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Abstract 
The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit 
of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that 
produce as much energy as they use. Its objective is to make these buildings marketable by 2025 
such that they minimize their energy use through cutting-edge, energy-efficiency technologies 
and meet their remaining energy needs through on-site renewable energy generation. This paper 
examines how such buildings may be implemented within the context of a cost- or CO2-
minimizing microgrid that is able to adopt and operate various technologies: photovoltaic 
modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption 
chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that 
has a multi-criteria objective function is used. The objective is minimization of a weighted 
average of the building’s annual energy costs and CO2 emissions. The MILP’s constraints ensure 
energy balance and capacity limits. In addition, constraining the building’s energy consumed to 
equal its energy exports enables us to explore how energy sales and demand-response measures 
may enable compliance with the ZNEB objective. Using a commercial test site in northern 
California with existing tariff rates and technology data, we find that a ZNEB requires ample PV 
capacity installed to ensure electricity sales during the day. This is complemented by investment 
in energy-efficient combined heat and power (CHP) equipment, while occasional demand 
response shaves energy consumption. A large amount of storage is also adopted, which may be 
impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a 
ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings 
as is frequently argued. We also show a multi-objective frontier for the CA example, which 
allows us to estimate the needed technologies and costs for achieving a ZC building or 
microgrid. 
 
Keywords: CO2 emissions, distributed generation, energy management, storage, zero-carbon, 
zero-net energy buildings 
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1. Introduction 
Due to increasing energy consumption in industrialized countries and concerns about 

climate change, the traditional centralized paradigm for organizing the production and 
distribution of power may face competition from a more decentralized alternative. Aided by 
deregulation of electricity industries worldwide, which facilitates the relaying of price signals to 
promote economically efficient energy consumption and production, small-scale, on-site 
generation with combined heat and power (CHP) applications is becoming more attractive to 
commercial entities. There is also a movement towards more heterogeneous power quality and 
reliability (PQR), which is easier to implement via a dispersed network of loads and resources 
[1]. Although thermal distributed generation (DG) units are typically less efficient at converting 
primary fuel sources to electricity than central power plants, their closer proximity to end-use 
loads prevents transmission losses and enables CHP applications to reuse much of the waste 
heat. Thus, the use of such distributed energy resources (DER) may be more energy efficient 
overall than relying on central power plants. 

 
To date, however, the penetration of DER has been modest largely due to regulatory 

barriers, the relatively high capital cost of DER equipment, and the complexity of analyzing 
energy flows in a commercial building or a microgrid, which is a localized network of energy 
loads and sources operating in a semi-autonomous manner from the wider macrogrid (see 
Appendix A for a representative microgrid). The first impediment refers to features of utility 
policy, ranging from poorly defined and enforced interconnection standards to unfavorable tariff 
components such as standby charges and exit fees, and the lack of exposure to real-time prices. 
In terms of the economics and energy flows, there is a strong connection since the optimal 
installation and operation of DER equipment will have to be synchronized with the energy flows, 
something that is not possible without recourse to mathematical programming. The Sankey 
diagram in Figure 1 captures the complexity of the problem faced by a typical commercial entity. 
On the right-hand side are its end-use loads, while the available energy resources are on the left-
hand side. For example, in order to meet its electricity-only load, the commercial entity can 
simply purchase electricity from the utility at the tariff rate or it can install DG units. However, 
for a load such as cooling, not only electricity purchases and generation, but also recovered heat 
from DG units in operation or heat from solar thermal systems may be utilized. As a result, an 
optimal dispatch for all on-site DER equipment is not trivial even in a deterministic setting as we 
have here. Furthermore, features such as energy storage and demand–side measures (DSM)7 
complicate the picture. Hence, the DER Customer Adoption Model (DER-CAM) a mixed-
integer linear program (MILP) that minimizes energy costs or CO2 emissions has been developed 
at Berkeley Lab. DER-CAM solves the investment and operational problem of a typical 
commercial entity when given various market and technological data, and considers the supply 
as well as the passive side, e.g., building quality. 

 
In previous work, DER-CAM was used to determine optimal DER investment and 

operational decisions for various commercial sites and regulatory regimes. For example, how the 
availability of CHP equipment interacts with a CO2 tax / price was investigated to determine 
whether CO2 emissions may be reduced drastically [2]. More recent work has examined the 

                                                 
7 We define DSM as set of all efficiency and demand response measures, e.g. more efficient lighting or peak shaving 
at the site. 
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impact of storage equipment on cost minimization, energy efficiency, and CO2 emissions [3, 4, 
5]. Thus, even though the perspective of DER-CAM is that of a single commercial entity, it may 
be used to test how policy changes may affect production and consumption of energy in a 
deregulated environment. Following on from this approach, in this paper, we examine how zero-
net energy buildings (ZNEBs) may be implemented in California. This endeavor is directly 
relevant now because of the U.S. Department of Energy’s commercial building initiative (CBI) 
that was launched on August 5, 2008 with the objective of developing zero-net energy 
commercial buildings by 2025, i.e. buildings that produce as much energy as they consume. By 
directly mentioning the minimization of energy use via innovative technologies and demand 
response, we feel that the CBI’s vision of a ZNEB is something that can be implemented in 
DER-CAM. Hence, in this paper, we restrict a typical commercial building to comply with the 
CBI and show that the restriction comes at a high cost given the technologies available. 
Additionally, since ZNEBs do not necessarily mean zero carbon emissions, we also outline the 
multi-objective frontier, which allows determination of the costs for zero-carbon (ZC) buildings. 

