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Executive Summary 

The rise of Advanced Metering Infrastructure has enabled large volumes of electricity 
consumption data to be captured at an hourly frequency or even higher. A thread of research has 
demonstrated methods for coupling this fast growing data stream with data mining techniques 
such as cluster analysis for categorization of electricity load patterns. In past research on 
residential customers, such categorization has usually been conducted on aggregated load data, 
partly due to large variability exhibited within and across customers. However, in the context of 
demand response and efficiency programs, load patterns of individual customers and their daily 
and inter-daily variability directly relate to each customer’s ability to respond to program 
incentives.  

This document is a technical memorandum of application of an innovative clustering technique 
to individual customers’ daily load data resolved at the hourly level across a large sample of 
residential customers over a full year period. An additional innovation of our work is that we 
focus our analysis on the timing of discretionary1 electricity usage in particular, as opposed to 
total electricity use. We document the innovations and hyperparameter selection in the clustering 
process specific to our residential smart meter dataset and derive a diverse set of archetypical 
discretionary loadshapes.  

While typically utilities and system operators focus on the aggregate residential load shape, 
application of this improved clustering method will shed light on the considerable heterogeneity 
and variability across days and customers. In the future, more behavioral features associated with 
household consumption schedules and variability can be extracted based on our results and can 
be used in future studies to segment customers for better program targeting and designing 
tailored recruitment strategies. 

  

                                                 
1 We further define what we mean by “discretionary” later in the paper. In essence it is the usage above the daily minimum 

hourly usage, which is used as a proxy for the house’s base load energy consumption. 
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1 Introduction 

With the rise of Advanced Metering Infrastructure (AMI) in the past decade, large volumes of 
electricity consumption data can now be captured, stored and reported at 5 to 60-minute 
intervals. Such high-resolution consumption data can provide both utilities and customers with 
new insights on end-use and behavioral patterns, facilitating load planning and forecasting, 
demand response management, time-of-use tariff design, and electricity settlement (Moslehi and 
Kumar 2010; Farhangi 2010; Hong 2011; Zhou et al. 2013). This fast growing stream of data, 
coupled with innovative data analytics, holds the potential to change the landscape of the 
traditional electric utility industry by supporting intelligent power grids and smart energy 
management (Zhou et al. 2016).   

Research using data mining techniques has started to emerge in order to segment customers 
based on daily patterns of hourly electricity consumption. This is referred to as “load profiling” 
or “load profile classes” (e.g. Wang 2015; McLoughlin 2015). As reviewed in Chicco (2012), a 
number of clustering techniques, such as k-means, follow the leader, self-organizing maps, etc., 
have been applied to whole-building load data to construct load profiles for non-residential 
(industrial and commercial) customers.  

For residential customers, load profile classes are usually constructed based on aggregating the 
consumption patterns (e.g. using seasonal averages in Rhodes et al. 2014). As Chicco (2012) 
points out, residential customers are generally not treated as individual entities when conducting 
load pattern categorization because: (1) individual consumption patterns vary widely and are 
unpredictable, and (2) system feeders, the focus of demand characterization and prediction for 
utilities, supply aggregated loads. However, in the context of demand response (DR) and 
efficiency programs, individual load patterns directly relate to each customer’s ability to respond 
to program incentives. For example, household activity levels during the system peak are 
relevant for their demand response potential, and the variability of daily load patterns over time 
may reflect the flexibility in household consumption schedules. By clustering individual load 
data, Kwac et al. (2014) found that although two homes might have the same average profiles, 
the “information entropy,” or diversity of the two homes’ load profiles from one day to the next, 
could vary significantly (e.g., one home could vary energy use patterns day to day, while the 
other home may have a more set usage pattern). McLoughlin et al. (2015) differentiated 
customer profile classes by their day-to-day usage patterns. This type of understanding of load 
patterns and their determinants at the level of individual residential customers could potentially 
lead to more effective program targeting and engagement, more precise prediction of demand 
response potential, more realistic grid planning, and more robust energy modeling.   
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The remaining sections of the report provide a detailed description of the improvement and 
application of the adaptive kmeans method originally developed by Kwac et al. (2014), including 
data preprocessing, hyperparameter selection, post-clustering process, and results. 

2 Clustering Method  

We cluster daily usage patterns based on hourly consumption data collected from a summer 
peaking utility in California. The data consist of over 30 million daily load profiles from 
approximately 100,000 households, which were measured between June 1st 2011 to May 31st 
2012. Representative load shapes (hereafter referred to as “dictionary load shapes”) are identified 
as cluster centers using a subset of daily load profiles (100,000 as suggested by Kwac et al. 
2014) with the following steps: load data preprocessing, load clustering, post-cluster processing. 
Finally, ~30 million daily load profiles from the whole dataset are each assigned to the closest 
dictionary shape. The clustering method employed here builds upon the method developed in 
Kwac et al. (2014) and is illustrated in Figure 1 and described in detail below.  

