electricity offsets have been smoothed by using 20-hour 
rolling averages, rather than the actual sorted data. This has been done for visual clarity; 
oscillations in the actual sorted data are due to factors besides the clearing price of electricity that 
affect dispatch: generator availability, electricity prices not reflecting the clearing price, etc. The 
gradual increase in offsets under RTP tariff in all three months as clearing prices increase clearly 
illustrates the price responsiveness possible under RTP. Also illustrated is the indifference to 
market clearing prices under TOU and CPP tariffs.  
 
It should be noted that the extreme price responsiveness of the optimal control under RTP tariff 
may be unrealistic, as constant variation in generator load might make maintenance costs 
undesirable or prohibitively expensive. A smoother (but still fluctuating) consumption pattern 
would be seen if limits were placed on the amount of load variation. It should also be noted that 
RTP tariffs in general incent less generation than do TOU or CPP tariffs. This in turn causes site 
carbon emissions to be greater under RTP tariff than the other tariffs because DG is more carbon 
efficient than the central grid when waste-heat is useful. This result in particular is specific to 
areas with relatively high electricity prices, such as California, where distributed generation is 
often cost- and carbon-efficient. 
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Figure 25. electrical load offset ordered by spot market clearing price under all tariffs in January 
2004 – 20-hour rolling average 
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Figure 26. electrical load offset ordered by spot market clearing price under all tariffs in July 2004 
– 20-hour rolling average 
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Figure 27. electrical load offset ordered by spot market clearing price under all tariffs in November 
2005 – 20-hour rolling average 

The final experiment was to examine the effect of site-attributable carbon emissions constraints 
on energy costs under optimal control and the three different tariffs. Site-attributable carbon 
emissions are the sum of emission from grid electricity and on-site natural gas consumption. One 
constraint in the optimization model is a ceiling on the amount of site-attributable carbon 
emissions in each month. For this experiment, for the 12 months of 2005, the simulation under 
optimal control and each of the three tariffs was rerun for a series of carbon constraint levels.  
The set of costs and carbon emissions levels from these runs were then analyzed to obtain an 
estimate of the cost/carbon trade-off under each tariff structure. The results are plotted in Figure 
28 with carbon emissions on the horizontal axis and the corresponding minimum possible annual 
energy cost on the vertical axis. The maximum and minimum points on these curves are reported 
in Table 2. All points on Figure 28 and in Table 2 are determined through a separate optimization 
problem that finds the least-cost combination of monthly carbon constrained results for the year. 
These least-cost values could not be obtained in practice because they assume perfect foresight 
for the year in natural gas prices and general trends in electricity prices; however, they do 
provide an estimate of the cost/carbon trade-off.  
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Figure 28. cost/carbon Pareto curve 

Table 2. Pareto curve maximum and minimum points 

cost 
(M$)

carbon 
(kTon)

cost 
(M$)

carbon 
(kTon)

cost 
(M$)

carbon 
(kTon)

@best cost 1.2 2.1 1.2 2.1 1.1 2.2
@best carbon 1.2 1.9 1.2 1.9 1.2 1.9
% difference from 
best 1% 9% 2% 8% 5% 15%

TOU CPP RTP

 
 
The relatively sharp right-angles of the plots reveal that, for this site, least-cost dispatch is 
roughly least-carbon dispatch. The rounder angle of the RTP plot shows that the economic 
incentives not to run the DG at times are a disincentive to minimize carbon emissions. 
Table 3 summarizes the carbon intensities of various energy practices at the site. From this table, 
it is clear that using DG is less carbon intensive than direct utility supply, even when there is no 
use for recovered heat. 
  
Table 3. carbon intensity of electric load offset from grid and on-site sources 
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carbon 
intensity of 
load offset 
(kgC/kWh)

central grid for electricity 0.18
DG for electricity, no recovered heat 0.15
DG for electricity and absorption chilling 0.12
central grid for compression chilling 0.18
natural gas for absorption chilling 0.30
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8. CONCLUSIONS 

At the San Diego P&DC site, optimal controls could add 4%, 5%, or 30% value to a DG system 
for TOU, CPP, and RTP tariffs respectively, relative to a load-follow control system. Based on 
these results, heuristic control strategies appear adequate for TOU, CPP tariff structures for a site 
such as the San Diego P&DC. These heuristics, however, should identify days or months in 
which it is not profitable to run the DG system. RTP tariffs would make DG less profitable under 
simple load-follow control, yet optimal dispatch control could improve the profitability and 
possibly make the case for installing DG. Because the cost of these controls would be largely 
invariant to DG system size, this would be a regressive barrier to DG adoption, i.e. a larger 
barrier to smaller systems. 
  