 
The structure of this paper is as follows: 
• Section 2 formulates the optimization problem solved by DER-CAM 
• Section 3 introduces the data used in this paper 
• Section 4 presents results based on a northern California nursing home as an example 

site 
• Section 5 concludes and offers directions for future research. 
 

2. Problem Formulation 
As noted in Section 1, the DER investment and operation problem of a typical 

commercial entity lends itself to analysis via a MILP. The resulting program, DER-CAM, 
implemented in the General Algebraic Modeling System (GAMS),8 is amenable to the 
investigation of various policies over a test year, such as CO2 taxes, efficiency standards, and, in 
this paper, the ZNEB proposed by the CBI. Regardless of the particular research objective, DER-
CAM has a common structure with a cost-minimizing (or, as we shall illustrate, a multi-criteria) 
objective function and standard constraints on energy production, flows, and consumption [2, 6]. 
Thus, it takes as inputs data describing DER and DSM equipment, end-use loads, and energy 
prices in order to provide optimal adoption and dispatch of DER equipment and DSM as outputs 
(see Figure 2). Other outputs, such as the level of CO2 emissions and energy efficiency, are also 
calculated. 

 
The annual energy costs, minimized by DER-CAM, include electricity and fuel purchases 

from the utility, amortized capital costs of any DER equipment and DSM applied, ongoing 
operating and maintenance (O&M) expenses of the equipment, less the revenue from any sales, 
e.g., from photovoltaic (PV) output. Some of the key constraints in the model include: 

• energy balancing, i.e., for each type of end-use, total consumption in a given time 
period must equal total production, withdrawal from storage (essentially inventory 
balance), and purchases less any displacement, e.g., via DSM or recovered heat 

                                                 
8 GAMS is a commercial mathematical modeling environment that facilitates large-scale optimization by calling a 
library of solvers (see http://www.gams.com/). 
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• output capacity, i.e., the total electricity produced is restricted by the amount of 
installed capacity and, in the case of PV or solar thermal equipment, by available 
solar insolation 

• heat flows, i.e., the useful recovered heat is limited by the amount of waste heat 
generated and the efficiency of CHP equipment 

• amount of energy available for storage and discharge depends on the characteristics 
of batteries and heat reservoirs, such as minimum and maximum levels of charge 
along with charging and discharging rates 

• investor constraints, such as a minimum payback period, which may reflect risk 
aversion on part of typical commercial users; and  

• regulatory constraints, such as ZNEB requirements or CO2 taxes. 
 
In addition, DER-CAM is able to handle the often complex structures of most utility tariffs, 
which exhibit multiple load periods and demand charges. The intuitive structure of the 
mathematical formulation is presented in Figure 3. 

 
An innovative aspect of the current work, besides the inclusion of DSM and the CBI’s 

ZNEB constraint, is the multi-criteria objective function. Instead of simply minimizing the 
annual energy costs, the commercial entity may specify an objective function that is a weighted 
average of its costs and CO2 emissions, i.e., 
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Here, w is a parameter between zero and one that weighs the objective function, e.g., w = 0 is a 
case of pure CO2 minimization, and MaxCost and MaxCarbon are parameters that are simply 
used to make the objective function dimension-less. For our research, we use the maximal costs 
as well as the maximal CO2 emissions found in a set of optimization runs. Please note that any 
other definition of MaxCost and MaxCarbon could be used. Finally, Cost and Carbon are the 
annualized energy costs (in $/a) and annual CO2 emissions (in tCO2/a), respectively. Since we 
want to find the cheapest possible ZNEB, we always assume w = 1 for the optimization runs 
using the ZNEB constraint in this paper. For the multi-objective frontier, shown in Section 4.2 of 
this paper, w can vary between 0 and 1. 
 

Another new feature is DSM, which enables the commercial entity to reduce both 
electricity and heat consumption for a certain number of hours each year. The number of hours 
and the amount of demand reduction are both capped for each demand type as indicated in the 
following three constraints for electricity: 
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9 Flow batteries differ from conventional rechargeable batteries in one significant way: the power and energy ratings 
of a flow battery are independent of each other. This is made possible by the separation of the electrolyte and the 



To be published in the European Transactions on Electrical Power 2009, Special Issue on Microgrids and Energy Management 
 

5 

 

donseOnOffDemandResp
Mm Tt Hh

htmd ∀≤⋅∑∑∑
∈ ∈ ∈

dtm,,,, MaxDRHoursN  (3) 

 
htmdonseOnOffDemandResponseDemandResp htmdhtmd ,,,LoadibutionMaxDRContr ht,m,,e''d,,,,,, ∀⋅⋅≤  (4) 

where 
‘e’ electricity 
m month 
t day types, which belong to T = {weekday, peak, weekend} 

h hours, which belong to H = {1,2,…,24} 
d demand response type, which belong to D = {low, medium, high} 