 

 

Figure 1 Flow chart illustrating derivation of representative load shapes. 
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2.1 Load data preprocessing 

In Kwac et al., daily usage data with missing hours (0.3% of the data) or with very small power 
demand are ignored in populating their clustering. The cutoff of average power demand used to 
determine those that should be ignored is set to be 0.2kW, which corresponds to the 6% quantile. 
We apply the same preprocessing criteria, and in our case after data cleaning, 32,611,421 daily 
load shapes (94% of the raw data) are remaining. We then normalized each daily load shape 
observations by their respective daily total consumption so the area under each single customer 
24-hour load shape is 1.  

Our interests lie in characterizing discretionary consumption and in avoiding the flattening of 
normalized shapes with high baseload consumption. We therefore innovate beyond Kwac et al., 
and “de-min” load profiles prior to normalization and subsequent processing. Specifically, the 
daily minimum electricity usage is subtracted from each hour of each customer-day profile. This 
modified procedure has two advantages: 

A household’s “discretionary” usage captures the electricity consumption resulting from active 
residential behavior (e.g., lighting, air conditioning, computer equipment, entertainment, 
dishwashers, laundry equipment). We innovate beyond Kwac et al. (2014) to isolate only 
discretionary consumption by “de-minning” the load profiles prior to normalization. Specifically, 
the daily minimum electricity usage is subtracted from each hour of that day within each 
household-day profile. The object to be clustered is therefore defined to be this “de-minned” and 
normalized profile of discretionary daily usage. This procedure has two advantages: first, from a 
conceptual perspective daily minimum electricity usage serves as a proxy for “baseload” so this 
procedure allows us to isolate a household’s variable or discretionary usage from their baseload. 
After normalization, a load shape essentially represents a sequence of each hour’s proportional 
contribution to that day’s total discretionary usage, and dictionary load shapes can be interpreted 
in terms of the overall patterns in timing of higher and lower discretionary use.  
 
The second advantage to this “de-minning” process is that it alleviates the distortion of 
consumption profiles that occurs during normalization when using the total daily electricity load 
for each household. In particular, a load profile with high baseload tends to be flattened when 
total hourly usage is divided by daily total consumption in the normalization step. To 
demonstrate this, the top row of Figure 2  illustrates two load shapes with the same discretionary 
consumption schedules but different baseloads, and the bottom row shows those same shapes 
after normalization without “de-minning”. This figure demonstrates that when the daily load has 
not been “de-minned” the normalization step causes the signal associated with the relevant 
variation in electricity usage stemming from the same active consumption behaviors to be 
significantly muted when there is high baseload and not muted when there is very low baseload. 
Subsequently moving to the clustering step when this is the case tends to result in one of the 
resulting representative dictionary cluster having a large membership consisting of 
undifferentiated flattened load shapes due to the nature of the distance metrics used to score 
shape fits into best-fit clusters. This means that any information regarding patterns of 
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discretionary electricity consumption behavior is obscured. By “de-minning,” we significantly 
reduce this problem.2 
 

 

Figure 2 Illustration that normalization without de-minning flattens high baseload profiles. 

2.2 Load shape clustering 

In the first step of the clustering process we employ, a subset (100,000) of the normalized load 
shapes first pass through an adaptive K-means (akmeans3) algorithm which splits the dataset of 
load shapes into K1 clusters, such that the relative squared error (RSE as defined in Equation 1, 
where s is the load shape of interest, t is the hour of day index, Ci is the dictionary load shape of 
the cluster that s is assigned to) of any load shape assigned to a cluster is not greater than an error 
threshold θ. The parameter θ is varied from 0.05 to 0.5 to decide a suitable value that results in 
the most reasonable K1. 

 𝑅𝑆𝐸 ,
∑

∑
 (1) 

                                                 
2 Specifically, clustering the load profiles into a dictionary of 99 clusters after normalization without “de‐minning” 

resulted in more than 65% of the daily load profiles in the data being assigned to a single flat‐shaped cluster. When 

the daily load profiles were “de‐minned” prior to normalization and clustered into the same number of clusters, 

the highest concentration of load profiles assigned to a single cluster was approximately 10%. 

3 Jungsuk Kwac (2014). akmeans: Adaptive Kmeans algorithm based on threshold. R package version 1.1. 

https://CRAN.R‐project.org/package=akmeans 
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As the resulting clusters from akmeans are typically highly correlated, in the second step we 
follow Kwac et al., who propose a subsequent hierarchical merging of the clusters by 
sequentially combining the most similar clusters until their total count reaches a target number 
K2. Under this transformation the guarantee that all RSEs fall under θ is relaxed. The target size 
K2 is selected such that it is the smallest number of clusters to violate the θ threshold condition in 
less than 5% of sample load shapes.  

Post clustering processing 

In the post clustering processing phase we apply a truncation process to the K2 cluster centers so 
that the outlier clusters with low member counts are removed. After truncation, we define the 
remaining cluster centers to be the final dictionary load shapes. To do this we use an iterative 
truncation algorithm (detailed in the text box below), so that with violation rate V of user’s 
choice, the maximum number of clusters can be truncated.  

