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Abstract

Distributed energy resources (DER) technologies, such as gas-fired reciprocating engines and microturbines, can be economically

beneficial in meeting commercial-sector energy loads. Even with a lower electric-only efficiency than traditional central stations,

combined heat and power (CHP) applications can increase overall system energy efficiency. From a policy perspective, it is useful to have

good estimates of penetration rates of DER under different economic and regulatory scenarios. We model the diffusion of DER in the

US commercial building sector under various technical research and technology outreach scenarios. Technology market diffusion is

assumed to depend on the system’s economic attractiveness and the developer’s knowledge about the technology. To account for regional

differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found

for several building types and regions. Technology diffusion is predicted via a baseline and a program scenario, in which more research

improves DER performance. The results depict a large and diverse market where the West region and office building may play a key role

in DER adoption. With the market in an early stage, technology research and outreach programs may shift building energy consumption

to a more efficient alternative.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Distributed generation; Technology market diffusion; Research valuation
1. Introduction

Distributed energy resources (DER), small-scale power-
generating technologies close to energy loads, currently
have a small market share but investments are expected to
increase in the future, leading to a much more decentralized
energy system (IEA, 2002). Recent improvements, in
particular for small-scale thermal electricity generation
and combined heat and power (CHP) technologies, are
enabling a shift from traditional monopolistic electricity
supply to empowered, semi-autonomous self-generation.
While small-scale generators by themselves do not match
the electrical efficiency of centralized power generation,
they enable overall system energy efficiency to be higher
once used together with CHP technologies, which allow
waste heat to be recovered to meet heating loads. Because
of the significant effect widespread DER adoption could
e front matter r 2007 Elsevier Ltd. All rights reserved.
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have on the design and operation of building and utility
systems, quality forecasts of DER market diffusion are
vital, and developing them poses a major research
challenge. This effort aims to develop a bottom-up model
of economic DER adoption that can deliver reasonable
forecasts of technology market diffusion and provide
estimates of the benefits of alternative enhancements to
DER equipment under different policy and economic
scenarios. The method is generic in the sense that it allows
for the inclusion of all types of DER equipment, including
renewables, which are expected to see cost reductions and
potentially increased public support in the future.
Technology introductions typically follow an S-curved

pattern of diffusion with initial slow adoption followed by
exponential growth and a later decline in the adoption rate
(Rogers, 1962). This property has commonly been modeled
with the use of an epidemic model with word-of-mouth as a
driving underlying process, while other models have
focused on the profitability for different actors as a main
driver for technology adoption (Geroski, 2000). In the
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Fig. 1. Overview of the modeling approach.
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Distributed Energy Resources Market Diffusion Model
(DER-MaDiM) developed in this paper, it is assumed that
DER market diffusion is driven by a combination of
knowledge (its existence and performance) about the
technology and the economic attractiveness of the invest-
ment in the technology. Distributed generation knowledge
is assumed to be spread by a central information source,
here assumed to be a federal outreach program, and by
word-of-mouth. The economic attractiveness is modeled
with the use of the Distributed Energy Resources Customer
Adoption Model (DER-CAM), an optimization model
developed at Ernest Orlando Lawrence Berkeley National
Laboratory (LBNL). The objective function in DER-CAM
is to minimize the total annual energy costs resulting from
electricity and natural gas purchases, the best (if any) DER
investment as well as DER operating and maintenance
(O&M) costs (Siddiqui et al., 2005). The program output is
an idealized set of DER technologies to install along with
operating schedules for the equipment, including patterns
of heat recovery. Building energy loads are obtained via
DOE-2, a building energy load simulation program
developed at LBNL.

Although DER capacity is growing in the USA, the
market for DER is still in an early phase as a small share of
buildings has installed DER. The developed diffusion
model has been applied to a study to estimate DER market
diffusion in the US commercial building sector under two
different research and outreach scenarios. The work
focuses on two of the most common technologies,
reciprocating engines and microturbines, where reciprocat-
ing engines represent a well-established technology while
microturbines are not yet fully developed. Optimal systems,
cost and energy savings and optimal operation are found
with DER-CAM for small and large versions of five
building types: education, healthcare, lodging, mercantile,
and office. Four regions are chosen to represent the
diversity in US climate and energy rates: Atlanta, Boston,
Chicago, and San Francisco. DER-CAM is solved for both
research scenarios for a discrete number of years and
annual results are found by linear interpolation between
the years. DER-MaDiM combines the annual DER-CAM
estimates of annual savings and optimal systems with the
processes for spread of DER knowledge to estimate market
diffusion. The model suggests there can be a significant,
and possibly imminent, DER adoption in the USA. There
are large regional differences in DER attractiveness; in
particular, DER is attractive in the West region, but
adoption is followed also in the Northeast and in the
Midwest regions, while there is no sign of any near term
investment in the South due to low electricity tariffs. Heat
recovery, especially with absorption cooling, seems to be an
essential technology for DER adoption. Research and
outreach can play an important role in speeding up
adoption, and funds spent on research can potentially be
paid back via private savings and reduced emissions.

Section 2 presents the approach in more detail and
describes the external modeling tools used in the analysis
and explains the intuition and mathematical detail behind
the diffusion model, DER-MaDiM. Section 3 presents the
data used in the model, while Section 4 presents results of
both the DER-CAM runs and the predicted market
diffusion from DER-MaDiM. In Section 5, the assump-
tions and the modeling approach are discussed, and
Section 6 concludes the analysis.

2. Modeling approach and modeling tools

The goal of the work is to predict the likely adoption of
distributed generation in the US commercial building
sector under various technology research, outreach and
policy assumptions. A bottom-up approach is chosen,
where the optimal systems and profitability are found for a
set of representative buildings, while market diffusion
depends on a combination of economics attractiveness and
market knowledge of the technologies. The modeling
approach can be viewed as the following three-stage
process as shown below in Fig. 1:
(1)
 Development of prototypical commercial building load
profiles, with the use of the building energy simulation
program DOE-2, specific to various representative US
locations, including data.
(2)
 Collection of energy tariffs and DER technology cost
and performance data for present and future years and
run of the DER-CAM to estimate the economic
attractiveness of DER and optimal system size for all
building types, regions, scenarios and a set of years.
(3)
 Application of the DER-MaDiM to estimate the likely
annual DER market diffusion from the modeled
economic attractiveness for the different building types
and regions.
2.1. DOE-2 building simulations

To generate the load profiles, the widely used building
energy simulation program, DOE-2, which was developed
and is maintained by LBNL, was used. DOE-2 is a public
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domain computer program written in FORTRAN77
designed for analyses of energy consumption in buildings.
DOE-2 estimates the hourly energy consumption in a
building, given hourly climate data and information of the
building heating ventilation and air conditioning (HVAC)
equipment.

