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Abstract   

We estimate seasonal variations in methane (CH4) emissions from Central California 

December 2007 through November 2008 by comparing CH4 mixing ratios measured at a 

tall tower with transport model predictions based on a global 1 degree a priori CH4 

emissions map (EDGAR32) and a 10 km seasonally varying “California-specific” map, 

calibrated to state-wide by CH4 emission totals. Atmospheric particle trajectories and 

surface footprints are computed using the Weather Research and Forecast (WRF) and 

Stochastic Time-Inverted Lagrangian Transport (STILT) models. Uncertainties due to 

wind velocity and boundary layer mixing depth are evaluated using measurements from 

radar wind profilers. CH4 signals calculated using the EDGAR32 emission model are 

larger than those based on the California-specific model, in better agreement with 

measurements. However, Bayesian inverse analyses using the California-specific and 

EDGAR32 maps yield comparable annually averaged posterior CH4 emissions totaling 

1.55±0.24 times and 1.84±0.27 times larger than the CA-specific prior emissions 

respectively, for a region of Central California within approximately 150 km of the 

tower. If these results are applicable across California, state total CH4 emissions would 

account for approximately 9% of state total greenhouse gas emissions. Spatial resolution 

of emissions within the region near the tower reveal seasonality expected from several 

biogenic sources but correlations in the posterior errors on emissions from both prior 

models indicate that the tower footprints do not resolve spatial structure of emissions. 

This suggests that including additional towers in a measurement network will improve 

the regional specificity of the posterior estimates. 
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1. Introduction 

Methane (CH4) is an important greenhouse gas (GHG), playing a significant role in the 

climate system, with a global warming potential (GWP) relative to CO2 estimated at 21 

(g CO2eq/ g CH4) over a 100-year period [IPCC, 1995]. Earth's CH4 has increased by 

about 150% since 1750 in concentration, and accounts for ~ 25% of the total radiative 

forcing from all long-lived and globally mixed GHGs [Hofman et al., 2006; Montzka et 

al., 2011].  Correspondingly, attention has focused on inverse model assessment of global 

[e.g., Gimson and Uliasz, 2003; Houweling et al., 1999; Miller et al., 2008], and regional 

[e.g., Kort et al., 2008; Zhao et al., 2009] CH4 sources.   

 

At the regional scale, California currently emits approximately 500 Tg of CO2 equivalent 

GHGs, with CH4 currently estimated to contribute approximately 6% of the total 

[California Air Resources Board (CARB), 2010].  Because California has committed to 

an ambitious plan to reduce emissions to 1990 levels by 2020 through Assembly Bill 32 

(AB-32), verifying the success of control strategies will require accounting for CH4 

emissions.  

 

Emission inventories and ecosystem models provide valuable estimates of the 

spatiotemporal distributions of CH4 emissions from a variety of sources [Christensen et 

al., 1996; Potter, 1997; Huang et al., 1998; Matthews et al., 2000; Zhang et al., 2002; 

CARB, 2010; Tian et al., 2010]. However, it is difficult to evaluate the inventory model 

performance at regional scales, largely due to the lack of continuous measurements 

covering large areas over long periods. Long-term measurements are important because 
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of the strong seasonal dependences of CH4 emissions from natural wetlands [Cicerone et 

al., 1983; Wilson et al., 1989; Mingkui et al., 1998], agriculture [Salas et al., 2006; 

McMillan et al., 2007], and other likely sources. Aircraft measurements provide valuable 

data for estimating surface CH4 emissions over short time periods but the high flight 

expense generally limits long-term monitoring [Matsueda and Inoue, 1999; Wratt et al., 

2001; Levin et al., 2002; Gimson and Uliasz, 2003; Kort et al., 2008]. Flux towers 

provide long-term direct measurements of surface CH4 emissions, but only over 

approximately kilometer scale areas [Mosier et al., 1991; Hansen et al., 1993; Ball et al., 

1999; Alm et al., 1999]. Mixing ratio measurements from either towers or space-borne 

remote sensing can provide continuous long-term measurements, representing larger 

spatial scales but require inverse techniques to infer emissions [Simpson et al., 1997; 

Hein et al., 1997; Houweling et al., 1999; Werner et al., 2003; Manning et al., 2003; 

Bergamaschi et al., 2005; Zhao et al., 2009; Popa et al., 2010].  