Nm,t  Number of days of type t in month m 

 
Equation 2 modifies the definition of electricity consumed during a typical hour by indicating 
that it is the total load plus any requirements for cooling and storage (in batteries10) less the 
effect of demand response for that hour. Next, Equation 3 restricts the number of hours in each 
demand category that DSM can be implemented. In other words, some demand-side measures 
have a time limit in order to restrict the impact on occupancies in the building. Finally, the third 
constraint, Equation 4, limits the amount of load in each hour that can be dropped for each 
implementation of DSM: the load in each time period is scaled by the maximum fraction that can 
possibly be dropped, MaxDRContributiond, and multiplied by whether or not load is to be 
dropped during that time period, DemandResponseOnOffd,m,t,h. A modification to the objective 
function ensures that there is a tradeoff to DSM in the form of a variable cost per hour per load 
dropped. The equations for heating are similar to Equations 2, 3, and 4. 

 
The ZNEB constraint, which forces the building to offset energy purchases by selling the 

same amount of energy as it purchases, is also worth highlighting. The following definition is 
equivalent to a Net Source Energy Building [7]: 
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where 
ElelctricityPVExportm,t,h and 

GenXi,m,t,h  the electric energy produced on-site and sold to the macrogrid. Please note that we 
distinguish between PV and other DG units. 

i  generation technologies, where I = {the set of technologies selected} 

Nm,t  Number of days of type t in month m 
 

We assume that the energy-conversion efficiency of the macrogrid (MacrogridEfficiency) is 
given by the average marginal efficiency of the control area in which the commercial entity is 

                                                                                                                                                             
battery stack. Flow batteries can be rapidly “recharged” by replacing the electrolyte liquid stored in an external tank. 
This difference makes it necessary to separate them from conventional batteries in DER-CAM. 
10 In this work we model lead-acid batteries. See also Table 5.  
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located. Due to fluctuations in the merit-order supply stack, this assumption will not hold on an 
hourly basis, but we use it as a rough estimate of the offset fuel consumption from the on-site 
production of energy. If CO2 taxes were included, then the savings from having a lower carbon 
footprint could also be included. The ZNEB constraint (Equation 5) indicates that the net fuel 
consumed in the generation of electricity, whether through on- or off-site means, plus the total 
amount of natural gas used for heating is equal to zero. In the first term of the constraint, the 
numerator includes the total amount of electricity purchased minus the total electricity exported 
from both PV and thermal on-site production. Dividing the net consumption of electricity (in 
kWhe) by the average macrogrid efficiency (in kWhe/kWh) converts the quantity to net fuel 
consumption (in kWh). Since the second term of the constraint, the annual consumption of 
natural gas for meeting heating end-uses and CHP fuel needs, is likely to be positive, the 
commercial entity must be a net exporter of electricity. As we shall see from the case study, this 
requirement proves quite demanding. 

 

3. Data 
3.1. Test Site 

In order to illustrate the implementation of the ZNEB from the perspective of a 
commercial entity, we perform a case study on a nursing home located in the San Francisco Bay 
Area of northern California. The site is characterized by relatively stable seasonal demand, and 
therefore, only January and July profiles are shown in Figure 4. The complete data set for a 
representative full-care, 24-hour nursing facility with five floors and a total area of 31 587 m2 

(340 000 sq. ft) was obtained from the California Energy Commission (CEC), since this is a site 
from the California Commercial End-Use Survey (CEUS). 

 
As can be seen in Figure 4, the night heating load is roughly 60% of the peak heating 

demand. Additionally, during daytime hours, recovered heat from on-site generation may be 
used to lower the electrical peak via an absorption chiller. When cooling demand increases, this 
can constitute a stable heat sink if waste heat for absorption chillers is considered. Finally, to the 
extent that the electricity demand coincides with the total heat demand, this favors the 
installation of DG units with CHP. Furthermore, the deleterious effects of any desynchronous 
electricity and heating loads may be mitigated via the use of storage facilities. For example, 
waste heat from on-site generation that may not be immediately used to offset heating loads via 
CHP applications may be stored for subsequent use. Similarly, relatively cheap utility-provided 
electricity during off-peak hours may be stored in batteries to lower the electrical load during 
peak hours. In this case study, the simultaneous use of heating and cooling is caused by (a) the 
complexity of nursing facilities where in this moderate climate heating and cooling can appear in 
different zones at the same time and (b) hot water loads. 

 
3.2. Technologies 

The newest technologies added to DER-CAM are DSM to capture the effect of efficiency 
measures, e.g., building quality changes and demand reduction measures due to behavioral 
changes, among others. Moreover, DER-CAM considers storage systems, and this enables load-
shifting measures in the optimization runs. 
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Efficiency and behavioral measures are defined as abstract “low,” “mid,” and “high” 
measures, which represent a set of possible real technologies (see Table 1 and 2). The measures 
are characterized by the: 

• costs of reducing 1 kW of load ($/kW) 

• maximum potential of load reduction (%), e.g., the maximum contribution is 
limited by the new U-value in case of a new building insulation 

• annual time limit for the measure, e.g., in case of behavioral changes in the light 
usage in an office building the effect is limited to work hours.  

