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Energy prices are often highly volatile with unexpected spikes. Capturing these sudden spikes may lead to
more informed decision-making in energy investments, such as valuing gas-fired power plants, than
ignoring them. In this paper, non-linear regime-switching models and models with mean-reverting
stochastic volatility are compared with ordinary linear models. The study is performed using UK electricity
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1. Introduction

Until the 1990s, the electricity sector had been vertically
integrated1 worldwide, where regulators fixed prices as a function
of generation, transmission, and distribution costs. Due to little
uncertainty in prices, investors could, therefore, make decisions by
applying standard deterministic valuation tools such as discounted
cash flow analysis. In recent years, electricity sectors in many
countries have been deregulated with the aim of introducing com-
petition in generation and retail activities. Wilson (2002) and Wolak
(1999) provide a comprehensive survey of reformed electricity
markets in developed countries. This change from a regulated
monopoly to private ownership of generation and market liberal-
isation may result in lower prices and more efficient use of resources.
However, prices, which are now to be determined by the interaction
of supply and demand, have become highly volatile with unexpected
spikes. These sudden spikes may be explained as a response to
temperature, supply, or transmission shocks. Hence, ignoring such
aspects of deregulated markets is likely to result in mis-valuation of
energy projects.

Although there are many papers on modelling energy prices, there
is limited information about modelling electricity and natural gas spot
prices distinctly, i.e., taking into account their correlation together
with either unexpected spikes or stochastic volatility. Schwartz and
Smith (2000) have developed a two-factor model for commodity
prices where the short-term derivatives are modelled with a mean-
reverting process and the equilibrium to which prices revert evolves
according to a Brownian motion process; however, it considers
neither the existence of correlation between commodity prices, such
as electricity and gas, nor the presence of high-frequency spikes.
Using a similar two-factor analysis, Näsäkkälä and Fleten (2005)
model the spark spread, defined as the difference between the price of
electricity and the cost of gas required for the generation of electricity,
directly. It may lose some information about the spark spread's
uncertainty structure compared to models with separate electricity
and gas price processes. Cortazar and Schwartz (1994), Laughton and
Jacoby (1993), and Smith and McCardle (1998) argue that mean-
reverting price processes, instead of geometric Brownian motion
(GBM) process models, are more appropriate for commodities. On the
other hand, Pindyck (1999) analyses the long-run evolution of energy
prices, such as oil, coal, and natural gas, and suggests that although the
long-run energy prices are mean-reverting, since their rate of mean
reversion is low, the use of GBM models is unlikely to lead to large
errors in optimal investment rules.

Kosater and Mosler (2006) has successfully applied non-linear
autoregressive Markov regime-switching models in the spirit of
Hamilton (1989). Its forecast study suggests that it is beneficial to
apply the non-linear model, at least for long-term forecasting. The
idea behind this approach is to model the spikes as a separate regime.
Karakatsani and Bunn (2008) also use a regime-switching model in
order to discover the response of agents and, thus, alterations in prices
during temporary market irregularities. Maribu et al. (2007) applies

mailto:somayeh@stats.ucl.ac.uk
mailto:afzal@stats.ucl.ac.uk
http://dx.doi.org/10.1016/j.eneco.2009.10.001
http://www.sciencedirect.com/science/journal/01409883


710 S. Heydari, A. Siddiqui / Energy Economics 32 (2010) 709–725
mean-reverting models for both electricity and gas by considering
two variants for electricity: one with constant volatility and one with
stochastic volatility. However, it does not allow for the possible
stochastic volatility of gas prices simultaneously.

In energy markets, a wide range of bottom-up models that include
supply/demand fundamentals is also available (see, e.g., Fleten and
Lemming, 2003; Kumbaroğlu and Madlener, 2003; Martinsen et al.,
2003). While these models may be used more by practitioners,
financial models require access only to market prices, which are more
readily available than bottom-up data. Such accessibility makes fi-
nancial models desirable from this perspective. On the other hand,
neural networks have also been employed with some success on
forecasting energy prices (see, e.g., Connor, 1996; Szkuta et al., 1999;
Rodriguez and Anders, 2004; Azadeh et al., 2008).

In this paper, we examine the implications of modelling assump-
tions on investment decisions. In particular, we take the perspective of
an investor in a UK gas-fired power plant by modelling the logarithms
of electricity and gas prices separately via both linear and non-linear
multivariate models. We are then able to evaluate the out-of-sample
forecasting performance of such models by valuing a gas-fired power
plant with and without daily operational flexibility using data from
2001 to 2006.

This paper is organised as follows. The Britishmarket structure and
the data we use are presented in Section 2 together with some
descriptive statistics. In Section 3, we remove the seasonality via a
combination of sine and cosine functions. Four linear stochastic
models, frequently used in energy markets, are then proposed for the
logarithms of electricity and gas spot prices in Section 4. Next, in
Section 5, in consideration of the recent spikes and stochastic vo-
latility in energy spot prices, Markov regime-switching approaches
and a mean-reverting stochastic volatility model are posited to im-
prove upon these simple linear models. In Section 6, a gas-fired power
plant is valued, using both linear and non-linear models, and the
results of the performance comparison study are reported. The con-
clusions of the paper are finally presented in Section 7.
4 The APX Group (www.apxgroup.com) is a European provider of power and gas
exchanges, operating markets in the Netherlands, the United Kingdom, and Belgium.

5 An on-the-day commodity market for gas has been launched as part of the new
reforms to improve liquidity and increase competition in UK wholesale gas market.

6 One may criticise that the in-sample period looks more benign and less volatile
2. Market structure, data, and descriptive statistics

In the pre-privatisation electricity industry in Britain, prior to
1990, the Central Electricity Generating Board (CEGB) had a dominant
role. It sold electricity to twelve government-owned Area Boards,
which distributed and supplied the electricity to consumers in their
regional districts. After privatisation on 1 April 1990, these Area
Boards were left unchanged and converted to twelve Regional Elec-
tricity Companies (REC). Consumers were then able to choose their
suppliers from any of these twelve RECs as well as from National
Power or PowerGen directly. After eleven years of successful per-
formance of this restructuring when the generators bid into an
Electricity Pool,2 in 1997, the Power Pool was judged by the regulator
and government to have failed and was replaced by the New
Electricity Trading Arrangements (NETA) on 27 March 2001. Several
studies have provided important insights on this replacement (see,
e.g., Klemperer and Meyer, 1989; Green and Newbery, 1992; Bolle,
1992; Green, 1996, 2006). The outcomes achieved under NETA over
its first year of operation include: a) significant increase in the
liquidity3 and improvement in the transparency of the wholesale
markets, b) facilitation of a decrease in wholesale and retail prices,
and c) considerable development in the performance of the balancing
market (see Hesmondhalgh, 2003). Prices in this balancing market
2 In order to keep generation in balance with demand, a special spot market known
as the Pool was created, and all major generators and suppliers were required to,
respectively, sell to and buy from the Pool at common prices. (Wolfram, 1999; Green,
1999; Tovey, 2003, 2004)

3 Henney et al. (2002) reports that the spot markets are not liquid, while the
forward markets are more liquid than before.
with full competition have been highly volatile, although a number of
rule changes have been agreed to reduce this volatility. Three power
exchanges have been established for trading: the UK Power Exchange
(UKPX), the UK Automated Power Exchange (UK APX)4, and the
International Petroleum Exchange (IPE).