Logistically, it is impossible to simulate the broad range
of buildings that characterize all commercial buildings in
the USA using DOE-2 and DER-CAM. The data and
computational demands would simply be too burdensome;
therefore, judicious selection of representative buildings in
representative locations is necessary. Based on the avail-
ability of weather data and a desire to include a
representative range of climates and electricity and fuel
cost environments, a set of buildings and regions is chosen
for the analysis.

Basic input data such as building size are obtained from
the Commercial Building Energy Consumption Survey
(CBECS) 1999 building characteristic data (EIA, 2003), as
will be discussed in the parameter section. The location of
the building is defined by the typical meteorological year
(TMY) data sets derived from the 1961–1990 National
Solar Radiation Data Base and building characteristics are
taken from Huang et al. (1991).

2.2. DER-CAM: DER adoption and operation via

optimization

The profitability and optimal DER systems are found
using the optimization model DER-CAM (Siddiqui et al.,
2005) for the various building types, regions, years and
scenarios. DER-CAM uses available data on a site’s
electric and heat loads along with tariff information, fuel
prices, and candidate DER technologies characteristics to
select a cost-minimizing set of discrete-sized DER technol-
ogies and determine their operating schedule over a given
time horizon. In particular, the test site has several types of
end-use loads that must be met. These are illustrated in the
Fig. 2. Energy Flows in DER-CAM.
right-hand side of Fig. 2. The available resources to meet
these end-use loads are indicated in the left-hand side of the
same figure and are subject to thermodynamic laws
governing the flow of energy. It is then the objective of
DER-CAM to ensure that the end-use loads are satisfied
during each time step of the horizon at minimum cost. For
example, the cooling load may be met in one of four
different ways: via electricity (that may be either purchased
from the utility or generated on site), recovered heat (by
employing absorption chillers), or direct burning of natural
gas. Note that the Sankey diagram in Fig. 2 accounts for
efficiency losses associated with energy conversion at each
step.
In deciding how best to meet its energy requirements, the

customer faces a trade-off between the capital cost of DER
and the benefits of a lower energy bill (and greater overall
system energy efficiency) in the future as a result of using
DER. The latter is possible because even though on-site
generation is not as efficient as central-station generation,
the application of CHP in recovering heat enables the
customer to reduce the cost of meeting its heat loads
drastically. Furthermore, due to high demand charges in
most energy tariffs, it is worthwhile to use on-site
generation to meet electric loads since it enables the
customer to reduce its peak load as presented to the utility.
DER generation options include natural gas fueled

reciprocating engines, microturbines, gas turbines, fuel
cells, and photovoltaics in different sizes. Given the large
number of possible technology adoption and scheduling
combinations, it is not computationally efficient to
approach this problem using an exhaustive trial-and-error
method. Mathematically, the customer adoption problem
is a mixed-integer linear program that includes not only the
DER technology adoption decision variable (which can
take on non-negative integer values), but also the
continuous operation decision variable (see Fig. 3). Since
commercial algorithms exist to solve this type of problem,
we implement it as DER-CAM in General Algebraic
Modeling System (GAMS) and use CPLEX to solve it for
Fig. 3. DER-CAM mathematical representation.



ARTICLE IN PRESS
K.M. Maribu et al. / Energy Policy 35 (2007) 4471–44844474
given parameters. Specifically, the solution to DER-CAM
yields the DER investment decision and hourly operating
schedule for the installed equipment over a test year. The
run times are on the order of 10min on a typical desktop
PC.

2.3. Description of the technology diffusion model DER-

MaDiM

This section introduces a way to model market diffusion
as a function of the profitability and optimal systems found
in the previous section. It is reasonable to assume that
profitability is a factor that can help predict technology
market diffusion. At the same time, it is a well-known fact
that profitable projects are not necessarily adopted. A
typical example from the energy sector is the slow diffusion
of energy efficiency projects (Jaffe and Stavins, 1994). With
this in mind, it should be clear that it cannot be assumed
that all buildings where DER-CAM finds a profitable
DER-system will actually adopt one. The slow investment
in energy efficiency has been explained by the fact that such
investments are not the core competence and focus for the
potential developers and that the return might not be
sufficient for all investors. In general, new technology, even
if superior to existing alternative, typically experiences a
slow initial adoption followed by an exponential growth
until the market matures and growth slows down, thus
producing the well known S-curve of market diffusion
(Rogers, 1962).

Two competing ways of modeling the commonly
observed technology patterns are through epidemic models
and probit models (Geroski, 2000). Epidemic models
explain the introduction of new technologies with the
way knowledge about the technology (knowledge of its
existence, how it works and trust in its performance)
propagates to potential users. One version of epidemic
models assumes a central source that transmits knowledge
to a constant percentage of the potential users each year.
However, the model fails to produce the commonly
observed S-curve since growth will be largest in the
beginning. A second epidemic model assumes that infor-
mation is spread by word-of-mouth. This model produces
an S-curve but fails to explain how the successful
introduction of a new technology can be explained without
initial installations. Geroski (2000) suggests using a mixed
information source model with both a central source of
information and a word-of-mouth process. Probit models,
on the other hand, focus on the potential developer’s
characteristics to explain why some actors adopt new
technologies before others. Characteristics, such as build-
ing energy profiles and local tariff structures, will affect the
investment profitability, and therefore, the decision to
adopt the technology. Such a model may produce an S-
shaped diffusion curve depending on the assumptions of
how profitability is distributed among potential adopter,
how it evolves over time and the relationship between
profitability and adoption.
The model developed in this work is a combination of an
epidemic and a probit model. For the epidemic part, the
central source of information is assumed to be outreach
programs and research devoted to increase the under-
standing of DER, and in addition, knowledge is spread by
word-of-mouth, which increases as installed capacity
increases. Furthermore, individual building characteristics
and DER economic attractiveness are modeled directly as
described in the previous sections. That DER systems are
more suitable for some particular buildings is reflected in
the variability of energy bill savings found from the DER-
CAM analysis. Hence, it is reasonable to assume that
buildings with a higher percentage of energy bill savings are
more likely to install DER. This assumption is implemen-
ted using a logistic adoption function where buildings with
large savings are assumed to adopt DER at a faster rate
than buildings with marginal savings. In addition, to take
into account that some building will never adopt systems
even with information and profitability in place either due
to the building characteristics not captured by the model or
a general lack of interest in the technology, the potential
floorspace available for DER is lower than total commer-
cial floorspace.
Each year a constant fraction of buildings, a, without