 

To date, the seasonal variation in CH4 emissions from different regions of California has 

not been quantitatively evaluated. This paper quantifies regional CH4 emissions from 

Central California over the course of a year period, representing one of the first analyses 

of seasonal variation in CH4 emissions from this mixed urban and rural area. The work 

expands on an initial study by Zhao et al. [2009, ZF09 hereafter] that quantified CH4 

emissions from Central California for a three-month period from October to December 

2007. In Section 2 we describe the methods we employed, including atmospheric 

measurements, a priori CH4 emissions inventories, mesoscale meteorology and trajectory 

transport modeling, and the Bayesian inverse method, focusing on the modifications from 
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ZF09. Section 3 describes results, including the seasonal variations in calculated 

footprints, and the inferred surface emissions of CH4 from Central California for different 

regions based on simple correlation analysis and the Bayesian analysis of regional 

emissions. Section 4 summarizes the results and discusses the implications for CH4 

inverse modeling at the regional scale, highlighting the importance of uncertainty in the 

spatial distribution of a priori emissions and the value of multiple measurement stations.  

 

2. Data and Models 

Following ZF09, the Bayesian inversion technique employed in this paper obtains 

posterior CH4 emission estimates by scaling spatially distributed a priori emissions to 

minimize the difference between tower-based CH4 mixing ratios and model predictions. 

Correspondingly, the data sets used in the inversion technique include tower 

measurements of CH4 mixing ratios, a priori CH4 emission maps, trajectories used for 

CH4 predictions, modeled meteorology used to drive the transport model and the 

estimated boundary condition at the edge of the modeling domain.  

 

2.1. Measurements 

CH4 measurements were made at 91 and 483 m above ground level on a tall-tower near 

Walnut Grove, California (WGC, 121.49°W, 38.27°N, 0 m above sea level), beginning in 

September 2007. The CH4 mixing ratios at each height are measured every 15 minutes 

and averaged into the 3-hour means used in this study. Detailed information about the 

instrument design is described by ZF09 and will not be repeated here. The measurement 

accuracy, determined by comparison with time synchronized flask sampling and 
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laboratory analysis at NOAA, is ~ 1 ppbv CH4  during periods when variations in the 

continuous CH4 measurements are small enough to allow clear comparison with the 

relatively rapid (~ 1 min) flask sampling. This accuracy is both significantly smaller than 

the measured variations in CH4 at the tower site and likely insignificant compared to the 

uncertainties in model predictions of CH4 mixing ratio described below.  

 

A subset of the measured data was selected for the inverse analysis based upon a “well-

mixed” requirement limiting the vertical gradient in CH4 mixing ratio. As shown in 

Figure 1, the seasonal-mean diurnal cycles of CH4 mixing ratio for air sampled from the 

91 and 483 m levels are typically most similar from afternoon to late evening, with 

differences of ~ 50 ppb in winter and ~ 10 ppb in summer. Data were then selected such 

that the CH4 mixing ratio difference between 91 and 483 m fell within the range –1 sd < 

(C91 – C483)  < 3 sd, where sd is the standard deviation of the difference of the mean cycle 

between beginning of afternoon and late evening (1200 and 2300 local time). Based on 

this criteria, between 60 and 90% of the data from the afternoon to late evening time 

window were retained for the inverse analysis in summer and winter, respectively. For 

example, the December 2007 to November 2008 data are shown in Figure 2 (upper 

panel), in which the blue circles indicate the data satisfying well-mixed criteria in this 

study.  