A total of 2105 daily observations over six years of electricity spot
prices in £/MWhe and gas spot prices in £/MWh from UK energy
markets, provided by the APX Group are available and plotted in
Fig. 1a. The sample period begins on 27 March 2001 (introduction of
NETA) and ends on 31 December 2006. The electricity spot prices are
daily averages of half-hour reference price data (RPD), while the gas
spot prices are the weighted-average prices of all trades for the
relevant gas day on the OCM (On-the-day Commodity Market)5

platform with relative times of observations measured in years.
The data set is split into two periods (see Fig. 1): an in-sample

period6 (from 27 March 2001 to 26 March 2004) and an out-of-
sample period (from 27 March 2004 to 31 December 2006). We
assume that the future prices follow the same structure as the past
prices. Hence, the in-sample period is used to estimate the unknown
parameters, and the out-of-sample period is used to assess the
forecast of the models of interest.

With respect to the qualitative aspects of the data, some atypical
fluctuations are observed in the data that are caused not only by
exceptional seasons, such as freezingwinters or hot summers, but also
by the existence of some salient events. In particular, the critical
dispute over the natural gas and transit prices between Russia and
Ukraine, which started in March 2005 and culminated on 1 January
2006 when Russia cut off gas supplies passing through Ukrainian
territory, affected UK energy prices (BBC, 2006a,b). The situation,
however, calmed after the two countries reached an agreement in
principle of restoring Russia's gas supply to Europe. Consequently, UK
energy prices started returning to their historical average values
(Nesterov, 2009).

A summary of the descriptive statistics of electricity and gas spot
prices as well as those of their natural logarithms is presented in
Table 1. It is shown that the spot prices and their logarithms are
skewed to the right (positively skewed), which clearly resulted from
the upward spikes. Their positive kurtosis statistics also indicate the
leptokurtic7 distribution.

According tomost of the previous articles on energy prices, such as
Schwartz and Smith (2000) and Näsäkkälä and Fleten (2005), the
logarithms of spot prices, Yt, (presented in Fig. 1b) are decomposed
into two factors,

Yt =
logðEtÞ
logðGtÞ

� �
=

XE
t

XG
t

" #
+

f Et

f Gt

" #
; ð1Þ

where Et and Gt refer to observed electricity and gas spot prices,
respectively. The first term on the right-most side is the stochastic
part of log prices, and the second term is a deterministic seasonal
function, which will be introduced in the next section. In Schwartz
and Smith (2000) and Näsäkkälä and Fleten (2005), however, prices
are assumed to follow a two-factor stochastic model with a de-
terministic seasonal function. These models include a short-term
deviation, which reverts toward zero, and the equilibrium price level.
than the out-of-sample period (Fig. 1a). However, since the data become smoother in
the logarithmic scale, Fig. 1b does not show a huge distinction between the in-sample
and the out-of-sample data set, but if anything, it shows the robustness of the results.
On the other hand, in Section 2, the in-sample period is expanded so that after forty
weeks are added, it is more representative of the out-of-sample period.

7 A leptokurtic distribution is described as “fat in tails” and has a more acute peak
around the mean when compared to a normal one.

http://www.worldpress.org/Europe/3307.cfm
http://www.apxgroup.com


Fig. 1. UK electricity and gas spot prices, 2001–2006 (APX Group).

Table 1
Descriptive statistics, UK energy spot prices (£/MWhe and £/MWh) and their
logarithms, 2001–2006 (APX Group).

Statistic Electricity ln electricity Gas ln Gas

Mean 24.5397 3.1007 8.8904 2.0604
StDev 13.2800 0.4198 5.4088 0.4778
Variance 176.3580 0.1763 29.2555 0.2283
Skewness 3.3447 0.8296 3.2734 0.3699
Kurtosis 21.7419 0.8522 17.0807 1.8679
Number 2105 2105 2105 2105
Minimum 8.6030 2.1521 0.4930 −0.7073
1st Quartile 16.0570 2.7762 5.7890 1.7560
Median 20.5670 3.0237 7.6690 2.0372
3rd Quartile 29.5700 3.3868 10.1920 2.3216
Maximum 190.5490 5.2499 61.3500 4.1166

9 Guthrie and Videbeck (2007) reveal that the intra-period correlation patterns of
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Therefore, in such models, forward prices are required to estimate the
two unobservable stochastic processes because long-maturity for-
wards provide information about the equilibrium price and the
difference between the long- and short-maturity prices includes
information about the short-term deviations. Bernard et al. (2008),
Cartea and Williams (2008), and Aiube et al. (2008) also use similar
models in analysing spot prices.

3. Seasonality

Before proposing the stochastic models for the logarithms of the
energy prices, we obtain the deterministic seasonal function in Eq. (1),
using the in-sample data. Looking at the sample autocorrelation
functions8of logarithms of electricity and gas prices, graphed in Fig. 2,
the existence of spikes at lags equal to seven (i.e., at lags 7, 14, 21, etc),
reveals a significant weekly seasonality (particularly in electricity
prices). Moreover, since the range of the in-sample data covers a
three-year period, yearly seasonality is also worth considering. The
time-series plot of the in-sample data, graphed in Fig. 4a, which shows
that the data tend to increase over the winters while they decrease
during the summers, also supports the presence of yearly seasonality.
8 Sample autocorrelation functions calculate the autocorrelations of data for
different lags and are commonly used in checking the randomness of data, detecting
seasonality, and model identification.
Consequently, the deterministic part of Eq. (1) can be specified by
a set of cosine and sine terms defined at the frequencies λj=2πj/s and
λ′j=2πj/s′ as follows (see Harvey, 1989) for more details):

f ðiÞt = ∑½s = 2�
j = 1 γðiÞ

1j cosλjt + γ⁎ðiÞ
1j sinλjt

� �
+ ∑½s′ = 2�

j = 1 γðiÞ
2j cosλ

′
j t + γ⁎ðiÞ

2j sinλ′j t
� �

; t = 1;2;…;n;
ð2Þ

where ia{E,G}, the function [a/2] for any aaZ is defined as

½a= 2� = a = 2 for a even
ða−1Þ= 2 for a odd

;

�
ð3Þ

s=7, s′=365, and {γ1j
(i)
, γ1j⁎

(i)
, γ2j

(i)
, γ2j⁎

(i)
} are the unknown coefficients

that are to be estimated via applying linear regression to the data, a
method similar to the one in Maribu et al. (2007). Fig. 3 displays the
sample autocorrelation function of the log prices after removing the
seasonality. Clearly, no more weekly seasonality exists in these new
data. Looking at Fig. 4b, logarithms of electricity and gas spot prices
over the in-sample period after removing the seasonality, it is re-
vealed that the yearly seasonality is also well captured because no
more annual upward or downward trend is observed.

4. Stochastic linear models

After capturing the seasonality, four linear stochastic models are
proposed for the logarithms of prices9:

Model (1) Mean reversion for both electricity and gas (MR–MR)

dXE
t = κE λE−XE

t

� �
dt + σEdW

E
t ð4Þ

dXG
t = κG λG−XG

t

� �
dt + σGdW

G
t ð5Þ

where dWt
E and dWt

G are correlated increments of standard
Brownian motion processes with E(dWt

EdWt
G)=ρdt10.
electricity prices cannot be captured by standard financial models of spot prices.
Although we do not have time-dependent correlation parameters, by calculating the
intra-week and intra-month correlations, no specific patterns were found in our
electricity spot prices.
10 For simplicity, we consider only instantaneous correlation between electricity and
gas prices rather than lag/lead correlations.



Fig. 2. The sample auto-correlation functions of logarithms of electricity (a) and gas (b) before removing the seasonality.

Fig. 3. The sample auto-correlation functions of logarithms of electricity (a) and gas (b) after removing weekly and yearly seasonality.