DER receives information about the technologies from
outreach programs. The remaining fraction of buildings
obtains knowledge by a word-of-mouth process. The factor
that decides the strength of the word-of-mouth process, b,
is proportional to the fraction of commercial buildings
with DER potential that has installed systems, X m. Thus,
the word-of-mouth process is increasing in strength as
more users become aware of the technology. Of the
buildings with knowledge of DER only a fraction, which
is increasing with percentage savings on the energy bill, will
actually install systems.
It then follows that the existing floorspace that adopts

DER each year, m, is the product of the percentage of the
market with DER knowledge, the adoption function for
existing buildings,f Ej;k;l;m, and the residual available floor-
space, which is the total floorspace with DER potential,
FTj;k;l;m, less the existing floorspace with DER, FDj;k;l;m,
shown below:

AEj;k;l;m ¼ ðaþ bX m�1Þf Ej;k;l;mðFTj;k;l;m � F Dj;k;l;m�1Þ. (1)

New floorspace is added each year as new buildings are
constructed. Because DER-MaDiM does not include the
vintage structure of existing buildings and no buildings
were phased out, new buildings were defined as the amount
of gross new floorspace less the reduction to the existing
floorspace due to retirements. New buildings adopt DER
systems using the same process, but adoption is based on
the adoption function in new buildings,f Nj;k;l;m, and the
new floorspace with economic potential for DER, FNj;k;l;m,

ANj;k;l;m ¼ ðaþ bX m�1Þf Nj;k;l;mFNj;k;l;m. (2)

The upper limit of the parameters a and b is that the sum
must be lower than one, to ensure that less than 100
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percent of buildings with DER economic potential have
DER information. The adoption function for both existing
and new buildings is a logistical function given as

f E ¼
cE

1þ aEe�bEsj;k;l;m
�

cE

1þ aE

,

f N ¼
cN

1þ aNe�bN sj;k;l;m
�

cN

1þ aN

, ð3Þ

where aE, aN, bE, bN, cE, cN, are parameters and sj;k;l;m is
annual savings on energy bill from DER. Total annual
floorspace that adopts DER is the sum of adoption in
existing and new buildings:

ATj;k;l;m ¼ AEj;k;l;m þ ANj;k;l;m. (4)

Net new floorspace is added to the total floorspace:

FTj;k;l;m ¼ FTj;k;l;m�1 þ F Nj;k;l;m. (5)

Cumulative floorspace with DER is floorspace with
DER last period added the new adoption:

FDj;k;l;m ¼ FDj;k;l;m�1 þ ATj;k;l;m. (6)

The fraction of buildings with DER is total floorspace
with DER divided by floorspace with potential in US
commercial building sector:

X m ¼

P
j

P
k

P
lF Dj;k;l;mP

j

P
k

P
lFTj;k;l;m

. (7)

The different result metrics (see Table 1) in each time
period, are defined as the DER-CAM results, di;j;k;l;m,
divided by building size, zj;k;l , multiplied by the floorspace
that actually adopts DER

RAi;j;k;l;m ¼
di;j;k;l;m

zj;k;l
ATj;k;l;m. (8)

Cumulative values over time of the different results,
installed capacities, changes in energy consumption and
private cost savings, RTi;j;k;l;m, are given as

RTi;j;k;l;m ¼ RTi;j;k;l;m�1 þ RAi;j;k;l;m. (9)

Results over different dimensions are obtained by
summing over the indices. For example, results for the
US commercial building sector as a whole are obtained as a
summation over all Census Divisions, building types and
Table 1

Description of indices used in DER-MaDiM

Result dimensions, i Ce

1 Total installed capacity M

2 Total installed capacity, reciprocating engines No

3 Total installed capacity, microturbines So

4 Installed capacity, electricity generation only W

5 Installed capacity with heat exchangers

6 Installed capacity with absorption cooling

7 Change in electricity purchases

8 Change in natural gas purchases

9 Annual private cost savings
building sizes that the floorspace is allocated to

RTi;m ¼
X

j

X

k

X

l

RTi;j;k;l;m. (10)

3. Model data

Table 1 gives a description of the indices used in the
study. All 4 US census regions are modeled and five
building types in two sizes. Results are reported over nine
dimensions. Four cities are assumed to represent the whole
USA, in terms of climate and energy rates. The Midwest is
represented by Chicago, the Northeast Boston, the south
by Atlanta and the West by San Francisco.

3.1. Building data

Five buildings categories are used in the study. US
commercial floorspace is dominated by mercantile
(1300Mm2), office buildings (1200Mm2) and educational
buildings (800Mm2). The two remaining categories, lod-
ging (400Mm2) and healthcare (200Mm2) contribute less
to the commercial floorspace. However, DER possesses
varying degrees of potential with varying building size.
Table 2 displays the size distribution of US commercial

floorspace in the five building types. Notice that healthcare
buildings have most of the floorspace in the largest
categories, while mercantile buildings have a low share in
the two largest categories. The remaining building types
have more even size distributions.
To determine which building sizes to model in DER-