 

In addition to requiring well-mixed conditions, the data were screened to remove periods 

with obvious contamination from wild fires that were not included in our emission maps 

(e.g., forest fires). The summer of 2008 included a period with significant fire activity 
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based on the report from the California Department of Forestry and Fire Protection 

(CDFFP) [CDFFP, 2008]. To identify the summer 2008 period with potential CH4 

sources due to the fires (that are not present in our inventory), we used CO measurements 

from an instrument similar to that described in Potosnak et al. [1999]  in the NOAA tall 

tower network (http://www.esrl.noaa.gov/gmd/ccgg/towers/). Based on the CO 

measurements for the period from December 2007 to November 2008, which are shown 

in Figure 2 (lower panel), we identified and excluded the significant fire events that 

affected Northern and Central California from June 20th to July 28th, 2008. Because the 

CO screening is not perfect, we note that lower levels of CH4 emissions from agricultural 

and heating related biomass combustion could be present in our posterior emission 

estimates. 

 

We estimate uncertainties in modeled atmospheric transport using measured planetary 

boundary layer (PBL) heights retrieved from radar wind profilers located near 

Sacramento (SAC; 121.42°W, 38.30°N), Chowchilla (CCL; 120.24°W, 37.11°N), Chico 

(CCO; 121.91°W, 39.70°N), and Livermore (LVR; 121.90°W, 37.71°N). Boundary layer 

depths were estimated using methods described previously [Bianco and Wilczak, 2002; 

Bianco et al., 2008; Bianco et al., 2011] which can estimate daytime PBL heights from 

about 150 m to 4000 m with an RMS error of ± 200 m [Dye et al., 1995].  

 

2.2. Prior CH4 Emission Map 

WGC is located in a region containing natural gas fields and wetlands to the West, rice 

agriculture and natural gas fields to the North, livestock agriculture to the South, and 
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landfills in the regional landscape. To account for this complexity in the landscape of 

Central California, we have improved mapping of the spatial distribution of CH4 

emissions. The new maps update the emission maps from ZF09 to more accurately 

capture the spatial information available to map CH4 emissions, scaled to the 2008 state-

wide sums contained in the CARB CH4 emission inventory by emissions sector [CARB, 

2010]. Relevant to the following work, readers should note that the sub-region 

classification for emission estimates described in ZF09 is shown in Figure 3a.  In this 

section, major improvements for a priori emissions over ZF09 are described. First, the 

spatial distribution of CH4 emissions from dairy livestock (LS) are improved by using a 

map of dairy livestock density supplied by the California Department of Water Resources 

scaled to annual CH4 emissions assuming a constant emission factor of 

0.39 kg C/cow/day from the recent work of Salas et al. [2009], resulting in total CH4 

emissions from livestock that are 1.8 times the total livestock emission estimate from 

ZF09 (Figure 3b).  

 

Second, we identified natural gas wells in California using information from California 

Department of Conservation (CDC, http://www.consrv.ca.gov/dog/Pages/statistics.aspx) 

to generate a new emission map from gas wells, which were not accounted for in ZF09. 

CH4 emissions from gas wells are estimated using gas production information from CDC 

[2009]. Harrison et al. [1997] estimated CH4 emissions equivalent to 1.4±0.5% of gross 

natural gas production for the 1992 baseline year for the entire gas production processes 

from field production to distribution. Since the available data for this study do not 

provide detailed information of gas production processes for individual gas fields or 
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wells, we assumed a leakage rate of 1% related to gas production and 

transmission/storage processes in the gas fields. CDC Districts 5 and 6 are within the 

footprint region of WGC. However, the gas production of District 5 is only 5% of that of 

District 6. Thus, we focus on natural gas emissions from District 6 where most wells 

produce natural gas only, and total gas production (for 2008) was 2.27×109 m3. Figure 3c 

shows the resulting CH4 emission map from natural gas wells. The remaining Districts (1 

- 4) in the southern San Joaquin Valley and other locations in Southern California are 

primarily operated to produce liquid petroleum, but also produce a significant amount of 

“associated” natural gas. Because the fractional CH4 leakage rate from the petroleum 

facilities are likely different from that for the natural gas fields and because the WGC 

footprints have weak sensitivity to Districts 1 - 4, CH4 emissions from Districts 1 - 4 are 

estimated from California mandatory reports on oil and gas. The remainder of natural gas 

emissions was apportioned by population density in California using 4-km population 

maps available from the Socioeconomic Data and Applications Center (SEDAC, 

http://sedac.ciesin.columbia.edu/gpw) [CIESIN et al., 2005]  so that the state-wide total 

estimate from natural gas matched the CARB inventory. Total natural gas emissions 

based on California population density are shown in Figure 3d.  