V: violation rate 

Theta: error threshold 

while violation < V { 

Identify the smallest clusters whose shape members comprise the  

fraction V of the total number of shapes  

    Remove those clusters. 

    Reassign the shapes that were members of the removed clusters into the re
maining ones. 

    Compute violation rate as fraction of load shapes with RSE > Theta 

} 

Finally, each customer daily load shape is assigned to (and thus represented thereafter by) the 
closest dictionary load shape. 

3 Clustering Results 

The resulting number of clusters from the akmeans procedure depends on the chosen error 
threshold (θ). The relationship derived by running akmeans for θ varying from 0.05 to 0.5 is 
plotted in Figure 3. We selected θ = 0.3 based on our criteria that the number of clusters 
compared to the original should not be large (~5K from total of around 30M), and the marginal 
gain in error improvement to the explanatory power by increasing θ should be small. 
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Figure 3 Relationship between error threshold choice and number of clusters from akmeans. 

By limiting the total violation rate to 5%, the hierarchical clustering consolidates the number of 
akmeans clusters to 2000 in our case. The top 600 clusters (sorted by member count) account for 
~90% of the data. We use iterative truncation with violation rates of 10% and 30% to further 
reduce cluster numbers, which results in 608 and 99 clusters respectively. We evaluate these two 
sets of clusters by using the Davies-Bouldin index (DBI), which measures cluster separation. 
DBI for the 608 and 99 clusters are 2.23 and 2.22, respectively, indicating similar performance. 
The 99 cluster centers are then chosen as the final dictionary shapes, and all the load shapes are 
assigned to their closest centers based on Euclidean distance. 

The 16 largest clusters (sorted by membership count) are plotted in Figure 4 with box-whisker 
plots (i.e. whiskers spanning the 5th and 95th percentiles for each hour of the day). These top 16 
shapes account for more than 40% of all the load shapes in the dataset. In this summer-peaking 
utility, the official time-of-use (TOU) peak rate period is from 4 to 7 PM. While in aggregate, 
most of the high electricity usage happens in the afternoon, Figure 4 demonstrates that the 
clusters exhibit considerable differences in peak timing and number of peaks.   
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Figure 4 Top 16 cluster centers. Title format: Rank. Cluster# Percentage of daily loads. Box 
whiskers summarize within hour distribution of load members belonging to the cluster (median, 
inter-quartile range, 5th to 95th percentile), with means marked in red. 

 

The distribution of membership across the clusters in this final 99 dictionary shapes is not 
uniform, with the largest cluster by member-count accounting for ~10% of the total daily load 
shapes (left-hand panel of Figure 5). The top 44, 60, and 77 dictionary shapes by member-count 
respectively cover 70%, 80%, and 90% of the ~30 million load shapes across customers over the 
entire year period (right-hand panel of Figure 5). 
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Figure 5 Distribution of load shape membership. Left: load shape coverage by each cluster. 
Right: cumulative load shape coverage by cluster (sorted by membership counts). 

Distribution of electricity consumption is also more concentrated in the top clusters with the 
largest cluster accounting for ~13% of the total annual electricity consumption (left-hand panel 
of Figure 6). The top 38, 53, and 73 dictionary shapes respectively cover 70%, 80%, and 90% of 
annual total electricity consumption of the whole population (right-hand panel of Figure 6). 

 

 

Figure 6 Distribution of energy usage. Left: annual kWh coverage by each cluster. Right: 
cumulative annual kWh coverage by cluster (sorted by membership counts). 
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4 Summary and directions for future work  

In this technical memo, we employ an innovative clustering technique to categorize daily 
electricity consumption at hourly resolution from a large sample of residential customers over a 
full year. “De-minning” is applied to the daily load data (customer-days) in the preprocessing 
stage so that clustering is focused on the schedules and magnitudes of discretionary 
consumption. After running adaptive kmeans, performing hierarchical grouping of the resulting 
clusters, and finally dropping the least populated clusters, a “dictionary” of 99 distinctive 
“shapes” are identified to represent more than 30 million load shapes within a reasonable error 
threshold.  

Future work using the clustering results will include a demonstration of how consumption 
patterns can be differentiated by influencing factors such as time scales of interests (seasonal and 
weekly) and meteorological conditions (outside temperature levels). We will also identify 
behavioral patterns (i.e. number of usage peaks and timing of major peaks) within the context of 
a time-of-use rate (i.e., whether households are active during the TOU peak period). Variability 
within individual households will be characterized by the diversity and composition of the 
shapes that the respective household possesses.  

While typically utilities and system operators focus on the aggregate residential load shape, 
application of this improved clustering method will shed light on the considerable heterogeneity 
and variability across days and customers. In the future, more behavioral features associated with 
household consumption schedules and variability can be extracted based on our results and can 
be used in future studies to segment customers for better program targeting and designing 
tailored recruitment strategies.  
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