While TOU and CPP tariffs would be more convenient and profitable for customers with DG, 
these tariffs do not incent self-generation that helps to stabilize the spot market. The CPP tariff 
does not incent any different DG behavior than the TOU tariff; generators are already running at 
on-peak times. RTP tariffs, however, do incent self-generation behavior that would mitigate 
price volatility in the spot market: more generation during times of high clearing price and less 
generation during times of low clearing price.  
 
While RTP tariff structures do incent desirable market behavior, they incent higher site-
attributable carbon emissions than TOU or CPP tariffs. Carbon emissions under TOU and CPP 
tariffs and cost minimizing control are 8% to 9% greater than under carbon minimizing controls. 
However, for the RTP tariffs, emissions are 15% greater than under carbon minimizing controls. 
This is because DG dispatch, which is always more carbon efficient than grid purchases, is less 
frequently the least-cost option under RTP than under TOU or CPP. Regulators should note that 
with current energy prices in San Diego, price responsiveness and carbon emissions reductions 
are opposing objectives. This would not be the case if carbon emissions were taxed directly, 
rather than treated as an externality. 
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9. FUTURE WORK 

The results of this research suggest that at this site, optimal control may not be worth the cost of 
implementation, particularly under common simple tariffs such as TOU or CPP. In such cases, 
simulation using optimal control algorithms can be used to identify heuristics for determining 
dispatch schedules. However, this may not be the case for different building types, or in different 
regions, which would experience different heating/cooling loads and different energy prices. 
Immediate further research will examine several P&DC sites across the Unites States. 
 
The optimal dispatch algorithm used in this paper is particularly useful for integrated systems, 
which can dispatch curtailment and rescheduling opportunities as well as distributed generation. 
This algorithm has been used in [11] to determine the value of curtailment programs to sites that 
already had distributed generation. This type of analysis would be useful for the P&DC sites 
being studied to determine the cost incentive of demand response under tariffs that may or may 
not directly incent demand response. 
 
Intermittent renewables (in larger quantities than the PV considered in this case study) add an 
additional complexity, for which this optimization algorithm is particularly useful. Optimizing 
curtailment opportunities under significant uncertainties in self-generation availability and 
energy prices could prove to be valuable and must be examined. 
 
Finally, greenhouse gas emissions reductions initiatives, such as the recent legislation in 
California and in several northeastern states, will change some or all of the parameters in the 
optimization problem in yet unknown ways. Having a tool such as this optimization algorithm 
will be useful for identifying new control strategies in response to these changes. 
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APPENDIX: MODELS 
 
 
This appendix describes the models of energy system characteristics, stochastic loads, electricity 
prices, and weather conditions that were necessary for this research.  
 
Energy System Characteristics 
 
Electrical Efficiency 
 
Generator efficiency is modeled indirectly by the linear function 

 brOutputPowemptionRateFuelConsum += *  (2)
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Figure 29. generator part-load electrical efficiency 

Based on manufacturer’s specifications of part-load efficiency for this generator, the m and b 
values of 2.5 and 0.24 respectively were obtained. Figure 29 shows the resulting efficiency 
(OutputPower/FuelConsumptionRate) for the allowable output range of the generator.  
 

State 1: 
generator 
available

State 2: 
generator 
unavailable

P(State1   State2) =  1-poP(State1   State2) =  1-po

P(State2   State1) =  1-pxP(State2   State1) =  1-px  
Figure 30. Two-state Markov model of generator availability 

DG equipment availability is modeled as a two-state Markov process. The two states are simply 
“available” and “unavailable,” with pi the probability of remaining in state i at the current time-
step if in state i at the previous time-step. This two-state process models the actual situation, in 
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which generators available at one time-step are likely to remain available at the next time-step, 
and generators unavailable at one time-step are likely to remain unavailable.  
At each hour there is a probability po that the generator will remain available if it was available at 
the prior hour, and a different probability 1-px that the generator will become available if it was 
not available at the prior hour. The subscripts o and x refer to the “available” and “unavailable” 
states, respectively. Figure 30 illustrates this. For the Markov model, po and px can be derived 
from commonly cited parameters: expected availability (portion of hours generator is available), 
A, and expected outage length, Ex. These expressions are show in equations (3) and (4). 
   

x

x
x E
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+
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AExp
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Energy Loads 
 
Electricity 
 
The site provided access to several years of hourly electricity consumption data. From this data, 
hourly loads were categorized by month, day-type (either non-Sunday or Sunday), and hour of 
day. From this an average for each unique combination of month, day-type, and hour, 
load(month,day-type,hour) was determined. 
 