 

Third, we used seasonally varying CH4 emissions for agricultural CH4 sources. Monthly 

averaged CH4 emission maps for county level agricultural CH4 fluxes were taken from 

the denitrification and decomposition model (DNDC) output (assuming the 1983, high 

irrigation case) described by Salas et al. [2006]. Wetland CH4 emissions were taken from 

monthly averages of the Carnegie-Ames-Stanford-Approach CH4 (CASA-CH4) model 
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from Potter et al. [2006]. The resulting maps capture the strong seasonality in these 

emission sources near the WGC tower. Rice agriculture is concentrated in Region 6 while 

other regions have negligible emissions from it. Rice agriculture accounts for 46% of the 

total CH4 emissions in Region 6 in annual average, with estimated emissions of 0.33, 

3.63, 1.08 and 0 Tg CO2eq yr-1 for spring, summer, fall and winter, respectively. 

Similarly, wetland emissions also show a seasonal variation with summer having the 

maximum, but represent only 6.7, 2.5, 5.2% of the total CH4 emissions for Regions 6, 7 

and 8, respectively.  

 

Figure 3e shows total CA-specific CH4 surface emissions with a high resolution (~ 10 

km), and the EDGAR 32FT2000 (EDGAR32 hereafter) CH4 emission map (~ 100 km) 

[Olivier et al., 2005] is shown in Figure 3f. Seasonal CH4 emissions for the three regions 

(6, 7 and 8) near the WGC tower are summarized and compared with the EDGAR32 

emissions in Table 1.  It is worth noting that the EDGAR32 maps especially give large 

weight to the San Francisco Bay urban area (Region 7), while the CA-specific map gives 

more weight to the Central Valley (Regions 6 and 8). 

 

2.3. Trajectory and Meteorology 

Predicted contributions to CH4 mixing ratios from emissions within the modeling domain 

are calculated as Fe, where F is footprint strength, and e is the a priori CH4 emissions. 

Footprints are calculated from particle trajectories simulated using the Stochastic Time-

Inverted Lagrangian Transport (STILT) model [Lin et al., 2003, 2004]. In this study, 500 
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particles are released hourly (from UTC hour 00) at the WGC tower (91 m) and 

transported backward in time 7 days to insure a majority of the particles reach positions 

representative of the marine boundary layer. The meteorology used to drive this transport 

model is from the simulation of Weather Research and Forecast (WRF2.2) model 

[Skamarock et al., 2005]. WRF2.2 has been slightly modified to be coupled with STILT 

(WRF-STILT) by Nehrkorn et al. [2010].  

 

The WRF model simulations follow those described in ZF09 with the following two 

modifications. First, the PBL scheme was changed from the Yonsei University (YSU) 

scheme to the Mellor-Yamada-Janjic (MYJ) TKE scheme [Mellor and Yamada, 1982; 

Janjic, 1990]. Second, we nested sub-domains using spatial resolutions of 36, 12, and 4 

km (shown in Figure 4) at a ratio of 1/3 (rather than 1/5 used in ZF09) to reduce 

discontinuities, and employed 50 vertical layers between surface and 100 mb to better 

resolve the planetary boundary layer. Sub-domains were computed with one-way nesting 

from the next outer sub-region. Each day was simulated separately using 30-hour run 

(including 6 hours from the previous day for spin-up) with hourly output. And the 

forecast fields were nudged to the gridded North American Regional Reanalysis (NARR) 

[Mesinger et al., 2006] fields (32 km resolution) every 3 hours. 

 

2.4. Bayesian Inverse Model 

2.4.1. Inversion Approach 

We apply a scaling factor Bayesian inversion (SFBI) method to estimate seasonal 

variations in CH4 emissions from Central California using measured CH4 mixing ratios at 
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a tall tower. As described in Gerbig et al. [2003], Lin et al. [2003] and ZF09, the local 

CH4 mixing ratio at the receptor c can be modeled as  

 

c = Kλ  + v     (1) 

 

where K = Fe, λ  is a state vector for scaling factors, which is used to adjust emissions 

from sources or regions, and v is a vector representing the model-data mismatch with a 

covariance matrix R. We model R as a diagonal matrix to represent the total variance 

associated with all error sources such as the measurement error and the transport error. 