 
For example M3 from Figure 5 can represent an automated shading device that can 

reduce cooling loads during summer months. During winter months, the shading device has no 
major impact on cooling loads. Please note that the parameters from Table 1 and 2 are just 
estimates to show the impact of efficiency and behavioral measures within DER-CAM. The 
input parameters depend on the building type simulated and will also change with the type of 
measure considered. For this work, the real efficiency and behavioral measures options linked to 
those abstract parameters are not that important. Many building simulation tools, e.g., 
EnergyPlus, require specification of the demand response schedules. Since they require 
specification of occupancy and behavioral changes, such tools can never find the optimal 
schedule of DSM measures to reach ZNEB or zero-carbon emissions levels. In contrast, the 
flexible approach of DER-CAM (see also Figure 5) allows picking the optimal operating hours 
for measures to minimize costs, carbon emissions, or other objective, and delivers optimal 
schedules.  

 
Recently, electrical (conventional lead/acid battery) and thermal storage capabilities were 

added to DER-CAM. At each hour, energy can either be added up to the maximum capacity or 
withdrawn down to a minimum capacity chosen to avoid damaging deep discharge. The rate at 
which the state of charge can change is constrained, and the state of charge decays hourly. The 
parameters used for the electrical and thermal storage are shown in following Table 3 [8, 9]. The 
menu of available equipment options to DER-CAM for this analysis together with their cost and 
performance characteristics is shown in Table 4 and Table 5.  

 
While the current set of available technologies is limited, any candidate technology may 

be included. Technology options in DER-CAM are categorized as being either discretely or 
continuously sized. This distinction is important to the economics of DER because some 
equipment are subject to strong diseconomies of small scale. Discretely sized technologies are 
those that would be available to customers only in a limited number of discrete sizes, and DER-
CAM must choose an integer number of units, e.g., reciprocating engines have these 
characteristics. The costs for the discrete fuel cell11 technology are interpolated from various 
studies as described in [10], which is based on data collected by the National Renewable Energy 
Laboratory [11]. The costs and performance data for the reciprocating engine are based on data 
provided by Tecogen (see also http://www.tecogen.com/). Continuously sized technologies, on 
the other hand, are available in such a large variety of sizes that it can be assumed capacity close 
to the optimal could be acquired. Battery storage costs are roughly consistent with those 

                                                 
11 Reciprocating engines are the most dominant technologies. Research shows that no fuel cell or micro turbine 
adoption takes place in our examples due to higher technology costs. 
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described by the Electricity Storage Association [12]. The installation cost functions for these 
technologies are assumed to consist of an unavoidable cost (intercept) independent of installed 
capacity ($) representing the fixed cost of the infrastructure required to adopt such a device, plus 
a variable cost proportional to capacity ($/kW or $/kWh). 

 
3.3. Tariffs 

The California nursing home purchases both electricity and natural gas from Pacific Gas 
and Electric (PG&E). As is typical for California utilities, the electricity tariff has time-of-use 
(TOU) pricing for both energy and power (demand charge). Demand charges are proportional to 
the maximum rate of electricity consumption (kW), regardless of the duration or frequency of 
such consumption over the billing period. Demand charges may be assessed daily (e.g., in New 
York for some DG customers) or monthly (more common) and may be for all hours of the month 
or only certain periods (e.g., on-, mid-, or off-peak), or hit just at the hour of peak system-wide 
consumption. 

 
There are five demand types in DER-CAM applicable to daily or monthly demand 

charges: 

• Non-coincident: incurred by the maximum consumption in any hour. 

• On-peak: based only on on-peak hours. 

• Mid-peak: based only on mid-peak hours. 

• Off-peak: based only on off-peak hours. 

• Coincident: based only on the hour of peak system-wide consumption. 
 
PG&E tariffs collect various demand charges based on three summer time periods and 

two winter periods. The PG&E definition of on-peak, mid-peak, and off-peak depends on the 
season and are specified as follows: 

• Summer on-peak: 12:00-18:00 during weekdays 

• Summer mid-peak: 08:00-12:00 and 18:00-22:00 during weekdays, all other hours and 
days: off-peak 

• Winter mid-peak: 08:00-22:00 during weekdays, all other hours and days: off-peak. 
 
The demand charge in $/kW is a significant determinant of distributed generation and 

electric storage system installations [4]. Hourly marginal CO2 emission factors12 for 2008 along 
with a macrogrid energy-conversion efficiency of 34% were assumed. For more information on 
the hourly marginal CO2 emissions please see the appendix and [13]. This marginal emission 
factor is used within DER-CAM to determine the carbon emissions from the macrogrid and to be 
able to estimate the CO2 reductions of the microgrid in different investment cases. 