Fig. 4. Logarithms of the UK electricity and gas spot prices (in-sample data), before (a) and after (b) removing the seasonality.
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Table 3
RMSE of the models.

Model (1) Model (2) Model (3) Model (4)

RMSE 0.1138 0.1187 0.1221 0.1187
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Model (2) Arithmetic Brownian motion for electricity and mean
reversion for gas (ABM–MR)

dXE
t = μEdt + σEdW

E
t ð6Þ

dXG
t = κG λG−XG

t

� �
dt + σGdW

G
t ð7Þ

Model (3) Geometric Brownian motion for both electricity and gas
(GBM–GBM)

dXE
t = μEX

E
t dt + σEX

E
t dW

E
t ð8Þ

dXG
t = μGX

G
t dt + σGX

G
t dW

G
t ð9Þ

Model (4) Geometric Brownian motion for electricity and mean
reversion for gas (GBM–MR)

dXE
t = μEX

E
t dt + σEX

E
t dW

E
t ð10Þ

dXG
t = κG λG−XG

t

� �
dt + σGdW

G
t ð11Þ

4.1. Estimation

Writing the discrete-time approximation of the processes based on
stochastic differential Eqs. (4) to (11) with time steps of length
Δt=1/365, i.e., one day, we can apply multivariate normal regression
to estimate the unknown parameters of the models. For example the
discrete-time approximation of model (1), Eqs. (4) and (5), can be
written as

ΔXE
t

ΔXG
t

" #
=

−κEΔtX
E
t−1

−κGΔtX
G
t−1

" #
+ κEλEΔt

κGλGΔt

� �
+ Vt ð12Þ

where ΔXð:Þ
t = Xð:Þ

t −Xð:Þ
t−1, and Vt(2×1) is normally distributed with a

mean of zero and the covariance matrix ν,

ν =
σ2
EΔt σEσGΔtρ

σEσGΔtρ σ2
GΔt

" #
: ð13Þ

The in-sample data, which include observations from 27 March
2001 to 26 March 2004, are then used to estimate the unknown
parameters of the four linear models. The results are reported in
Table 2, and the models will be compared in the next subsection. In
Appendix A, we show that the residuals are approximately normal
with a mean of zero and a roughly constant variance.

4.2. Comparison

In order to find the best model among these four, both the
goodness-of-fit and the out-of-sample forecasting performance of
Table 2
Estimation using multivariate normal regression.

Parameters Model (1) Model (2) Model (3) Model (4)

Electricity σE 2.3761 2.5669 0.9008 0.9008
μE 0.0152 0.4082 0.4082
κE 106.9175
λE 2.8159
ρ 0.2086 0.1773 0.1542 0.1735

Gas σG 1.9700 1.9675 1.1882 1.9675
μG 0.6643
κG 43.6338 35.5522 35.5696
λG 1.7832 1.7828 1.7828
each model are then compared. The measurements used for com-
parison are the root-mean-square error (RMSE) for the former ob-
jective and the expected root-mean-square error (ERMSE) over the
out-of-sample period for the latter one.

The RMSE value of each model is:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2n

∑
n

t=1
ðyt−ŷtÞ′ðyt−ŷtÞ

s
ð14Þ

where yt is a vector consisting of logarithms of observed energy prices
at time t, ŷt refers to its predicted value, and n=1095 is the total
number of observations over the in-sample period. The results
indicate that mean reversion for both electricity and gas spot prices,
model (1), with the lowest RMSE of 0.1138 is regarded as the best-
fitted model (see Table 3).

As mentioned before, our data set is divided into two subsets: the
in-sample and the out-of-sample periods. After estimating the
unknown parameters of models of interest using the in-sample
period we calculate the r-step ahead expected values of the log prices
over the out-of-sample period (from 27/03/04 to 31/12/06). In order
to evaluate the forecasting performance of each model, we then find
the ERMSE of the models for different values of r (from 1 to 365 days)
as follows,

ERMSEðrÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2ðT−r + 1Þ ∑

n + T

t=n + r
yt−ŷðt j t−rÞ

� �
′ yt−ŷðt j t−rÞ
� �s

ð15Þ

where the vector yt includes the logarithms of observed electricity and
gas spot prices at time t, the vector ŷt|t–r consists of their predictions
given information at time t−r, and T, the total number of observations
over the out-of-sample period, which has the value of 1010. The
results, presented in Fig. 5, also reveal that model (1) outperforms
other linear models in terms of long-term forecasting. One sample
path from each model, for both electricity and gas, is also graphed in
Figs. 6 and 7. These simulations also indicate that mean-reverting
models are more appropriate for the logarithms of electricity and gas
prices, although they are not powerful enough in capturing the spikes
Fig. 5. The expected root-mean-square error.



Fig. 6. Simulation of electricity spot prices over the in-sample period.

Fig. 7. Simulation of gas spot prices over the in-sample period.
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of electricity prices. Based on all these comparison methods, thus, the
first model, MR–MR, is picked as the best linear model and will be
used when considering non-linearity in the following section.
Stationarity is also confirmed by running augmented Dickey–Fuller
(ADF) unit root test for MR–MR (see Dickey and Fuller, 1979 for more
details). The ADF test strongly rejects the null hypothesis of a unit root
in the time series with a very small p-value of less than 0.001.11
11 The t-statistics for logarithms of electricity and gas prices, based on model MRMR,
are −13.5093 and −7.5401, respectively, while the critical value associated with the
sample size 1095 for a significance level of 0.001 is −4.981 (Hamilton, 1994).
5. Non-linear stochastic models

In terms of the recent spikes and stochastic volatility in UK energy
spot prices, Markov regime-switching approaches and a mean-
reverting stochastic volatility model may be more appropriate for
forecasting and valuing investments than the simple linear models of
Section 4. Towards that end, we explore two such non-linear models
in this section.

5.1. Markov regime-switching (MRS) approaches

The idea behind modelling regime-switching commodity prices is
to distinguish between two independent regimes: the stable regime



Table 4
Estimation of probabilities.

Parameter p q П0

Estimation 0.9804 0.4689 0.0001

Table 5
Estimation using Hamilton-switching-regime algorithm.

Electricity Gas
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and the spike regime (Hamilton, 1989). Kosater and Mosler (2006),
using German hourly electricity spot prices over four years, consider
two variants for a two-regime model: one with a stable regime and a
spike regime and one with a stable regime and a modified spike
regime. In the latter one, it distinguishes between high spikes and
low spikes as typical of very high demands over working days and
very low demands over weekends and holidays. Karakatsani and
Bunn (2008), analysing UK half-hourly electricity spot prices over
the first year after the introduction of NETA, also suggests the
presence of two, or sometimes three, regimes in the most volatile
trading periods.12

Motivated by this work onmodelling electricity prices, we propose
a multivariate model with two regimes for the logarithms of
correlated electricity and gas spot prices. Let St denote the unobserv-
able regime parameter at time t, i.e.,

St =
0 stable regime
1 spike regime

�
ð16Þ

where the transition between two regimes is governed by a first-order
Markov process:

Prob ½St = 0 jSt−1 = 0� = p;
Prob½St = 1 jSt−1 = 0� = 1−p;

Prob½St = 1 jSt−1 = 1� = q;

Prob½St = 0 jSt−1 = 1� = 1−q:

ð17Þ

We assume that the stochastic part of the logarithms of electricity
and gas spot prices in Eq. (1) is split into two factors as follows,