Following the Gaussian assumptions, the posterior estimate for λ  is 

 

( ) ( )prior
TT

post λQcRKQKRKλ 11111 −−−−− ++= λλ   (2) 

 

where λprior is the a priori estimate for λ , and Qλ is the error covariance associated with 

λprior. Uncertainty associated with total anthropogenic CH4 emissions in the U.S. ranges 

from 10% to 50%, and emission uncertainty for rice agriculture is greater than 50% 

[Pacala et al., 2010]. Pacala et al. [2010] also reported that emission estimate 

uncertainties for manure management and fugitive emissions from fuels are highly 

variable (less than 10% - 100%). Because the Central California region includes such 

uncertain CH4 emission sources as rice agriculture, livestock and natural gas fields, we 

use 50% uncertainty in our a priori emission models for the baseline analysis. The 

posterior error covariance for λ  is given by  
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( ) 111 −−− += λQKRKV T
post   (3) 

 

 To determine optimal emissions, we use the SFBI method at a monthly temporal scale 

based on the two CH4 a priori emission models described in Section 2.2. In this paper, 

however, most of the results are summarized seasonally. We combine May with April 

and July with June because the number of observations for May and July is much smaller 

than the other months due to missing data and removal of data from wild fire periods. 

The inverse modeling approach is applied in two phases as in Bergamaschi et al. [2005]. 

A first inversion is conducted based on the data selected using the well-mixed condition 

criteria described in Section 2.1. The second (final) inversion uses data points that are 

accepted by applying the selection criteria |ci – (Kλ)i|2 < αRi, where α is a fixed value for 

each month. As in the first inversion, the final inversion is performed using the original a 

priori emission maps, and therefore the first inversion is used as a data selection tool for 

the atmospheric observations. This phased approach removes outliers that might 

otherwise induce biases in the inversion. Bergamaschi et al. [2005] accepted data for α = 

2, though they found that relaxing α to 3 had a very small effect on the posterior λ . In 

this study, we choose the value of α for each month via an iterative process such that the 

chi-square values from the final inversion are close to unity [Tarantola, 1987]. A 

sensitivity analysis for α is described in Section 3.4. 

 

2.4.2. Error Covariance Analysis 
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Following Gerbig et al. [2003], ZF09, and Göckede et al. [2010], the diagonal elements 

of the model-data mismatch matrix R are estimated from the linear sum of contributing 

uncertainties in the footprints (e.g., number of particles released, flux aggregation at finite 

resolution, uncertainties in modeled transport winds and PBL), the estimated CH4 

background, and the a priori emissions.  Here,  

 

Ri = Spart + Saggr + Sbkgd + STransPBL + STransWIND,  (4) 

 

where errors are calculated by comparing the root-mean-square (RMS) differences in 

simulated CH4 signals. For the particle number error (Spart, ~ 5% of background-

subtracted mean signal) the comparison is made between test runs releasing 1000 

particles and the bulk runs calculated with the release of 500 particles. The aggregation 

error (Saggr, ~ 11%) is obtained from the comparison made between runs using full (0.1 

degree pixel) fluxes and fluxes aggregated to county level.  

 

For the marine background error (Sbkgd) the comparison is made between the minimum 

nighttime CH4 measured at 483 m (presuming near free troposphere values) and values 

propagated to the tower from a model of Pacific ocean CH4 mixing ratios. Following 

ZF09, we estimated the background CH4 mixing ratio using the final latitude of each 

particle as a lookup into the latitudinally averaged marine boundary layer (MBL) CH4 

(NOAA Globalview CH4 product, 

http://www.esrl.noaa.gov/gmd/ccgg/globalview/index.html). Only time points for which 

more than 80% of the particles reached longitudes 1.5 degrees from the coast were 
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included in the study. To account for seasonal variations in background errors, the RMS 

difference between the MBL background and the 483 CH4 measurements was calculated 

for each season. The RMS difference values were 20.3, 14.7, 16.4 and 24.7 ppb for 

spring, summer, fall, and winter, respectively. These values are significantly higher than 

the value of 11.7 ppb obtained previously in ZF09 although the months and years are 

different.  