 

                                                 
12 Older versions of DER-CAM used an average marginal emission factor for the whole year. For this research 
DER-CAM, version 3.5.1 from July 22nd, 2009 with hourly marginal emission rates was used and this changes the 
carbon results compared with those from previous DER-CAM versions. 
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4. Results 
4.1. ZNEB Results for the Nursing Home 

In order to address how CO2 emissions and total site energy costs vary when electrical, 
thermal storage, efficiency measures as well as load reduction measures are present, four DER-
CAM runs have been performed:  

1. a do-nothing case in which all DER investments and DSM adoption are disallowed, i.e., 
the site meets its local energy demands solely by purchases from utilities; furthermore, no 
ZNEB constraint is considered 

2. an invest case that finds the optimal DER and DSM adoption at current price levels as 
described in Section 3; again, no ZNEB constraint is considered 

3. a ZNEB invest case that finds the optimal DER and DSM adoption at current price levels 
as described in Section 3 considering the ZNEB constraint 

4. a ZNEB low storage and low PV price run, with low storage prices of $50/kWh for 
thermal storage13, $60/kWh for electric storage14, and $2670/kW for PV15; both the 
ZNEB constraint and DSM are considered. 

 
Since we want to find the lowest cost  ZNEB solution for the nursing home, the weight factor (w) 
from the multi-objective approach from Section 2 is set to 1 (pure cost optimization). 
Additionally, a footprint constraint limits the amount of installed PV and solar thermal to    
30000 m2 (roughly the total floorspace of the building) to make the results more realistic. 

 
The annualized results for the nursing home (see Table 7)16 indicate the type of DER 

equipment adopted, annual energy costs and consumption, and annual CO2 emissions. We note 
that run 2 provides the adoption of 300 kW of on-site generation with a heat exchanger. No 
absorption chiller, energy storage, or solar-based technologies are installed. Absent any ZNEB 
legislation, this result is the closest to what we would expect today if the nursing home took a 
strictly cost-minimizing approach to its energy consumption while considering DSM as 
described in Section 3.2. We find that, compared to run 1, in which all of the nursing home’s 
energy needs are met via the utility, run 2 has a significant reduction in both costs and CO2 
emissions17 of approx. 21% and 33%, respectively. In effect, by relying more on gas-fired DER 
equipment, the nursing home swaps purchases of electricity from the utility for more natural gas 
purchases.  

 
If we include the ZNEB constraint in run 3, then we find that at current technology costs, 

the nursing home would face a near doubling of its energy bill (an increase of 87%) since it 
would be largely dependent on expensive solar-based equipment and energy storage 

                                                 
13 Intercept costs are set to zero.  
14 Intercept costs are set to zero.  
15 Intercept costs are unchanged.  
16 Optimizations were performed with version 3.5.1, July 22nd, 2009. Please note that different versions deliver 
slightly different results. Since DER-CAM is a MILP problem, an exhaustive search method is used within GAMS 
and it is influenced by the precision option. In these runs a relative optimality tolerance for MIP models of 3% was 
used (OPTION optcr = 0.03).  
17 Carbon emissions here include not only those produced locally at the site of the nursing home, but also those from 
off-site electricity purchases, which are calculated via the average macrogrid efficiency measure. 
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technologies. Nevertheless, the results indicate that the desired objective of a ZNEB is achieved 
by reducing natural gas purchases by 62% compared to the do-nothing run 1. The extensive use 
of renewable energy technologies also provides a drastic reduction in CO2 emissions, i.e., 61% 
relative to the do-nothing case. Figure 6 illustrates how the ZNEB constraint and the concomitant 
reduction in carbon emissions are attained: modest demand (load) reduction (see Figure 6) 
throughout the day and some cooling offset, but extensive PV generation and sales. The optimal 
dispatch for meeting the heating load would be similarly reliant on solar thermal heating. As can 
be seen from Figure 7, the solar thermal system is mostly used to supply the heat storage and 
absorption chiller with energy. The heat used in the absorption chiller removes electricity load 
during on- and mid-peak hours (see Figure 6) and reduces electric costs considerably. The heat 
stored is used during night hours to reduce heating needs. Please note that the example nursing 
home is located in the San Francisco Bay Area where July nights are mostly foggy and cold. We 
can infer from this case study that while meeting the ZNEB constraint is feasible via existing 
technologies, its cost may be prohibitively high to consider implementation currently.  

 
On the other hand, if subsidies on the PV technology and both electric and thermal 

storage were provided, then the ZNEB constraint would not prohibitively expensive for the 
nursing home. Table 7 shows an adoption of a 200 kW on-site, gas-fired generation system with 
CHP along with electric storage and PV. Consequently, the energy bill is reduced by nearly 15% 
relative to the do-nothing case, while CO2 emissions decrease by 45%. Compared to Figure 6, 
the optimal dispatch in Figure 8 provides for more load shifting via the battery and more on-site 
generation via the gas-fired DG system. Please note that DER-CAM does not assume a certain 
role for storage. DER-CAM finds the optimal operation pattern for all technologies to fulfil the 
objective of the site, i.e., cost or CO2 minimization. In our case of cost minimization, it turns out 
that storage is used in the most economic way when electricity demand from the grid is removed 
during mid-peak periods, i.e., the battery will be discharged. The charging takes place during 
morning hours by on-site internal combustion engines and grid electricity and not by PV during 
the day. From an economic point of view, it is more attractive to sell electricity from PV instead 
of charging batteries by PV. However, due to the subsidies of $4005/kW for PV and $133/kWh 
for batteries in run 4, the effective cost of CO2 emissions reduction is $241/tCO2

18, which does 
not compare well with the current price of CO2 at the EEX in Germany of $18/tCO2

19.  
 