CAM, an analysis to estimate the peak loads of each
selected building type was conducted. The CBECS (EIA,
2003) categorizes each building type by area and also
reports the energy intensity per square meter of each
building type. The building area and energy intensity are
used to determine the buildings sizes where peak electricity
is more important than other characteristics. The peak load
to total energy consumption ratio and intensity were
applied to estimate the peak load of each building type in
each building size category defined by CBECS.
Table 3 presents the peak load by building type and size

and the selected range of building size for candidate small-
scale DER. This paper focus on DER is in the range of the
nsus regions, j Building type, k Building size, l

idwest Education Small

rtheast Healthcare Large

uth Lodging

est Mercantile

Office
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smallest DER systems currently being installed, i.e. 100 s of
kW, to the largest sites where reciprocating engines are still
preferable to turbines, i.e. 1–2MW. Motivated by this,
buildings with peak demand in the range 300–2000 kW are
considered attractive sites for microturbines and recipro-
cating engines. Two buildings, one large and one small,
corresponding to the midpoint in the smallest size bin and
the largest size bin in the CBECS size distribution,
respectively, were selected for analysis in DER-CAM.
The peak loads shown in bold indicate the minimum and
maximum building sizes considered for each building type.
Boston electricity intensity was used to define the two
building sizes. The same building sizes are used for all
regions. Table 3 shows that there are large differences in
electricity intensity between the building types. Healthcare
buildings have by far the highest electricity intensity while
lodging buildings have the lowest intensity.

As there is little available information of regional
building size distributions, it is assumed that the national
size distribution is valid regionally. Buildings with a peak
electricity load in the medium-size range of 300–2000 kW,
are assumed to be most suitable for reciprocating engines
and microturbines (80% of existing and 90% of new
building). For buildings with a lower peak, DER system
incurs high investment costs and low capacity factor and
are not likely to be cost-effective for most buildings.
However, some niche markets might exist and some
development might come from the introduction of micro-
grids, where neighboring buildings can add their loads
together to become an attractive DER site. It is assumed
that 16% of existing and 18% of new buildings have a
DER potential.

For buildings with peak loads over 2MW, gas turbines
can be strong competitors to reciprocating engines and
Table 3

Commercial building peak load (kW electricity) for CEBECS size bins for Bo

Size (m2) 93–465 465–930 930–2325 2325–4650

Median (m2) 233 698 1628 3488

Education 11.5 34.5 80.5 172.5

Healthcare 18.25 54.75 127.75 273.75

Lodging 7 21 49 105

Mercantile 8.75 26.25 61.25 131.25

Office 10.75 32.25 75.25 161.25

Table 2

Size distribution of commercial building floorspace, percentage of floorspace i

Size (m2) 93–465 465–930 930–2325 2325–4650

Median (m2) 233 698 1628 3488

Education 3.5 4.6 9.1 18.6

Healthcare 6.6 5.7a 4.7 9.6

Lodging 2.2a 6.3 9.6 25.3

Mercantile 8.9 10.1 20.5 9.6

Office 10.1 8.8 12.3 9.9

aAssumed value. Data withheld in [3] because the relative standard error w
microturbines. In addition, some large buildings have
installed DER systems already. However, there is a
potential market in some buildings where investment in
large gas turbines does not provide a sufficient return,
assumed to be 32% of existing and 34% of new building
floorspace.
One building represents the minimum and the other

represents the maximum size building likely to have a peak
load in the 300 kW–2MW range. Smaller buildings are
assumed to adopt systems at the same capacity and energy
consumption changes per floorspace as the small building
and with the same percentage savings on the energy bill.
Similarly, buildings larger than the maximum size building
are assumed to adopt systems with a capacity and energy
consumption per square meter equal to the large building,
and have the same percentage annual savings on the energy
bill. For building types with an intermediate size in
installed capacity, changes in energy consumption and
the percentage savings on the energy bill is a linear
interpolation between the small and the large building.
Instead of interpolating the results, an equivalent inter-
polation where the floorspace is shared between the
buildings was performed. Hence, the total floorspace for
each building type is allocated to the two building sizes.
Comparisons of the peak electricity load, total annual

energy use, and fuel-to-electricity (F/E) ratio are shown in
Table 4. The F/E ratio is highest for the educational
building, followed by healthcare and lodging for all four
cities. Notice the very low F/E ratio for mercantile
buildings.
The load input to DER-CAM is given as hourly loads in

three representative days for each month. Peak days have
the average energy profile for the three non-holidays
weekdays with the highest electricity demand, weekdays
ston with modeled buildings in bold type (EIA, 2003)

4650–9300 9300–18,600 18,600–46,500 446,500

6975 13,950 32,550 60,450

345 690 1610 2990

547.5 1095 2555 4745

210 420 980 1820

262.5 525 1225 2275

322.5 645 1505 2795

n CBECS size bins (EIA, 2003)

4650–9300 9300–18,600 18,600–46,500 446,500 Sum

6975 13,950 32,550 60,450

22.1 15.3 13.5 13.5a 100

9.2 11.0 26.4 26.8 100

16.8 11.7 17.6 10.6a 100

14.4 17.0 4.1 15.4 100

16.2 14.3 13.0 15.5 100

as greater than 50 percent, or fewer than 20 buildings were sampled.
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Table 4

Electricity (EL) load, natural gas (NG) load and fuel-to-electricity ratio (F/E)

Healthcare Lodging Mercantile Education Office

Small Large Small Large Small Large Small Large Small Large

Atlanta

Peak EL load kW 576 1193 460 1974 543 1230 360 1620 348 1401

Total EL load MWh 3446 7082 2090 9012 2562 5881 627 2871 1175 4809

Total NG load GJ 7057 11,934 3629 15,705 710 1143 2142 8997 1635 3826

F/E ratio 0.6 0.5 0.5 0.5 0.1 0.1 1.0 0.9 0.4 0.2

Boston

Peak El load kW 557 1150 420 1804 530 1202 332 1502 349 1385

Total EL load MWh 3224 6591 1855 8027 2351 5413 586 2657 1100 4529

Total NG load GJ 9789 17,188 49,67 21,504 1681 2867 3847 16,028 2551 6094

F/E ratio 0.8 0.7 0.7 0.7 0.2 0.2 1.8 1.7 0.6 0.4

Chicago

Peak EL load kW 584 1207 448 1925 536 1219 335 1507 350 1422

Total EL load MWh 3252 6656 1886 8169 2373 5466 603 2726 1123 4615

Total NG load GJ 9920 17,270 5486 23,758 1954 3406 4345 18,038 2750 6533

F/E ratio 0.9 0.7 0.8 0.8 0.2 0.2 2.0 1.8 0.7 0.4

San Francisco

Peak EL load kW 539 1112 383 1646 498 1133 304 1382 338 1342

Total EL load MWh 3223 6597 1828 7890 22,93 5300 559 2577 1081 4457

Total NG load GJ 7731 12,776 3324 14,404 278 396 1959 8322 1650 3707

F/E ratio 0.7 0.5 0.5 0.5 0.0 0.0 1.0 0.9 0.4 0.2
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have the average load profile for remaining non-holiday
weekdays and weekend days have the average load profile
for weekend days and holidays. In Fig. 4, the weekday
profiles for the large San Francisco office building in
January and August can be seen. Most of the seasonal
variation is in cooling and heating.
3.2. Distributed generation technology