  

As described in ZF09, errors due to uncertainties in atmospheric transport are significant. 

To estimate the uncertainty in predicted CH4 signals due to errors from modeled PBL 

heights (STransPBL) and winds (STransWIND), we evaluated model errors in winds and PBL 

heights and then calculated the RMS difference in CH4 signals obtained from simulations 

with and without input of an additional stochastic component of wind and PBL errors in 

STILT.  

 

Extending beyond ZF09, we evaluated PBL heights (Zi) at four stations. Figure 5 shows 

the locations of a nearby (within 8 km of WGC) profiler (SAC), and three more distant 

profilers near Chowchilla (CCL), Chico (CCO), and Livermore (LVR). Most relevant to 

the WGC measurements, we compare Zi from WRF-STILT with measurements from the 

SAC profiler for January 2008, April 2008, July 2008, and October 2007, the mid-point 

months of the winter, spring, summer and fall measurement periods. Assuming the 

uncertainties in modeled and measured Zi are roughly equal, the geometric linear 

regressions of modeled on measured Zi yield regression lines statistically consistent with 

slopes of 1.00±0.25, 0.86±0.04, 1.01±0.08, and 0.97±0.11 for January, April, July, and 
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October, respectively. The estimated RMS errors were 415 m, 255 m, 159 m, and 289 m 

for January, April, July, and October, respectively. Assuming the RMS scatter in 

predicted versus measured Zi can be represented as the sum of squares of measurement 

uncertainty (~ 200 m, Dye et al., 1995) and WRF-STILT model uncertainty, the RMS 

error in the WRF-STILT model ranges from very small in summer to near 300 m in 

winter.   

 

To account for the large seasonal variation in the modeled Zi, we conducted an error 

analysis of Zi for January, April, and July following the method in ZF09 while we adopt 

the error of 24% for October from ZF09. We assumed that the mid-point month of each 

season represents the total variability of the season. For each season, we perturbed Zi by 

10% and propagated it through transport simulations. Then we computed CH4 signals 

(CCH4) based on the perturbation to estimate their sensitivity to Zi (i.e., dCCH4/dZi) as a 

first order approximation. The dCCH4/dZi values for spring, summer and winter were 

0.03, 0.03, and 0.14 ppb m-1, respectively. Due to the large RMS difference between the 

measured and predicted Zi, winter showed the largest sensitivity of CH4 signals to Zi in 

conjunction with the high mean seasonal CH4. By applying the inferred RMS error in the 

WRF-STILT model to dCCH4/dZi as in ZF09, we estimated 6.7, 1.6, 12.3 and 32.0 ppb for 

errors associated with Zi for spring, summer, fall and winter, respectively. 

 

Unlike the model-measurement comparison at the SAC site, PBL heights at some other 

profilers do show small biases.  In April 2008, for example, modeled PBL agrees well 

with the measurements at CCO (slope = 1.03±0.08), but is lower than the measurements 
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at CCL (slope = 0.78±0.06) and LVR (slope = 0.77±0.05). To estimate the effect of these 

biases, we calculated CH4 signals for WGC with and without perturbing PBL depths at 

distant sites and found the errors to be small compared to the measured signals because of 

the relatively weak footprint strength at distant locations.  

 

Uncertainty in modeled CH4 signals due to errors in modeled winds is estimated using 

modeled and measured winds for the 127 m height on the WGC tower in the months of 

January, April, July, and October. RMS model-data differences in U and V wind 

velocities range from about 2 to 3 m s-1, without significant biases. The RMS errors for 

the U component were 2.41, 2.66, 3.03, and 2.88 m s-1 for January, April, July, and 

October, respectively. For the V component, the RMS errors were 3.11, 2.41, 2.06, and 

2.46 m s-1 for the same months. The resulting RMS error in modeled wind was estimated 

across seasons as 3.7 m s-1.  Propagating a random wind component of the velocity error 

through STILT yielded a typical signal variation of ~ 10 % of the background-subtracted 

mean CH4 signal. 