XE
t

XG
t

" #
=

αðStÞ
E

αðStÞ
G

2
4

3
5 +

ZEðSt Þ
t

ZGðSt Þ
t

" #
ð18Þ

where the superscript St, hereafter, denotes the regime state, the first
term on the right-hand side is a vector containing the long-term
equilibrium levels for the log prices, and the second term consists of
two correlatedmean-reverting processes, following from the previous
analysis on our data set,

dZEðStÞ
t

dZGðStÞ
t

" #
=

−κðSt ÞE ZEðSt Þ
t dt

−κðSt ÞG ZGðSt Þ
t dt

2
4

3
5 +

σðSt Þ
E dWE

t

σðSt Þ
G dWG

t

2
4

3
5; ð19Þ

where EðdWE
t dW

G
t Þ = ρdt. The discrete-time approximation of the

process based on this stochastic differential equation with time steps
of length Δt=1/365 (one day) can be written as follows:

ZEðSt Þ
t

ZGðSt Þ
t

" #
=

1−κðStÞE Δt
� �

ZEðSt−1Þ
t−1

1−κðStÞG Δt
� �

ZGðSt−1Þ
t−1

2
64

3
75 +

σðSt Þ
E ΔWE

t

σðSt Þ
G ΔWG

t

2
4

3
5: ð20Þ

In order to apply the Hamilton-filter algorithm, Eqs. (18) and (20)
should now be combined into one equation,

XEðSt Þ
t

XGðSt Þ
t

" #
=

αðSt Þ
E

αðSt Þ
G

2
4

3
5 +

ϕðSt Þ
E XEðSt−1Þ

t−1 −αðSt−1Þ
E

� �
ϕðSt Þ
G XGðSt−1Þ

t−1 −αðSt−1Þ
G

� �
2
64

3
75 + VðSt Þ

t ð21Þ

where

ϕðSt Þ
E = 1−κðStÞE Δt; ð22Þ

ϕðSt Þ
G = 1−κðStÞG Δt; ð23Þ
12 In Karakatsani and Bunn (2008), each day consists of 48 trading periods, and a
total number of 300 days for each period are analysed.
and Vt
(S

t
) (2×1) given St, is normally distributed with mean of zero

and the covariance matrix

νðSt Þ =
σ2ðStÞ
E Δt σðSt Þ

E σðSt Þ
G Δtρ

σðSt Þ
E σðSt Þ

G Δtρ σ2ðSt Þ
G Δt

2
4

3
5: ð24Þ

In Appendix B, we show how we can estimate the unknown
parameters using the Hamilton filter for this multivariate condition-
ally normal distribution (see Eq. (21)).

Fig. 4b shows that, after removing the seasonality, no unexpected
spikes are observed in the logarithms of gas spot prices over the in-
sample data. Thus, we are no longer interested in capturing the spikes
in gas prices. In this model, which is defined as MRRS, we assume that
logarithms of gas prices follow a simple linear mean-reverting model
with only one regime, while the logarithms of electricity prices are
mean-reverting processes with two separate regimes, the spike
regime and the stable regime.

Parameter estimates are reported in Tables 4 and 5. As we expected,
the probability of remaining in the same state for the stable regime
(0.9804) is very high in comparisonwith that value for the spike regime
(0.4689), which is relatively small. Another probability reported in
Table 4 is the initial conditional probability П0=Prob[S0=1|Y0] (see
Appendix B for more details) that is extremely small and indicates that
the process at time zero given all available informationwould be almost
certainly in the stable regime. The estimates of parameters of gas prices
are similar to thoseof themean-revertingmodel in theprevious section;
moreover, the estimates of parameters of electricity prices in stable
regime are also very close to those in model (1).

A sample path drawn from this non-linear model along with the
actual data over the in-sample period is graphed in Fig. 8. Comparing
these simulations with those drawn from the linear mean-reverting
model (graphed in Figs. 6 and7), it canbe seen that although the regime-
switchingmodel is not able to capture the high electricity price spikes, it
behaves better than the simple linear model in predicting low spikes.

5.2. Mean-reverting stochastic volatility

In order to improve theunrealistic assumptionof constant volatility in
model (1), here mean-reverting models with stochastic volatility driven
by a mean-reverting process are posited. We define a mean reversion
with stochastic volatility for the logarithmof the electricity price and two
variants for the logarithm of the gas price: one with deterministic
volatility (MRSV1) and one with stochastic volatility (MRSV2).

In Eq. (4), we assume that the variance, σE, is a function of unob-
servable stochastic variable Zt:

dXE
t = κE λE−XE

t

� �
dt + σ ZE

t

� �
dWE

t ð25Þ

where Zt
E is another mean-reverting process independent of Xt

E:

dZE
t = −κeZ

E
t dt + σedW

e
t ð26Þ
Parameter α σ κ α σ κ ρ

Stable 2.8117 2.0404 100.6824 1.7837 1.9716 44.1133 0.2231
Spike 2.9680 6.2511 132.8057



Fig. 8. Simulation of electricity (a) and gas (b) spot prices over the in-sample period.

Table 6
Estimation: parameters of the unobservable stochastic volatility.

Model κZE σZ
E κZG σZ

G ρeg

MRSV1 300.0020 9.2368 – – –

MRSV2 297.6075 11.0237 80.8329 4.0804 0.1881
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In this paper, we assume that σ(ZtE)=γEe
ZtE (and σ(ZtG)=γGe

ZtG for
model MRSV2). Notice that in model MRSV1, the natural gas price is
given by the same mean-reverting process in Eq. (5).

5.2.1. Estimating the unobservable stochastic volatility
Since the volatility variable, ZtE, in Eq. (25) is not observable, a tool

from spatial statistics, the variogram, is used to estimate the unknown
parameters in Eq. (26) (Fouque et al., 2000).

5.2.1.1. Variogram analysis. Based on the stochastic volatility model,
Eq. (25), the normalised fluctuation of the data

DE
t =

ΔXE
tffiffiffiffiffiffi

Δt
p

XE
t−1

ð27Þ

can be written as

DE
t = κE

λE

XE
t
−1

� 	 ffiffiffiffiffiffi
Δt

p
+

σ ZE
t

� �
ΔWE

t

XE
t−1

ffiffiffiffiffiffi
Δt

p ð28Þ

The first term on the right-hand side is omitted, because it is
negligibly small for small values of Δt (Fouque et al., 2000). The
normalised fluctuation process, thus, is modelled as

DE
n =

σ ZE
n

� �
�En

XE
n−1

ð29Þ

where {�n} is a sequence of IID standard normal random variables
with mean 0 and variance 1 representing ΔWE

t =
ffiffiffiffiffiffi
Δt

p
. Eq. (29) shows

that the normalised increment, Dn′E, is modelled as

D′E
n =

ΔXE
nffiffiffiffiffiffi

Δt
p = DE

nX
E
n−1 = σðZE

nÞ�En ð30Þ

As suggested in Fouque et al. (2000), we will analyse the log
absolute value of the normalised increments Ln, where

LEn = log jD′E
n j = logðσðZnÞÞ + log j�En j ð31Þ
Fouque et al. (2000) proves that the empirical variogram of LnE defined
as

VE
j =

1
Nj

∑
Nj

n=1
LEn+ j−LEn

� �2
; ð32Þ

where j is the lag andNj is the total number of points, is an estimator of

γE
j = 2c2 + σ2

e = κe 1−e−jκeΔt
� �

; ð33Þ

where c2=Var(log|ε|). Using the in-sample data, the quantities Ln
(n=1,2,…,1094) and the empirical variograms are calculated. Finally,
the approximate estimations of the unknown parameters of the
unobservable stochastic volatility are computed and reported in
Table 6 (see Appendix C for more details).