Three gas-fired DER technology types were considered
in the analysis: reciprocating engines, larger gas turbines
and microturbines. Cost and performance data for these
technologies in 2004 are interpolated from data provided in
a study by the National Renewable Energy Laboratory
(Goldstein et al., 2003) with additional data provided from
work done at the LBNL (Firestone, 2004). Reciprocating
engines and microturbines are considered in two sizes. In
DER-CAM, each device can be purchased in one of three
packages: as an electricity generation unit, as an electricity
generation unit with heat recovery for space and water-
heating applications or as an electricity generation unit
with heat recovery for space and water heating applications
and for cooling via an absorption chiller. Cost and
performance data for these technologies in 2004 are
summarized in Table 5. For this project, heat exchangers
used to convert waste heat from DER equipment to useful
end-use heat are assumed to be 80 percent efficient, as are
combustors used to convert natural gas to useful end-use
heat. The coefficient of performance (COP) of electric
chillers is assumed to be 5 and that of absorption chillers to
be 0.7.

3.3. Energy tariff data

The 2004 electricity tariffs for electric utilities serving the
four cities under consideration are obtained from the
LBNL Tariff Analysis Project’s database of US electricity
rates (LBNL, 2005). The three main components of a
typical electricity tariff are: volumetric charges, demand
charges, and monthly fees. Volumetric charges are in
proportion to the electricity consumed each month; there
are often different rates for different times of the day.
Demand charges are in proportion to the maximum power
of electricity consumption during each month, regardless of
how often the maximum consumption occurs. There are
often different rates for different times of the day, as well as
occasionally a non-coincident rate, which is applicable to
all hours of the day. The monthly fee is a fixed charge each
month. Table 6 shows the 2004 electricity rates for all four
cities.
The 2004 natural gas rates for the regions containing the

four cities of consideration were obtained from the Annual
Energy Outlook (AEO) 2005 Reference Case (EIA, 2005a),
and are shown in Table 7. The rate used for non-DER
natural gas consumption is the average commercial rate for
each respective region. The rate for DER consumption is
the average of the commercial rate and the core electricity
generator rate. The core electricity rate reflects the lower
volumetric cost of natural gas when it is consumed in the
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Fig. 4. January and July energy loads for the large San Francisco office building.

Table 5

2004 technology cost and performance data used in the DER-CAM analysis

Gas turbine Microturbines Reciprocating engines

1MW 100kW 250 kW 200 kW 500kW

Capital costs ($/kW)

Electricity only 1403 1700 1400 900 795

Heat exchangers 1910 1980 1650 1225 1065

Absorption cooling 2137 2419 1976 1629 1339

Maintenance costs

Fixed w/absorption cooling ($/kW) 11.9 17.1 12.8 15.9 11.0

Variable ($/kWh) 0.010 0.015 0.015 0.015 0.012

Lifetime (years) 20 10 10 20 20

Energy output

Electrical efficiency 0.219 0.260 0.280 0.308 0.332

Heat to electricity ratio 2.45 2.29 2.29 1.88 1.55

Table 6

Assumed 2005 electricity rates for the commercial buildings (LBNL, 2005)

Atlanta Boston Chicago San Francisco

Summer Winter Summer Winter Summer Winter Summer Winter

Volumetric ($/kWh)

On-peak) 0.061 0.061 0.0815 0.693 0.056 0.056 0.1647 —

Mid-peak 0.061 0.061 — — — — 0.1 0.1083

Off-peak 0.061 0.061 0.0594 0.56 0.0234 0.0234 0.0891 0.0891

Demand ($/kW)

On-peak — — — — 14.24 11.23 11.8 —

Mid-peak — — — — — — 2.65 2.65

Non-coincident — — 24.72 11.54 — — 2.55 2.55

Monthly fee ($) 2750 2750 166.67 166.67 39.93 39.93 175 175
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higher quantities and more consistent rates of prime power
DER rather than typical commercial building consump-
tion. The AEO2005 (EIA, 2005a) was also used to estimate
natural gas prices for 2012 and 2024. The scaling factors
used to convert 2004 natural gas rates to 2012 and 2022
rates are shown in Table 10.
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Table 7

AEO2005 natural gas rates in 2004 ($/kWh, HHVa) (EIA, 2005a)

Heating purposes For electricity generators

Atlanta 0.037 0.029

Boston 0.040 0.029

Chicago 0.032 0.027

San Francisco 0.032 0.029

aHHV refers to higher heating value. 1 kWh of natural gas contains

3412Btu.