 
Finally, assuming all of the errors from equation 4 are independent, the errors were 

combined in quadrature to yield a total expected model-data mismatch error and are 

shown in Table 2 along with the number of observations used in the final inversion. 

Seasonally estimated model-data mismatch errors are used for all the months belonging 

to the given season. These errors were used to populate the diagonal elements of R in 

equations 2 - 4. The estimated errors are larger than the estimated error (~ 32% of mean 

CH4 signal) in ZF09, largely due to the estimated uncertainty in PBL depth and 

background mixing ratios, though the seasons and years are different. This will have the 
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effect of reducing the influence that the measurements have in perturbing the prior 

emission models.  

 
3. Results 

3.1. Footprints 

Figure 6 shows the average footprints during well-mixed periods, for spring (March, 

April, May), summer (June, July, August), fall (September, October, November), and 

winter (December, January, February). There is a clear seasonal pattern for the 

distribution of footprints. In summer, the footprints are strongest from the San Francisco 

Bay area to the west of the WGC tower (henceforth Bay-WGC) due to the dominance of 

land-ocean winds; in the transition seasons of spring and fall, footprints are stronger from 

the North Central Valley due to a shift toward north-south winds; in winter, the footprints 

are strongest in the Central Valley, while the Bay-WGC region is second in terms of 

footprint influence.  

 

3.2. CH4 Mixing Ratios 

The CH4 signals measured at 91 m are compared with WRF-STILT predictions of 

background CH4 signals in Figure 7 for well-mixed periods. In general, the variability in 

measured CH4 is larger in winter than the other seasons, consistent with a recent analysis 

of the seasonality of maximum boundary layer depths [Bianco et al., 2011],  which 

showed that the boundary layer height reaches its maximum in late-spring months. 

Correspondingly, spring months had the lowest value (27.83 ppb) for the background-

subtracted mean CH4 during the well-mixed periods, with summer, fall and winter having 

31.29, 51.28 and 72.65 ppb, respectively. In addition, the minimum values reasonably 
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approximate predicted background CH4 at WGC, showing a smoothly varying 

seasonality with a maximum centered on winter and a minimum centered on late summer.  

 

3.3. Bayesian Region Analysis 
 
We estimated CH4 emissions from the different regions in Figure 3a using the SFBI 

model. As described in Section 2.4, the SFBI is first applied to the data selected based on 

the well-mixed conditions. The first inversion was performed at a monthly scale to avoid 

temporal aggregation errors, and a total of 628 observations were used to solve for 130 

unknowns. After the first optimization, posterior predicted CH4 mixing ratios from the 

inversion of CA-specific emissions were compared with observations and summarized at 

the seasonal scale. Results using a chi-squared (fitexy) linear regression analysis [Press et 

al., 1992] yielded fitting slopes (RMS error) of 0.65±0.05 (32 ppb), 0.69±0.14 (26 ppb), 

0.79±0.05 (59 ppb), and 0.81±0.05 (66 ppb) for spring, summer, fall, and winter, 

respectively. The posterior fitting slopes are closer to unity, and the RMS errors are 

reduced by 19% - 22%  compared to the results before optimization where RMS errors 

were 41, 32, 76, and 82 ppb for spring, summer, fall, and winter, respectively and fitting 

slopes were low (0.3 – 0.5). This result suggests that the inverse optimization has 

improved the agreement between the measured and predicted CH4 signals. However, 

even after applying the optimized scaling factors, the slopes are still less than unity 

 

To address the residual underestimation in the predicted CH4 signals, outlier points are 

removed based on a requirement that the difference between measured and predicted 

mixing ratios fall within a factor α (e.g., α = 2) of the estimated error [Bergamaschi et 
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al., 2005]. In this study α ranges between 1.9 and 3.2 depending on the month, and 

sensitivity of emission estimates to α values is discussed in Section 3.4. 