If both the volatilities of logarithms of electricity and gas prices are
assumed to be stochastic (MRSV2), i.e.,

dXE
t = κE λE−XE

t

� �
dt + σ ZE

t

� �
dWE

t ; ð34Þ

dXG
t = κG λG−XG

t

� �
dt + σ ZG

t

� �
dWG

t ; ð35Þ

where,

dZE
t = −κeZ

E
t dt + σedW

e
t ; ð36Þ

dZG
t = −κgZ

G
t dt + σgdW

g
t ; ð37Þ

with E(dWt
edWt

g)=ρegdt, then in order to take into account the
available correlation between these stochastic volatilities, we propose
a new model based on the empirical cross-variogram of {LnE} and {LnG}



Table 7
Estimation using mean-reverting stochastic volatility.

Parameters MRSV1 MRSV2

Electricity κE 106.2640 106.0204
λE 2.8168 2.8175
γE 3.0328 3.3811
E0 3.1407 3.1400
ρ 0.1822 0.1696

Gas σG 1.9680
κG 41.8085 41.2205
λG 1.7834 1.7825
γG 2.1084
G0 2.2000 2.1994

13 In case of using forward prices, risk-neutral pricing (Cox and Ross, 1976) can be
used instead because the risk is directly taken into account in forward prices rather
than in the net cash flow discount rate.
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(defined in Chilés and Delfiner, 1999), instead of their separated
empirical variograms, as follows:

VEG
j =

1
Nj

∑
Nj

n=1
LEn + j−LEn

� �
LGn + j−LGn

� �
ð38Þ

where

LGn = log jD0G
n j = log σ ZG

n

� �� �
+ log j�Gn j ð39Þ

Using the same method as in Fouque et al. (2000), in Appendix D,
we prove that this empirical cross-variogram is an estimator of

γEG
j =

ρegσeσg

κeκg
2−e−κejΔt−e−κg jΔt

� �
+ 2cov log j�Ej; log j�Gj� �

ð40Þ

The estimated parameters using the in-sample data (reported in
Table 6) show that the stochastic volatility of the logarithm of the
electricity price has a high rate of mean reversion, i.e., it is nearly four
times that of the stochastic volatility of the logarithm of the gas price
in model MRSV2. The positive correlation between the stochastic
volatilities of electricity and gas prices indicates that any increase
(decrease) in the volatility of the electricity price is associated with an
increase (decrease) in the volatility of the gas price.

5.2.2. Estimating the main model
We can now, after estimating the stochastic volatility process,

estimate the main model of the energy prices. The discrete-time
approximation of the stochastic differential Eqs. (5), (25), and (26)
with time steps of length Δt then can be written as

Xt =
ð1−κEΔtÞXE

t−1

ð1−κGΔtÞXG
t−1

" #
+ κEλEΔt

κGλGΔt

� �
+ VtðZtÞ ð41Þ

where

Xt =
XE
t

XG
t

" #
; ð42Þ

Vt(Zt) given Zt is multivariate normally distributed with zero mean
and the covariance matrix ν, where

ν =
σEðZtÞ2Δt σEðZtÞσGΔtρ

σEðZtÞσGΔtρ σ2
GΔt

" #
: ð43Þ

It follows that Xt given {Xt−1,Zt} is multivariate normally
distributed with mean

μ =
ð1−κEΔtÞXE

t−1 + κEλEΔt

ð1−κGΔtÞXG
t−1 + κGλGΔt

" #
ð44Þ

and the covariance matrix ν, indicated in Eq. (43). The likelihood
function of this process, which can be written as follows:

LðΘÞ = ∑
n

t=1
f ðxt jxt−1; zt ;ΘÞ ð45Þ

depends on unobservable stochastic variables Zt. Hence, it is not
possible to maximise it with respect to the unknown parameters Θ=
{κE, λE, γE, κG, λG, σG} because of presence of unknown variables Zt.

On the other hand, since we have estimated the mean-reverting
process of the stochastic variables Zt, drawing N sample paths {zt(1),
zt
(2),…,zt(N)} from the distribution {f(zt|zt−1);t=1,…,n} starting with
an initial value z0, we can calculate the estimated likelihood function,
L ̂(Θ), as follows:

L̂ðΘÞ = 1
N

∑
N

i=1
∑
n

t=1
f ðxt jxt−1; z

ðiÞ
t ;ΘÞ; ð46Þ

which no longer depends on zt, and can be estimated numerically.
Estimates are reported in Table 7 and indicate that the parameters of the
main models, such as κE, λE, κG, and λG, in both MRSV1 and MRSV2 are
very close to those in the linear mean-reverting model (Table 2).
However, the correlation between electricity and gas has decreased,
specifically in model MRSV2, which is likely due to the introduction of a
new correlation between their volatilities. Figs. 9 and 10 display some
sample paths from models MRSV1 and MRSV2 over the in-sample data
set, respectively. It is observed that thesemodels aremore able to capture
even very high spikes than both models MR and MRRS. Simulations
drawn frommodelMRSV2 reveal that high spikes in electricity prices are
coincident with high spikes in gas prices, while in model MRSV1 high
spikes of electricity may occur with low or no spikes in gas prices.

6. Valuing the gas-fired power plant over the
out-of-sample period

The four stochastic models that will be assessed on the basis of
valuing a gas-fired power plant are redefined here:

– Mean reversion for both logarithmsof electricity and gas prices (MR)
– Mean reversion with Markov regime switching for the logarithm

of the electricity price and simple linear mean reversion for the
logarithm of the gas price (MRRS)

– Mean reversion with stochastic volatility for the logarithm of the
electricity price and deterministic volatility for the logarithm of
the gas price (MRSV1)

– Mean reversion with stochastic volatility for both logarithms of
electricity and gas prices (MRSV2)

6.1. Assumptions

We assume that the gas-fired power plant produces electricity
with a constant capacity of 100 MWe. The value of the plant depends
only on the spark spread each day, and it can be switched on and off
depending on its profitability in a particular day. The total number of
daily running hours is twenty-four with an operating heat rate, �, of
2.5 (MWh/MWhe). We use a constant risk-adjusted annual interest
rate r=0.06,13 which results in a daily interest rate of d=0.0002. The
profit of the power plant without operational flexibility each day is

Pt = H × KðEt−�GtÞ ð47Þ



Fig. 10. Simulation of electricity (a) and gas (b) spot prices over the in-sample period via model MRSV2.

Fig. 9. Simulation of electricity (a) and gas (b) spot prices over the in-sample period via model MRSV1.
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which may be negative, while the profit of the plant with operational
flexibility as in the following equation would never be negative:

Pt =
H × KðEt− GtÞ if Et−�Gt N 0
0 if Et−�Gt≤0

�
ð48Þ

where H, �, and K denote, respectively, the daily operating hours, the
heat rate, and the capacity of the plant.