Table 8

Scaling factors for 2012 and 2022 electricity and natural gas prices (EIA,

2005a)

Electricity Natural gas Natural gas (DER)

Year 2012 2022 2012 2022 2012 2022

Atlanta 0.89 0.95 0.82 0.92 0.80 0.93

Boston 0.76 0.84 0.83 0.91 0.81 0.92

Chicago 0.88 0.98 0.81 0.93 0.77 0.93

San Francisco 0.84 0.83 0.87 0.97 0.86 0.93

Table 9

Scaling factors for 2012 and 2022 DER-CAM technology data

Gas turbines Microturbines Reciprocating

engines

2012 Baseline case

Capital costs 0.890 0.737 0.882

Maintenance costs 0.834 0.907 0.928

Electrical efficiency 1.112 1.324 1.045

Heat to power ratio 1.017 0.892 0.994

2012/2022 Program case and 2022 baseline case

Capital costs 0.837 0.479 0.807

Maintenance costs 0.834 0.773 0.800

Electrical efficiency 1.215 1.389 1.080

Heat to power ratio 1.043 0.950 1.011

Table 10

Adoption function parameters

a b aE aN bE bN cE cN

Baseline case 0.02 0.98 200 200 0.4 0.6 60 80

Program case 0.1 0.9 200 200 0.4 0.6 60 80
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The AEO2005 Reference Case (EIA, 2005a) is used to
determine the change in electricity and natural gas prices in
2012 and 2022 relative to these same prices in 2004. The
change in each region for the two future years is
represented as a scaling factor; this scaling factor is applied
to the 2004 rates from the LBNL Tariff Analysis Project
(LBNL, 2005) to estimate rates for 2012 and 2022 as shown
in Table 8. All components of the electricity tariff are
multiplied by these scaling factors to obtain the future
electricity tariffs used in DER-CAM. The natural gas
volumetric price for DER service is less than that for
standard (i.e. heating, cooking) service because DER
consumption is more regular throughout the year; infra-
structure costs can be spread out over a larger volume of
gas consumption. As is apparent from Table 8 all multi-
pliers are below 1.0; both electricity and natural gas prices
are expected to stay under 2004 levels in all regions and all
time periods. Natural gas fueled DER profitability depends
on the difference between natural gas and electricity prices.
A larger fall in natural gas prices than in electricity prices
will thus improve DER economics.

3.4. Technology research scenarios

Forecasted estimates of technology cost and perfor-
mance in 2004 and 2022 that reflect the Baseline and
Program case assumptions are used to estimate the
percentage improvements in cost and performance from
2004 to 2022. These percentage improvements were then
applied to the 2004 technology data to obtain the 2022 data
for both the Baseline and Program cases.

For the Baseline case, technology improvement from
2004 to 2022 is assumed to progress linearly; data for 2012
are, therefore, interpolated from the initial and final years.
For the Program case, the technology is assumed to reach
maturation in 2012, so that cost and performance data for
2022 are also used for 2012. The scaling factors used to
convert 2004 cost and performance data to 2012 and 2022
data are provided in Table 9. Note that microturbines are
predicted to improve in electrical efficiency and capital cost
to a much greater extent than reciprocating engines, while
gas turbine improvement is intermediate to these two
technologies. Microturbines are expected to improve the
most because they are the least developed of the three
technologies.
3.5. Technology diffusion parameters

Table 10 summarizes the parameters that determine the
spread of DER knowledge and adoption as a function of
percentage annual savings on the energy bill. In the
Baseline case, two percent of buildings with DER potential
are assumed to get DER information from outreach
programs, while in the Program case 10 percent are
reached. In both cases, the factor determining the strength
of the word-of-mouth process, b, is at its maximum. The
parameters determining the adoption function, which are
the percentage of customers with DER information that
actually install systems for a given cost-effectiveness, are
assumed to be equal in both cases.
Fig. 5 is a plot of the adoption function for existing and

new buildings. This figure illustrates a more aggressive
DER adoption rate in new buildings. This is based on the
assumption that when new buildings are constructed it is
more likely that energy considerations are made, and that
new buildings can be more flexible in incorporating DER
systems. The maximum adoption rate for new buildings is
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Fig. 5. Adoption curves for owners of new and existing buildings with

DER knowledge.

Table 11

Optimal installed capacity (kW) in the modeled buildings

Healthcare Lodging Mercantile Education Office

Small Large Small Large Small Large Small Large Small Large

Atlanta

2004 both

cases

0 0 0 0 0 0 0 0 0 0

2012

baseline

0 0 0 0 0 0 0 0 0 0

2012

program

0 0 0 0 0 0 0 0 0 0

2022 both

cases

0 0 0 0 0 0 0 0 0 0

Boston

2004 both

cases

200 1000 200 1200 0 0 0 700 0 500

2012

baseline

250 500 0 750 0 0 0 700 0 200

2012

program

250 750 250 1200 0 500 100 850 100 500

2022 both

cases

250 1000 200 1250 250 500 100 1100 100 750
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80 percent and for existing buildings 60 percent. Note that
the percentage of all considered buildings that adopt
systems can be much lower, because actual relative
adoption is calculated as the product of the adoption
function and the floorspace with DER knowledge.
Chicago

2004 both

cases

0 0 0 0 0 0 0 0 0 0

2012

baseline

0 0 0 0 0 0 0 0 0 0

2012

program

250 250 100 750 0 0 0 600 0 250

2022 both

cases

250 500 100 750 0 250 0 500 0 250

San

Francisco

2004 both

cases

200 1000 200 1000 500 1200 0 500 0 1200

2012

baseline

200 1000 200 1000 500 1200 0 500 0 1200

2012

program

500 1000 250 1500 500 750 0 600 100 1200

2022 both

cases

500 1000 100 1000 500 750 0 600 100 1200
4. Results

4.1. Optimal distributed generation systems for the modeled

buildings

This section presents the results from the DER-CAM
optimization model, and thus, provides an overview of
profitability and optimal DER system size across US
regions, building types and technology scenarios. DER-
CAM is solved for the 2004, the 2012 Baseline case, the
2012 Program case and for the 2022 case. In the 2022 case,
there is no difference between the Baseline and Program
case as technology improvements from the baseline case
have caught up with the program case. Four scenarios, five
building types in two sizes and four regions leave 160
different problems for DER-CAM to solve. Table 11
displays the optimal DER capacity found with DER-CAM
for the 160 runs. DER systems are in general largest in San
Francisco and in Boston while in Atlanta there is no
optimal DER capacity in any of the cases. Table 12 shows
the expected percentage savings in the energy bill in the
same runs. San Francisco also has the highest savings on
the energy bill for most building types, followed by Boston.
The savings range from 4.5 to 31.8 percent of the annual
energy costs. A comparison of Tables 4 and 12 suggests
that the most important indicator of DER profitability in
the US commercial sector is the building peak electricity
load, as the two least attractive buildings are the two
smallest and the larger version of both are attractive
buildings for DER installations. That peak electricity load
seems more important than energy load profiles can mean
that DER is used widely to reduce peak demand. The large
education buildings have the highest percentage savings on
energy bill in Boston and Chicago, while the large
healthcare building has the highest in San Francisco.
4.2. Predicted DER market diffusion