4.2. ZC Building Results for the Nursing Home  
In the ZC building runs, we vary the weight factor (w) in the objective function, thereby 

creating a frontier with different annual energy costs and CO2 emissions. Furthermore, no 
electricity sales to the macrogrid and ZNEB requirements are considered, and current technology 
costs from Section 3.2 are used. 

 
With the multi-objective approach from Section 2, a set of different optimization runs 

without DSM (top-right curve in Figure 9) and with DSM (bottom curve in Figure 9) are 
performed. Every optimization run is characterized by a specific weight factor w, where the 
starting point is the do-nothing case (run 1) from the previous section. Point 2 is characterized by 
w = 1 (pure cost optimization), and for the bottom frontier, this represents run 2 from Table 7. 

                                                 
18 This number also considers the carbon offset due to PV electricity sales to the grid. 
19http://www.eex.com/en/Market%20Data/Trading%20Data/Emission%20Rights/EU%20Emission%20Allowances
%20|%20Spot/spot-eua-table/2009-04-29, values are from April 29, 2009. 
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For the top-right curve, frontier point 2 shows less reduction in both cost and CO2 emissions than 
point 2 from the multi-objective frontier with DSM. This is not surprising since DSM offers also 
“free” behavioural changes. 

 
With decreasing w, which means increasing focus on CO2 emissions, the annual energy 

costs increase and the CO2 emissions go down. However, as can be seen from Figure 9, it is not 
possible to reach zero carbon without demand reduction measures. The CO2 emissions level off 
at 700 tCO2/a, and the annual energy costs explode to reach levels at 200% above the do-nothing 
case20. Nevertheless, considering the whole set of DSM, the nursing home could reach zero-
carbon status at price levels ca. 150% above the actual energy costs (relative to the do-nothing 
case). 

 
To reach zero-carbon status, the amount of installed PV, solar thermal, and both electric 

and heat storage systems increases considerably, which results in tremendous annual energy 
costs. For example, point 4 from the bottom frontier with DSM requires 202 kW21 of absorption 
chillers, 9840 kWh of electric storage, 16346 kWh of heat storage, 2325 kW of PV, and 4631 
kW of solar thermal capacity. The huge amount of storage, necessary to fulfil the ZNEB 
constraint within DER-CAM, is unrealistic and demonstrates the need for sophisticated DSM 
within DER-CAM and in reality.  

 

5. Conclusions 
The ongoing deregulation of the energy sector and concerns about climate change are 

providing incentives for small-scale, on-site generation with CHP applications and energy 
storage to become more attractive to commercial investors. Indeed, such DER equipment has the 
potential to provide tangible benefits to consumers in terms of lower energy bills. Nevertheless, 
the high capital costs of such equipment and the complexity of energy flows within a microgrid 
may inhibit the adoption of DER unless an optimization perspective is taken. Using DER-CAM, 
it is possible to model a typical commercial entity’s DER investment and operation problem as a 
MILP that takes data on market prices, technology characteristics, end-use loads, and regulatory 
rules as inputs. Although the perspective of DER-CAM is that of a small (relative to the entire 
macrogrid) user, it may be employed to examine the effects of wider energy policies, such CO2 

taxes and energy efficiency requirements.  
 
In this paper, DER-CAM is used to illustrate how the CBI’s ZNEB goal may be 

implemented. The commercial entity is constrained to sell as much energy as it purchases, which 
in our case study of a northern California nursing home, results in adoption of PV panels, solar 
thermal equipment, and storage systems. Consequently, natural gas purchases for heating 
purposes are driven down, while electricity purchases from the utility are significantly offset by 
sales back to the grid and DSM for reducing consumption. On the other hand, the nursing home’s 
energy bill soars due to the adoption of costly equipment, although subsidies on these renewable 
energy and storage technologies would make ZNEB attainable at a modest increase (or even 
decrease) in the energy bill. Next, in a ZC example, we illustrate that there is a trade-off between 

                                                 
20 Electricity sales would not help against the high annual energy costs since there is a footprint constraint in the 
model. And due to that constraint, no additional PV or solar thermal is possible. 
21 In terms of electricity displaced. 202kWe translates to 257 refrigeration tons.  
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cost and CO2 emissions, and that zero-carbon status may be achieved only at a sharp increase in 
the energy bill, assuming that currently available equipment is used. Here, the importance of 
DSM is paramount because the last tranche of reduction in CO2 emissions, possibly attained via 
a combination of PV-generated power and electrical storage, seems to be prohibitively 
expensive.  