Using this profit function, the present value (PV) of the power
plant with and without the flexibility over the out-of-sample period
can be calculated via the following equation14:

PV = Pn + 1 +
Pn + 2

ðd + 1Þ +
Pn + 3

ðd + 1Þ2 + … +
Pn + T

ðd + 1ÞT ð49Þ

The expected PV for the linear model can be calculated directly by
computing the expected price at time t (from n+1 to n+T); how-
ever, it is not possible to calculate it for the non-linear models using
14 Since the in-sample period includes n observations, the out-of-sample period
starts from the (n+1)st observation.
the analytical formula. In order to have more consistent results, we
use Monte Carlo simulation for both linear and non-linear models. A
total of N sample paths are drawn from each model, {ỹn+1

(j) , ỹn+2
(j) ,…,

ỹn+ T
(j) ; j=1,…, N}. The expected value of the power plant can then be

calculated by starting at the last date n+T and working backward to
the initial time, step by step. The only profit the plant will receive at
time n+T is Pn+ T (Deng et al., 2001), which helps us to find the
expected value of the plant at time n+T−1,

E PV ð jÞ
n + T−1

� �
= Pð jÞ

n + T−1 +
E PV ð jÞ

n + T

� �
ðd + 1Þ = Pð jÞ

n + T−1 +
Pð jÞ
n + T

ðd + 1Þ ð50Þ

where the superscript j denotes the sample path. This new infor-
mation is used to calculate the expected value of the plant at time
n+T−2 and is worked backward successively until the initial time
period (n+1) using recursive Eq. (50):

E PV ðjÞ
n + 1

h i
= ∑

T

i=1

PðjÞ
n + i

ð1 + dÞi−1 ð51Þ



Table 8
ERMSE over the out-of-sample period.

MR MRRS MRSV1 MRSV2

ERMSE 0.4264 0.4298 0.4570 0.4911

Fig. 11. Simulation of electricity spot prices over the out-of-sample period (two years
and forty weeks).

Fig. 12. Simulation of gas spot prices over the out-of-sample period (two years and forty
weeks).
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Finally, the expectedvalueof theplant canbeestimatedbycalculating
the mean of the expected values of the plant for all sample paths:

P̂V =
1
N

∑
N

j=1
E PV ðjÞ

n + 1

� �
ð52Þ

6.2. Forecasting comparison

Before assessing the proposed models with regard to their abilities
in valuing the gas-fired power plant, we calculate their ERMSEs over
the out-of-sample period. For this, we first simulate N sample paths of
the out-of-sample price forecasts, {ỹn+1

(j) , ỹn+2
(j) ,…, ỹn+ T

(j) ; j=1,…,N},
from each model and then calculate the ERMSE value as follows:

ERMSE =
1
N

∑
N

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2T

∑
n + T

t=n + 1
yt−y~

ð jÞ
t

� �
′ yt−y~

ð jÞ
t

� �s
ð53Þ

The results reported in Table 8 reveal that the linear model, mean
reversion without capturing either the spikes or stochastic volatility,
has the best forecasting performance15 among the others. As this
model is also the simplest one, most decision-makers apply it in
analysing investments.

On the other hand, simulations of electricity and gas spot prices for
these four models, graphed in Figs. 11 and 12, reveal that although the
linearmodel canbe considered a goodmodel for short-termperiods, i.e.,
less than a year, it is theworst one for long-term forecasting.Meanwhile
themean-reversionmodelwith stochastic volatility for both logarithms
of electricity and gas prices is better able to capture the behaviour of
prices, specifically electricity prices, with respect to long-term forecasts.

The actual PV of the gas-fired power plant with and without flex-
ibility over the out-of-sample period is £10.423 million and
£6.992 million, respectively (see Tables 9 and 10 for the expected
PVs). Contrary to our expectations from the previous comparison based
on prices forecasts, the simple linear model provides the least accurate
expected value of theplantwith andwithoutflexibility becausewehave
seen before that this model is not able to capture the spikes, specifically
in electricity prices. Similarly, since the regime-switching model is not
able to capture high spikes of electricity prices, it also underestimates
the expected PV of the plant. Themean-revertingmodelwith stochastic
volatility for both electricity and gas, on the other hand, provides the
best forecast of the PV for both situations with and without flexibility
because it is able to predict spikes with the correct frequency, although
notwith the right timing,which results in thehighvalueof the ERMSE. It
is also revealed from these results that the expected PV calculated by
eachmodel is less than the actual PV of the plant over the out-of-sample
data. This may have resulted from the fact that our in-sample data set is
less volatile than the out-of-sample data.

In order to verify the accuracy of this seemingly counterintuitive
result, we use the forecasting procedure similar to that of Kosater and
Mosler (2006). Using the first 1095 observations as the in-sample data
(see Fig. 13), we estimate the parameters of the models of interest.
Then, we make out-of-sample forecasts up to two years ahead and
calculate the out-of-sample expected PV of the plant for thosemodels,
bothwith andwithout flexibility. The ERMSEs of thesemodels are also
calculated. Next, the in-sample data are enlarged by seven observa-
tions (one week) and again forecasts and required calculations for the
new out-of-sample data (two years ahead) are made.16 This pro-
cedure is repeated forty times.

The results are plotted in Figs. 14 and 15. These results are entirely
consistent with our previous findings, i.e., the non-linear models
MRSV1 and MRSV2 are better able to capture the value of the power
15 It should be mentioned that the forecasting performance refers to the direct
energy price performance rather than the power plant valuation performance.
16 Each time we enlarge the in-sample period, the out-of-sample period contains
prices for two years ahead.
plant. We observe that before the tenth week is added to the in-
sample data, the expected PV of the power plant under the MRSV2
model is greater than that under the MRSV1 model. This occurs
because the estimated correlation coefficient between the logarithms
of the electricity and gas price processes (see Fig. 16) is lower under
the MRSV2 model during the first ten weeks and is higher from this
point onwards. Since a lower correlation coefficient results in a more
dispersed spark spread, which can be capitalised upon by operational
flexibility, the expected PV of a flexible power plant is inversely
proportional to its correlation coefficient. Hence, the expected PV of
the power plant is greater under the MRSV2 model for the first ten
weeks and then lower thereafter.

For a power plant without operational flexibility, a more dispersed
spark spread will not necessarily lead to an increase in expected PV.
Instead, we find that the expected plant PV under the MRSV1 model
eventually becomes greater than that under the MRSV2 model (see
Fig. 15) because more volatile gas prices are added to the in-sample
data from week 20 onwards, i.e., corresponding to observation 1235



Table 9
The expected PV of the gas-fired power plant with flexibility (in million £).

MR MRRS MRSV1 MRSV2

PV 6.4871 6.5052 8.2045 9.7021
95% CI (6.445,6.531) (6.461,6.550) (8.144,8.266) (9.610,9.794)

Table 10
The expected PV of the gas-fired power plant without flexibility (in million £).

MR MRRS MRSV1 MRSV2

PV 3.8044 3.8534 4.9490 5.6139
95% CI (3.733,3.876) (3.781,3.926) (4.858,5.040) (5.487,5.741)

Fig. 15. Expected PV and 95% CIs of the inflexible plant with rolling expansion of the in-
sample period.
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(see Fig. 13). Even though the eventually higher estimated correlation
coefficient under the MRSV2 model reduces the risk of losses, the
added in-sample data, nevertheless, imply higher expected natural
gas price forecasts under the MRSV2 model than the MRSV1 model,
thereby leading to a lower expected plant PV.

6.3. Sensitivity analysis

6.3.1. Heat rate
In order to determine how the results change with respect to the

heat rate, we calculate the out-of-sample (from 27 March 2004 to 31
Fig. 13. In-sample and out-of-sample periods.

Fig. 14. Expected PV and 95% CIs of the flexible plant with rolling expansion of the in-
sample period.
December 2006) expected PV of the plant with operational flexibility
for different values of heat rate (ranging from 2 to 3) with all other
factors are fixed (see Figs. 17 and 18). It is revealed that for low values
of the heat rate, both MRSV1 and MRSV2 are unlikely to capture the
exact value of the out-of-sample PV of the plant, which may result
from a low volatility of profit function. When the heat rate is very low,
it may be more beneficial to model spark spreads directly rather than
electricity and gas prices separately. Fig. 17 shows that for heat rate
values of more than 2.8, model MRSV1 forecasts the PV of the plant
with flexibility better than MRSV2 does, whereas neither MRSV1 nor
MRSV2 is able to capture the PV of the plant without flexibility when
the heat rate is larger than 2.8.