Fig. 6 shows the modeled installed DER capacity in US
commercial buildings from 2005 to 2025. The installed
capacity in 2025 reaches 14.2GW in the Baseline case and
20.7GW in the Program case. This compares to the
AEO2005 (EIA, 2005a) estimate of 1.8GW. Several
assumptions made in the AEO2005 estimate that is based
on the National Energy Modeling System (NEMS) (EIA,
2005b) can help explain the difference in the results. Firstly,
the AEO2005 estimate mainly based on adoption in new
buildings, while DER-MaDiM allows for significant
investment also in existing building stock. Secondly,
payback periods are estimated based on only one capacity
version per technology, which does not allow buildings to
optimize systems as with the DER-CAM modeling. Lastly,
the NEMS modeling does not allow for absorption
cooling.
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Table 12

Percentage savings on building energy bill

Healthcare Lodging Mercantile Education Office

Small Large Small Large Small Large Small Large Small Large

Atlanta

2002 both

cases

0 0 0 0 0 0 0 0 0 0

2012

baseline

0 0 0 0 0 0 0 0 0 0

2012

program

0 0 0 0 0 0 0 0 0 0

2022 both

cases

0 0 0 0 0 0 0 0 0 0

Boston

2002 both

cases

13.5 14.1 11.1 16.1 0 0 0 23.2 0 14.2

2012

baseline

10.2 14.4 0 13.1 0 0 0 20.4 0 5.5

2012

program

18.7 14.9 12.3 16.7 0 9.2 12.0 29.8 13.4 13.9

2022 both

cases

21.0 18.4 13.4 17.5 10.3 8.6 14.9 27.3 14.2 18.2

Chicago

2002 both

cases

0 0 0 0 0 0 0 0 0 0

2012

baseline

0 0 0 0 0 0 0 0 0 0

2012

program

10.8 12.1 6.7 13.0 0 0 0 17.2 0 7.3

2022 both

cases

10.6 10.5 5.6 13.7 0 4.5 0 13.5 0 7.6

San Francisco

2002 both

cases

19.7 27.3 16.1 21.9 15.5 20.5 0 15.4 0 22.5

2012

baseline

19.7 28.3 15.8 23.8 15.3 20.0 0 15.4 0 22.1

2012

program

28.8 31.3 27.8 31.8 19.0 24.7 0 24.7 16.6 26.3

2022 both

cases

24.7 27.3 19.7 26.8 14.2 20.5 0 22.9 14.0 21.9

Fig. 6. Cumulative installed DER capacity in US commercial sector in

Baseline and Program cases.

Fig. 7. Cumulative installed capacity of reciprocating engines and

microturbines in the Program and Baseline cases.
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The Program case leads to an earlier and greater
adoption of DER than the Baseline case. Cumulative
capacity follows an S-curve with the highest growth in
DER capacity around 2014. In the Baseline case, installed
capacity shows exponential growth during the forecast
period with a potential inflection point around 2025. The
largest difference in installed capacity is in year 2019 at
11.1GW. After 2019, growth is higher in the Baseline case
because technology advancement is catching up to the
Program case and because there is a larger undeveloped
potential than in the Program case. Furthermore, observe
that there is path dependence in these curves, whereby the
difference between the Program and Baseline cases is not
only a delayed development, but the path has also changed.
This is due to two factors: first, stronger outreach programs
create higher growth, and second, increased DER knowl-
edge in periods where prices are favorable for DER can
lead to an increase in capacity that will not be made up for
later.
Reciprocating engines are expected to experience only

marginal improvements in performance during the forecast
horizon. However, these improvements combined with a
stronger technology outreach program and increased
word-of-mouth from the successful implementation of
microturbines leads to a higher installed capacity in the
Program case than in the Baseline case (see Fig. 7).
Microturbines represent a promising technology with
expected cost reductions and performance improvements
over time. In the Program case, investments in micro-
turbines are expected to grow rapidly from 2010 and exceed
the capacity of reciprocating engines by 2017. Notice the
difference in the diffusion curves for reciprocating engines
and microturbines in the Program case. Reciprocating
engine capacity grows fast initially, but as microturbines
become more competitive they take a larger share of the
market. However, there is still a market growth for both,
reflected by different buildings suitability to each technol-
ogy. For example, in the Baseline case reciprocating
engines are superior to microturbines.
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Fig. 9. Annual private cost savings from DER in Program and Baseline

cases.
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Electricity consumption is decreased with on-site gen-
eration and the use of recovered heat through absorption
chillers to offset electricity otherwise used for cooling.
Natural gas consumption increases with on-site generation,
but is partially offset by DER heat recovery that serve
heating loads previously served by natural gas combustion.
Fig. 8 shows that the reduction in electricity purchases and
the increase in natural gas purchases follow the same S-
curved patterns as installed capacity. In the Program case,
100TWh of electricity is expected to be produced in
commercial buildings in 2025. The largest difference in
the two graphs is in 2017 when 67TWh are produced in the
Program case and 19TWh in the Baseline case. From the
figure, it can also be seen that the ratio of net changes in
electricity purchases to net changes in building natural gas
purchases is between 0.4 and 0.5. This ratio can be viewed
upon as an efficiency metric, which can be compared to the
central efficiency for delivery to the end-used. CHP systems
have the potential to produce higher overall efficiencies.
The reason for this discrepancy is that some of the
recovered heat is used for cooling, which has a lower
efficiency than direct heat use and that the generators are
allowed to produce without any heat recovery if prices
justify such operation. A considerable amount of the on-
site generation occurs at peak hours when the efficiency is
lower and the grid is heavily strained. In comparison to a
central system, where some electricity will be lost under
transmission and distribution, DER provides electricity on-
site. The results represent a laissez-faire solution, exclusive
of any policies to improve efficiency, such as a lower bound
on efficiency or promotion of the use of waste heat.