 
For future work in this area, we would like to address not only the cost in the objective 

function, but also the risk of a commercial entity that faces stochastic energy prices and possibly 
unreliable equipment. We envisage a risk-hedging strategy that constructs a portfolio of physical 
equipment as well as financial instruments in order to deliver an innovative solution for more 
sustainable provision and consumption of energy. As with the current study, the impact of any 
policy dispensations could be investigated, this time from the perspective of a risk-averse 
microgrid entity. We believe that such an example is essential in illustrating the challenges from 
(and possible remedies for) climate change and price volatility.  
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Figures  
 

Figure 1. Sankey diagram of energy flows 

 
 

Figure 2. High-level schematic of information flow in DER-CAM 
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Figure 3. Representative MILP solved by DER-CAM 

MINIMIZE 

Annual energy cost:

energy purchase cost 

+ amortized DER technology capital cost 

+ annual O&M cost

SUBJECT TO

Energy balance:

- Energy purchased + energy generated exceeds demand

Operational constraints:

- Generators, chillers, etc. must operate within 

installed limits

- Heat recovered is limited by generated waste heat 

Regulatory constraints:

- Minimum efficiency requirements

- Maximum emission limits

Investment constraints:

- Payback period is constrained

Storage constraints:

- Electricity stored is limited by battery size

- Heat storage is limited by reservoir size

 
 

Figure 4. CA nursing home January and July weekday electricity22 and total heat (space + water heating)23 
demand 

 
source: [4] 

                                                 
22 Please note that cooling demand is expressed in electricity consumption of the electric chiller with an assumed 
COP of 4.5. 
23 1 kW = 3 412.14 BTU/h 



To be published in the European Transactions on Electrical Power 2009, Special Issue on Microgrids and Energy Management 
 

17 

Figure 5. DSM approach within DER-CAM (M1, M2, and M3 are different measures) 

 
 
 

Figure 6. Optimal schedule for meeting the electricity load (run 3) on a July weekday 
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Figure 7. Optimal schedule for meeting the heating load (run 3) on a July weekday 

 

 

Figure 8. Optimal schedule for meeting the electricity load (run 4) on a July weekday 
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Figure 9. Multi-objective frontier for the northern California nursing home 

 
 

Tables 
 

Table 1. Example DSM input parameters for electricity  

electricity 
variable cost 

($/kW) 
max. contribution (% of 
total load in any hour) 

max. hours 
(hours) 

low 0.00 30 4380 

mid 0.06 10 8760 

high 1.00 5 760 

source: LBNL estimates24 

 

Table 2. Example DSM input parameters for heating 

heating 
variable cost 

($/kW) 
max. contribution (% of 
total load in any hour) 

max. hours (h) 

low 0.00 30 1095 

mid 0.03 20 8760 

high 0.05 10 8760 

source: LBNL estimates 

                                                 
24 At this point, these are very rough estimates and refinement will be considered. 
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Table 3. Energy storage parameters 

 Description electrical flow battery thermal 

charging efficiency  
portion of energy input to storage that is 

useful 0.9 0.84 0.9 

discharging efficiency  
portion of energy output from storage that 

is useful 125 0.84 1 

decay  portion of state of charge lost per hour 0.00126 0.0127 0.01 

maximum charge rate  
maximum portion of rated capacity that can 

be added to storage in an hour 0.1 n/a 0.2528 

maximum discharge rate  
maximum portion of rated capacity that can 

be withdrawn from storage in an hour 0.25 n/a 0.2529 

minimum state of charge  
minimum state of charge as apportion of 

rated capacity 0.3 0.25 0 

source: LBNL estimates and [8, 9] 

 

Table 4. Menu of available equipment options, discrete investments 

 reciprocating engine fuel cell 

capacity (kW) 100 200 

sprint capacity (kW) 125  

installed costs ($/kW) 2400 5005 

installed costs with heat recovery ($/kW) 3000 5200 

variable maintenance ($/kWh) 0.02 0.029 

efficiency (%), (HHV) 26 35 

lifetime (a) 20 10 

operation and maintenance ($/kWh) 0.02 0.029 

 

                                                 
25 The impact of different discharge levels is subject to further research. 
26 Please note that the decay number used is relatively high due to the fact that the lifetime of lead acid batteries is 
assumed at the upper end of the lifetime range. At the end of the lifetime the decay increases rapidly. Additionally, 
the decay increases at higher temperature. However, future investigations should address the impact of different 
decay numbers. 
27 Preliminary number; future analysis could address the impact of different decay numbers. 
28 Preliminary number; the impact of different maximum charge rates is subject to further investigations. 
29 Preliminary number; the impact of different maximum discharge rates could be the subject to further 
investigations. 
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Table 5. Menu of available equipment options, continuous investments 

 electrical 

storage (lead 

acid) 

thermal 

storage30 
flow battery 

absorption 

chiller 

solar 

thermal 
Photovoltaics 

intercept costs ($) 295 10000 0 20000 1000 1000 

variable costs 

($/kW or $/kWh) 19331 10032 

220$/kWh 

and 

2125$/kW 33 

12734 50035 667536 

lifetime (a) 5 17 10 15 15 20 

maintenance costs 

($/kW or $/kWh) 
~0 ~0 0.05 1.88 0.5 0.25 

 