6.3.2. Stochastic volatility of electricity prices via changes in γE

Here, wewould like to see how the expected PV of the plant would
change if we modify the coefficient γE in the volatility function of
electricity prices, γEe

Z
t
E, in either MRSV1 or MRSV2. Figs. 19 and 20

illustrate that the more (less) volatile the volatility of the electricity
prices, the greater (lower) the expected plant PV. This dependence of
the expected plant PV on γE is stronger in MRSV2 than in MRSV1 due
to the presence of stochastic volatility in gas prices. Recall from
Section 2 that the expected plant PV under the MRSV2 model is
initially greater due to a lower correlation coefficient between
electricity and gas prices, which results in a more dispersed spark
Fig. 16. Estimated correlation between the logarithms of electricity and gas prices with
rolling expansion of the in-sample period.



Fig. 17. Expected PV of the plant with flexibility for different values of heat rate. Fig. 19. Expected PV of the plant with flexibility for different values of γE.
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spread under MRSV2. Since a flexible power plant is able to benefit
from such variability, its expected PV is greater. On the other hand,
considering the plant without flexibility (see Fig. 20), it is revealed
that for small values of γE, the expected PV estimated by MRSV1 is
larger than that estimated by MRSV2. This occurs because gas prices
with stochastic volatility are more likely to produce high price spikes
that will not be offset by corresponding spikes in electricity prices
when γE is low. Thus, a power plant without operational flexibility
will be at risk of losing money in such a situation.

7. Conclusions

After the liberalisation of the electricity industry, exploring the
behaviour of energy prices, such as highly unexpected spikes and
stochastic volatility, has become a main issue in energy economics in
many countries. This paper provides a comprehensive set of both
linear and non-linear multivariate models for electricity and gas
prices. A comparison study is carried out using UK electricity and gas
spot prices to evaluate the forecasting performance of the proposed
models in decision-making such as valuing a gas-fired power plant.
Fig. 18. Expected PV of the plant without flexibility for different values of heat rate.
We split our data set into two periods: the in-sample period that is
used to estimate the models of interest and the out-of-sample
period that is used to assess the forecasting performance of each
model.

We first propose four linear models for logarithms of the data based
on mean-reverting and geometric Brownian motion processes. Consis-
tent with previous studies, such as Cortazar and Schwartz (1994),
Laughton and Jacoby (1993), and Smith andMcCardle (1998), we show
that themean-revertingmodel for both logarithmsof electricity and gas
not only is the best-fit linearmodel, but also has the best out-of-sample
forecasting performance. However, due to its weakness in capturing the
high-value sudden spikes of energy prices, we then allow for three non-
linear models: a) mean reversion with Markov regime-switching with
two independent regimes (the stable regime and the spike regime), b)
mean reversion with stochastic volatility for the logarithm of the
electricity price and deterministic volatility for the logarithm of the gas
price, and c) mean reversion with stochastic volatility for both
logarithms of electricity and gas prices. We next take the viewpoint of
an investor in a gas-fired power plant with operational flexibility and
compare theabilityof linearandnon-linearmodels in valuing thepower
plant over the out-of-sample period.
Fig. 20. Expected PV of the plant without flexibility for different values of γE.
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The study suggests that the linear model provides out-of-sample
price forecasts with the lowest ERMSE in comparison to the non-
linear models because it does not forecast any spikes at all, while the
non-linear forecasts generate a large number of spikes with different
levels and on different time locations. It seems clear that the
appearance of high spikes in forecasts with correct frequency and
value, but not with right timing, may lead to large RMSEs when
compared to the historical data; however, it would result in more
accurate long-term decision-making in energy investments. Among
the non-linear models, in contrast to earlier findings (e.g., Kosater
and Mosler, 2006; Karakatsani and Bunn, 2008), the regime-switch-
ing model is unlikely to capture long-term volatile electricity price
behaviour over long-term periods. This may have resulted from
different levels of spikes in electricity prices. For example, in UK
electricity spot prices, the spikes range from about £40/MWhe to
£180/MWhe, while the equilibrium price is around £20/MWhe. This
behaviour of electricity prices is strong evidence of the presence of
stochastic volatility. Consequently, the non-linear models with
stochastic volatility for logarithms of electricity prices perform better
than both the linear and the regime-switching models in terms of
valuing a gas-fired power plant. The volatility of gas prices, on the
other hand, does not seem to be stochastic, such that the model
MRSV1 is able to capture the PV of the gas-fired power plant better
than model MRSV2 over the different two-year out-of-sample
periods (Figs. 14 and 15), although it does not provide better results
over the specific out-of-sample period ranges from 27 March 2004 to
31 December 2006 (Tables 9 and 10). Moreover, since the model
MRSV1 is simpler than MRSV2, it is chosen as the best model among
both the linear and non-linear models.
Fig. A.1. Standardised residuals of
In this study, our data set is restricted to average daily spot prices,
which may result in losing the intra-day variation in price behaviour,
e.g., the short-duration spikes may actually occur in half-hourly prices
rather than in daily ones. Analysing the intra-day data, as in
Karakatsani and Bunn (2008), would be a sensible resolution to any
possible misleading references resulted from this feature. Moreover, a
non-linear regime-switching model with time-varying parameters, a
study similar to Mount et al. (2005), may improve the weakness of
regime-switching models in capturing high-value spikes of electricity
prices. It would also be interesting if the proposedmodels in this study
could be replicated in other countries as well as for other commodity
prices to see whether theywould produce similar results. Finally, since
in a CO2-constrained environment, a gas-fired power plant has to
purchase permits for its CO2 emissions, further research regarding the
role of stochastic CO2 emissions permit prices as another source of
cost, affecting the value of the power plant, would be of great help.
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Appendix A. Diagnostic tests

Inorder toverify essential properties of the residuals, i.e., uncorrelated randomvariableswith constantmeanzeroandconstantvariance, thequantile–
quantile plot of the standardised residuals and also the residuals versus the order of observations are graphed in Figs. A.1 and A.2, which indicate that
the residuals are approximately normalwithmean of zero and a roughly constant variance (Box and Jenkins, 1976).Moreover, the chi-square goodness-
of-fit tests of the standardised residuals against the standard normal distribution reported in Table A.1 are consistent with the normality of residuals.
logarithms of electricity prices.



Fig. A.2. Standardised residuals of logarithms of gas prices.

Table A.1
Chi-square goodness-of-fit test.