When buildings install DER systems they reduce their
energy costs. The cumulative annual private cost savings
from building energy use for all US commercial buildings
with DER is shown in Fig. 9. In 2015 the annual savings
are $2.0 billion in the Program case and $0.5 billion in the
Fig. 8. Electricity produced on-site and increased natural gas consump-

tion.
Baseline case. In 2025 the difference in savings is reduced
with savings of $3.5 billion in the Program case and $2.3
billion in the Baseline case.
The US consists of regions with diverse climates and

energy markets. These differences are of major importance
for DER attractiveness. As seen in Fig. 10, the West region,
which is dominated by the dense population of California
and high electricity prices and a cooling demand, is in
position to be the leader in DER expansion. Also, the
Northeast seems to be an area suited for DER with a later,
but significant, development. DER expansion in the
Midwest is expected to be more modest, while the low
electricity rates in the South are a barrier to any DER
potential. Both the Baseline and the Program cases show
the same regional pattern. The West and Northeast are still
expected to develop the majority of DER capacity in the
Baseline case, but toward the end of the forecast period. In
the Midwest, DER development is delayed 10 years and is
considerably slower.
In the Program case, most DER is expected in office

buildings followed by mercantile buildings (see Fig. 11).
Fig. 10. Cumulative installed DER capacity in Census regions in the

forecast period in Program and Baseline cases.
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Fig. 11. Cumulative installed DER capacity for building types in Program

and Baseline cases.
Fig. 12. Cumulative installed capacity with electricity generation only,

heat recovery and absorption cooling in Program and Baseline cases.
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Although the total floorspace for education buildings is
much higher than for the healthcare and lodging buildings,
the installed DER capacity is only slightly higher in the
education buildings. Healthcare buildings are among the
most attractive for DER sites, but they constitute a
relatively small portion of US commercial floorspace.
The Baseline case shows a similar, but not identical,
pattern. Mercantile buildings are leading DER adopters
until 2018 when healthcare buildings install more DER
than both education and lodging. An explanation for this
can be that office buildings are more suited to the improved
microturbines than reciprocating engines.

Most of the installed capacity in both the Baseline and
the Program cases comes with systems for heat recovery, as
can be seen in Fig. 12. The most common installations have
thermally activated cooling, which also comes with a heat
exchanger and can be used to supply both cooling and
heating loads. Notice that in the Baseline case, the most
common technology until around 2022 can be used for
electricity generation only while this is never the case in the
Program case. Although most of the installed capacity has
the ability to recover heat, a large share of the installed
capacity does not. Capacity without the ability to recover
heat does not have a high potential efficiency (see Table 5).
The electricity-only generators profitability is reflected in
the high volumetric electricity rates and demand charges
for several utilities, probably due to expensive and,
therefore, inefficient on-peak power and high transmission
and distribution costs (see Table 6).

5. Modeling discussion

Predicting market diffusion of new technologies is not
straightforward, which means that finding correct para-
meters for the model is a challenge. A possible approach to
improving parameter estimation could be to estimate them
from empirical data from the introduction of similar
technologies such as energy efficiency equipment. How-
ever, each technology is itself unique, which makes
comparisons difficult, as a lack of interest in energy
efficiency equipment does not necessarily transfer to a lack
of interest in DER. Another possibility is to estimate
parameters based on surveys of building owners knowledge
of DER and their willingness to invest under various cost-
saving levels. In the early years of DER, it is hard to
predict if building owners will embrace the technology and
the word-of-mouth will be positive towards DER. If
building owners have negative experiences with DER
performance, then negative word-of-mouth could be a
barrier to DER diffusion. This approach includes word-of-
mouth as a net positive addition. When and if DER
capacity increases, there will be more data available to
estimate parameters for the diffusion processes and the
modeling can provide more robust results.
Due to the difficulties in estimating investor behavior

and the many uncertainties related to the driving variables
of DER profitability, such as energy costs and technology
cost developments, there is clearly significant uncertainty in
forecasts of DER market diffusion. Several events have the
potential to change diffusion rates rapidly. For example, a
technological breakthrough in competing technologies,
such as photovoltaics or large-scale power technologies,
can easily change the future of reciprocating engines and
microturbines. Likewise, a rapid change in natural gas
costs could be a barrier to DER development, unless
electricity prices increase concomitantly. A more compre-
hensive sensitivity analysis than comparing two DER
research scenarios could reveal more of the effect of the
assumptions underlying the forecast.
A potential improvement to the DER-MaDiM modeling

approach is to allow for operational changes in the DER
systems after they are installed when market conditions
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change. Similarly, the investment decision is based only on
the energy prices in a particular year and does not include
any expectation of future price developments. On the other
hand, competition from other DER technologies is
included to some extent by reducing the floorspace with
DER potential, such as including a low fraction of the
floorspace for larger buildings where gas turbines can be
strong competitors. It could also be possible to include
other technologies, such as photovoltaic systems and fuel
cells, directly as competing technologies, if either they
prove to be more competitive or they receive strong
regulatory support. Finally, it would be possible to expand
the modeling scope to include the effects of other energy
policies on capacity expansion, cost savings and emissions
reductions.

6. Conclusions

The results from the DER-MaDiM model suggest that
there can be a large market for DER in US commercial
buildings, even with only a modest research program and
little technology outreach. It still reveals how significant an
impact a stronger research program combined with more
technology research can have on the potential to accelerate
and increase DER investments. Investment in the research
and outreach programs can be balanced by private savings
on the energy bill. Satisfying electricity, heat loads and
cooling loads with DER leads to a net increase in building
natural gas consumption that is approximately double the
increase in electricity production on-site. Over half of the
installed capacity has the ability to recover heat and
absorption cooling is the most common technology.
However, a large share of the installed systems only has
electricity-generation capability. Regulation and incentives
have the potential to further improve the environmental
benefits of DER. The West and Northeast are the regions
where most DER capacity expansion is expected. The
office and mercantile buildings can play a key role in wide-
scale DER development.

Despite the inherent challenges in modeling technology
diffusion, DER-MaDiM captures the major dynamics of
technology diffusion for DER in modeling the spread of
information from a central source and from a word-of-
mouth process combined with the bottom-up DER-CAM
approach to decide DER attractiveness for specific sites.
Furthermore, the modeling approach allows for future
extensions to analyze the effect of other energy market
policies on market diffusion, cost savings and emissions
reductions.
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