Table 6. Energy prices, effective Nov. 2007 

electricity 

summer (May – Oct.) winter (Nov. – Apr.) 

electricity 

($/kWh) 

demand 

($/kW) 

electricity 

($/kWh) 

demand 

($/kW) 

on-peak 0.163 15.040   

mid-peak 0.124 3.580 0.116 1.860 

off-peak 0.094  0.098  

fixed ($/day) 9.035 
 

 

natural gas 

0.035 for 

summer and  

0.037 for winter 

$/kWh 

1.026 for 

summer and 

1.084 for winter 

$/therm 

4.955 
fixed 

($/day) 
 

source: [14, 15, 16] 

                                                 
30 Please note that cold thermal storage is not among the set of available technologies, but could be added. 
31 $/kWhelectricity 
32 $/kWhheat 
33 Flow batteries are characterized by both the energy content and power rating.  
34 Abs. chiller capacity is in terms of electricity offset (electric load equivalent).  
35 $/kWof recovered heat 
36 $/kWelectricity 



To be published in the European Transactions on Electrical Power 2009, Special Issue on Microgrids and Energy Management 
 

22 

 

Table 7. Annualized results for the northern California nursing home (w = 1), hourly marginal CO2 emission 
rates from [13], DER-CAM version 3.5.1 

  run 1 run 2 run 3 run 4 
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equipment 

reciprocating 100 kW engine with heat 
exchanger (kW) 

n/a 

300 100 200 

abs. chiller (kW in terms of electricity 
displaced) 0 220 0 

solar thermal collector (kW) 0 3086 0 

PV (kW) 0 2518 3133 

electric storage (kWh) 0 0 1557 

thermal storage (kWh) 0 6099 0 

annual costs (k$) 

Total 963.90 757.18 1802.38 821.98 

% savings compared to do-nothing n/a 21.45 -86.99 14.72 

annual energy consumption (GWh) 

electricity  5.76 2.10 2.30 1.70 

NG 5.70 9.00 2.17 7.60 

annual CO2 emissions (tCO2/a) 

emissions 4130.64 2751.73 1604.91 2266.24 

% savings compared to do-nothing n/a 33.38 61.15 45.13 

 

Appendix A: Microgrid Configuration 
We represent a typical microgrid in abstract sense in Figure 10. There may be various 

types of on-site technologies installed to meet diverse end-use loads. The loads may be classified 
as being either sensitive or sheddable for the purposes of DSM. Allocation of energy production 
from on-site resources to the end-use loads requires controllers. Furthermore, the interface 
between the microgrid and the wider macrogrid is such that the former is perceived by the latter 
as being simply another node in the distribution network with no additional knowledge of the 
end-use loads and on-site resources embedded within.  
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Figure 10. Sample microgrid 

 
source: LBNL 

 

Appendix B: Solar Data 
To obtain solar data for DER-CAM, PVWATTS from NREL has been used [17]. 

Originally designed for gathering information for PV system output for different geographic 
locations, PVWATTS can be also used to gather solar radiation data for DER-CAM. DER-CAM 
assumes a maximum solar radiation of 1000W/m2, which is the same number as used for testing 
PV panels. Thus, to obtain the fraction of solar insolation of fixed-alignment PV panels in 
different locations, PVWATTS can be used. Setting the AC Rating to 1 kW, PVWATTS delivers 
the fraction of solar radiation for a chosen site. In other words, solar radiation is always 
expressed as a fraction of the test conditions. A fraction of 0.9 at 12.00 means that an average 
solar radiation of 900W/m2 arrives at the panel. Please note that this procedure is independent 
from the efficiency of the solar panel. The efficiency would simply increase the area of the solar 
panels. Assuming the same alignment of the solar thermal panel, PVWATTS can be used for 
solar thermal systems also. Thus, the fraction of solar radiation delivered from PVWATTS can 
be used within DER-CAM for both PV and solar thermal systems. San Francisco is used as the 
approximate location for the nursing home in the Bay Area. 
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Table 8. Settings for PVWATTS to obtain the fraction of solar radiation for San Francisco 

PVWATTS: Hourly PV 
Performance Data 

 

City: SAN_FRA
NCISCO State: CA 

Lat (deg N): 37.62 

Long (deg W): 122.38 

Elev (m):  5 

Array Type: “Fixed 
Tilt” 

Array Tilt (deg): 37.6 

Array Azimuth (deg): 180.0 

DC Rating (kW): 1.3 

DC to AC Derate Factor: 0.770 

AC Rating (kW): 1.0 

Source: [17] 

 

Figure 11. Solar radiation as fraction of the max. insolation of 1000W/m2 for San Francisco 
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Appendix C: Hourly Marginal CO2 Rates 
 

Figure 12. Average hourly marginal CO2 rates in 2008  

 
source: [13] and LBNL calculations 
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