Model (1) Model (2) Model (3) Model (4)

Electricity χ2a 35.5860 45.1298 47.3199 46.5964
df b 36 36 36 36
pc 0.4881 0.1415 0.0982 0.1111

Gas χ2a 49.4747 50.1140 47.8951 49.9333
df b 35 35 34 35
pc 0.0533 0.0470 0.0574 0.0487

a Chi-square statistic.
b Degrees of freedom=total number of cells — 3, cells with expected counts less than 5 are pooled to neighbouring cells.
c Almost all p values are greater than 0.05 which means that the null hypothesis of having normal residuals cannot be rejected.
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Appendix B. Hamilton filter

Here, we discuss the Hamilton-filter algorithm for a particular
multivariate time series, Eq. (18), where the second term on the right-
hand side of this equation follows an AR(1) process with normally
distributed innovations as

ZEðSt Þ
t

ZGðSt Þ
t

" #
=

ϕðSt Þ
E ZEðSt−1Þ

t−1

ϕðSt Þ
G ZGðSt−1Þ

t−1

2
4

3
5 + WðSt Þ

t ðB� 1Þ

where Wt, conditional on information available at time t, is
multivariate normally distributed with zero mean and the covariance
matrix of ∑(St),

∑ðStÞ =
σ2ðSt Þ
E σðSt Þ

E σðSt Þ
G ρ

σðSt Þ
E σðSt Þ

G ρ σ2ðStÞ
G

2
4

3
5 ðB� 2Þ

which is dependent on the regime state.
In order to apply the Hamilton filter, we need to combine Eqs. (18)

and (B-1) into a single equation:

Yt =
αðStÞ

E

αðStÞ
G

2
4

3
5 +

ϕðSt Þ
E 0

0 ϕðSt Þ
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2
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3
5 Yt−1−

αðSt−1Þ
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αðSt−1Þ
G

2
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3
5

0
@

1
A + WðSt Þ

t ; ðB� 3Þ
where

Yt =
XEðSt Þ
t

XGðSt Þ
t

" #
ðB� 4Þ

Hence, Yt, given {St=st, St−1=st−1, Yt−1=yt−1}, is multivariate
normally distributed with the probability density function

f ðYt jSt = st ; St−1 = st−1;Yt−1 = yt−1Þ

=
1

2π j∑ðst Þ j exp
−1
2

ðYt−μt

� 	
′∑ðstÞ−2ðyt−μtÞÞ

ðB� 5Þ

where,

μt =
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and ∑(S
t
) is defined in Eq. (B-2).

Lemma 1. Using graph theory, we show that St is independent of
{Yt−1, …, Y0} given St−1, i.e., St⊥ {Yt−1,…,Y0}|St−1.



18 The choice of k is an important practical consideration, which is suggested by
Journel and Huijbregts (1978) as follows: assume that J=max{j:NjN0} denote the
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To make it easy, assume that t=2; the result will be extended for
each t≥2. The directed acyclic graph (DAG) of this relationship is
represented as:

To determine the accuracy of S2⊥{Y1,Y0}|S1, after dropping all
nodes that are neither included in (S1,S2,Y0,Y1) nor ancestors17 of
nodes in (S1,S2, Y0,Y1), we convert the remaining DAG to a conditional
independence graph:

Using the global Markov property, since S1 blocks all paths be-
tween S2 and {Y1,Y0}, we can claim that S2⊥{Y1,Y0}|S1.

Wemust now calculate the conditional log likelihood function, l(Θ),
and then maximise it with respect to the unknown parameters, Θ.

lðΘÞ = logðf ðYT ;…;Y1 jY0;ΘÞÞ; ðB� 7Þ

where Θ={p, q, αE
(0)

, αE
(1)

, αG
(0)

, αG
(1)

ϕE
(0)

, ϕE
(1)

, ϕG
(0)

, ϕG
(1)

σE
(0)

, σE
(1)

, σG
(0)

,
σG

(1)
, ρ}.
Although calculating the maximum likelihood estimates of these

large numbers of unknown parameters is analytically impossible,
we may find them numerically. We can rewrite the conditional log
likelihood function l(Θ) as

lðΘÞ = log ðf ðYT ;…;Y1 jY0;ΘÞÞ = ∑T
t = 1 logðf ðYt jYt−1;…;Y0ÞÞ

= ∑T
t = 1 log∑

1
st = 0∑

1
st−1 = 0 f ðYt ; St = st ; St−1 = st−1 jYt−1;…;Y0Þ

= ∑T
t = 1 log∑

1
st = 0∑

1
st−1 = 0 f ðYt jSt = st ; St−1 = st−1;Yt−1;…;Y0Þ

× Prob½St = st ; St−1 = st−1 jYt−1;…;Y0�

ðB� 8Þ

where,

Prob ½St = st ; St−1 = st−1 jYt−1;…;Y0�
= Prob½St = st jSt−1 = st−1;Yt−1;…;Y0�

× Prob½St−1 = st−1 jYt−1;…;Y0�
= Prob½St = st jSt−1 = st−1� ðUsing Lemma 1Þ

× ∑1
st−2 = 0Prob½St−1 = st−1; St−2 = st−2 jYt−1;…;Y0�

ðB� 9Þ

is a recursive equation, which can be calculated for all t (from 2 to T),
with the initial values of Prob[S1=s1, S0=s0|Y0] (for s1,s2=0,1),
which is simply computable via the following equations together with
the initial assumption of П0=Prob[S0=1|Y0].

Prob ½St = 0; St−1 = 0� = pð1−Π0Þ;
Prob½St = 1; St−1 = 0� = ð1−pÞð1−Π0Þ;
Prob½St = 1; St−1 = 1� = qΠ0;

Prob½St = 0; St−1 = 1� = ð1−qÞÞΠ0:

ðB� 10Þ
17 Ancestors of a node are all the upstream nodes (i.e., we can get from ancestors to
the node by following the arrows).
Substituting Eqs. (B-5) and (B-9) into Eq. (B-8), we are able to
calculate the likelihood function, l(Θ), numerically.

Appendix C. Fitting the variogram

In order to estimate the unknown parameters in Eq. (33), we need
to minimize the square error function S(Θ) with regard to the
unknown parameters Θ={c,κe,σe}, where

SðΘÞ = ∑
k

j=1
ðγE

j ðΘÞ−VE
j Þ2 ðC� 1Þ

where, k18 is the total number of empirical variograms which are
considered in the fit. In theory, it would be possible to find these least-
square error estimates; however, the presence of the local minimum
makes it difficult to find the global minimum. Thus, we first need to
guess the most appropriate initial parameters and then find the least-
square error estimates.

As described so far (see Eq. (31)), the normalised increments of the
data, LnE, can be written as

LEn = ZE
n + logðγEÞ + log j�En j ðC� 2Þ

where the stochastic variable Zn
E is a mean-reverting process as

follows

ZE
n = ð1−κeΔtÞZE

n−1 + σeΔW
e
n ðC� 3Þ

Combining these two equations, we get

LEn = ϕeL
E
n−1 + αe + ηe

n ðC� 4Þ

where

ϕe = 1−κeΔt; ðC� 5Þ

αe = ð1−ϕeÞðlogðγEÞ−0:63Þ; ðC� 6Þ

and

ηe
n = 0:63ð1−ϕeÞ−ϕe log j�En−1 j + log j E

n j + σeΔW
e
n ðC� 7Þ

is a random variable with approximate mean and variance of 0 and
0.23(1+ϕ2)+σ2Δt, respectively.19

Rewriting Eq. (C-4) in its expectation form, we have

E LEn jLEn−1

� �
= ϕeL

E
n−1 + αe ðC� 8Þ

which is a linear function and can be estimated using the least-square
error method. These parameter estimates are then used as the initial
parameters in minimising Eq. (C-1).

Appendix D. Cross-variogram: Derivation of Eq. (40)

We proceed by first rewriting Eqs. (36) and (37) as follows:

ZE
t = e−κetzE0 + ∫

t

0

e−κeðt−sÞσedW
e
s ðD� 1Þ
19 Using simulating, the approximately calculated mean and variance of log|εnE| are
−0.63 and 0.23, respectively.

largest possible lag to be considered in the fit; then fit only up to lags j for which
NjN30 and 0bk≤ J/2.
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Then we find:
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Similarly,
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We can now calculate the following:
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We assumed that random variables {ZjE, ZjG} and {�jE, �jG} for all
possible values of j are independent.
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