A stochastic model of actual electricity loads was assumed for each day of simulation: 

  

),(),,(*)(

),(
_____

hmdhdtmloadday

hmload

loadhhhload βα +

=
 

(5)

 
where  
• m is the month {1,…,12} 
• h is the hour of the month {1,…,720}  
• dayh is the day of the month that hour h is in {1,…,30} 
• dth is the day-type of dayh {weekday,Sunday} 
• dhh is the hour of the day of hour h {1,…,24} 
• load(m,h) is the electricity load in month m at hour h 
• αload(dayh) is a daily random variable that follows a normal distribution 
• βload(m,h) is an hourly random variable that follows a normal distribution 
• ),,(

_____

hh dhdtmload  is the average hourly electricity load at hour dhh of day-type dth. 
 
α is a daily scaling factor, that is, larger on busy days and smaller on quiet days. β represents 
hourly variation in electric loads due to the intermittent use of various equipment. By design, α 
has mean value of 1, β has a mean value of 0. The variance, maximum value, and minimum 
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value of α and β were determined through analysis of the electric load data provided. The 
variance of β is assumed to be independent of the hour of the day. Knowing the hourly average 
values and the statistical description of α and β, loads for each hour in each scenario were 
generated, starting with the generation of random α (one per day) and β (one per hour) values. 
Randomly generated values of α and β are truncated to be within the minimum and maximum 
values observed. 
 
Cooling 
 
The share of electricity use due to cooling loads was more difficult to determine because detailed 
records were not available. Fortunately, detailed electricity and cooling load data were available 
from [2] of a similar P&DC facility in Redlands, California. Cooling loads are dominated by 
equipment waste heat; the cooling load is correlated with the electric load and with outside 
temperature. This relationship for each month was determined for the Redlands site and applied 
to San Diego site. 
 
Electricity Prices 
 
A hypothetical RTP tariff was constructed because the utility does not currently offer one. 
Demand charges and the delivery portion of volumetric charges from the reported TOU tariff 
were used. In the place of the TOU rates for electricity supply however, the spot market clearing 
prices for the San Diego region, SP15, were used [6].  
 
A stochastic model of clearing prices was assumed in the same format as electric loads: 

( ) ( )
( )hm,β

dh,dtm,price*day,dtα

                                           h)price(m,

price

hh

______

hhprice

+

=

 (6) 

 
where  
• all indices are the same as in Eq. (5) except that here day-types, dth are either weekday 

(Monday through Friday) or weekend (Saturday and Sunday). 
• αprice(dayh) is a daily random variable that follows a normal distribution 
• βprice(m,h) is an hourly random variable that follows a normal distribution 
• price(m,h) is the clearing price of electricity at hour h in zone SP15 
• ),,(

_____

hh dhdtmprice   is the average hourly electricity clearing price at hour dhh of day-type dth 
 
The variance of α and β are determined from the clearing price data. Randomly generated values 
of α and β are truncated to be within the minimum and maximum values observed. The same 
values of αprice(dayh) that were used in the RTP simulations were used indirectly in the CPP 
simulations to identify days with critical episodes, i.e. αprice(dayh) above a threshold value.  
 
Solar Insolation 
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Historic solar insolation data were collected from [16]. The stochastic model of solar radiation 
from which scenario values were generated is similar to the electric load and spot market price 
models except that there are no day-types (weather is indifferent to weekends): 
 

h)(m,β)dh(m,SolRad*)(dayα

                                                           h)SolRad(m,

SolRadh

_____

hSolRad +

=
 

(7)

 
where 
• all indices are the same as in Eq. (5)  
• αSolRad(dayh) is a daily random variable that follows a normal distribution 
• βSolRad(m,h) is an hourly random variable that follows a normal distribution 
• SolRad(m,h) is the solar radiation (kW/m2) of electricity at hour h in the inland San Diego 

region 
• ),(

_____

hdhmSolRad  is the average hourly solar radiation at hour dhh of the day 
 
As with the previous models, the variance, minimum, and maximum values of α and β are 
determined from the historical data available and used to generate random solar radiation values 
for each hour in each scenario. 
 