 

 The outlier removals vary with month, excluding 5 - 25% (mean removal rate = 13.4%) 

and 0 - 27% (mean = 11.8%) of the data used in the first inversion for the CA-specific 

and EDGAR32 models, respectively. For both cases, the fraction of data removed was 

consistent with the 12 - 14% removal rate reported by Bergamaschi et al. [2005]. We 

associate the higher fraction of removed data with the overall low emissions in the CA-

specific model and the differences in spatial distribution of CH4 emissions between the 

two a priori models. These outliers may result from uncaptured errors in transport and 

background signals in our current modeling system. In terms of emission maps, the likely 

causes of these outliers include local sources that are not included in the inventory and 

lack of information on detailed temporal and spatial variations of emissions, in particular 

near the tower where footprints are strong. 

 

 

After excluding outliers, the SFBI method is applied as a second inversion, and a total of 

544 observations were used to solve for 130 unknowns. Figure 8 shows the regression of 

posterior predicted on measured CH4 for the mid-point month of each season using the 

CA-specific emission model. The resulting χ2 values were between 0.7 - 1.4 for most of 

the months except for November (χ2 = 2.0 with fit slope = 0.98±0.05). Summer months 

showed slightly lower fitting slopes compared to the other months due to the large model-

data mismatch error. Compared with the first inversion results, the seasonal slopes 
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obtained from the final inversion are also closer to unity, and the reduced RMS errors are 

19, 14, 25, and 43 ppb for spring, summer, fall, and winter, respectively. This result 

demonstrates that the two-step optimization procedure has improved the agreement 

between the measured and predicted CH4 signals. Comparing the posterior scaling factors 

between the first and final inversions (Table 3), the two results are statistically consistent, 

suggesting that there are few significant differences for individual regions and seasons.  

 

From Table 3, we computed annual average scaling factors of 2.24±0.26, 1.57±0.46, and 

1.17±0.38 for Regions 6, 7 and 8, respectively, using the final inversion results. This 

suggests that CH4 emissions from Region 6 to the north of WGC (the southern end of the 

Sacramento Valley) are significantly higher than the CA-specific model in the annual 

average. The seasonal variation in scaling factor for Region 6 decreases slightly in 

summer compared to spring and fall, partially diminishing the effect of increased 

summer-time emissions present in the a priori model for rice agriculture. The scaling 

factors for Region 7 (Bay Area and surrounding urban areas) are also higher than the CA-

specific a priori model but show small increase in emissions in summer, in partial 

opposition to the change in Region 6. Scaling factors for Region 8 to the south of WGC 

(in the Northern San Joaquin Valley) appear approximately consistent with the CA-

specific model and show little seasonal variation, though there is a modest increase in 

winter. 

 

Following the above procedure, we performed similar analyses using EDGAR emission 

maps. First, we calculated predicted CH4 signals using two different EDGAR emission 
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models: EDGAR32 and EDGAR42 (EDGAR version 4.2) [European Commission JRC 

and Environmental Assessment Agency, 2011]. Compared to EDGAR32, EDGAR42 

provides emission maps at a much higher resolution (0.1º × 0.1º) than EDGAR32, but the 

same resolution as that of the CA-specific model. The fitting slopes based on EDGAR42 

(0.44 – 0.57) were consistently lower than those of EDGAR32 (0.57 – 0.64) for all 

seasons. The RMS errors for EDGAR42 (30 – 77 ppb) were also higher than those of 

EDGAR32 (25 – 72 ppb) for all seasons. This result is due to the fact that the emission 

sum for Regions 6, 7 and 8 from the EDGAR42 emission maps is lower than that of 

EDGAR32 by a factor of 0.77. Compared to EDGAR32, EDGAR42 shows little change 

in the spatial distribution of CH4 emissions and yields emission sums of 2.62, 5.73, and 

3.16 Tg CO2eq yr-1 for Regions 6, 7 and 8, respectively. Compared to the CA-specific 

model, the emission sum for Region 7 from EDGAR42 is still significantly higher by a 

factor of 4.48 while the emission sum for Region 8 is lower by a factor of 0.61 (see Table 

1). Therefore, in this study we proceed with Bayesian inverse analyses only using 

EDGAR32 although our future study may reveal more information of the spatial 

distribution of CH4 emissions using a priori emission models at different spatial scales 

and distributions. 

 

Figure 9 shows the comparison of posterior predicted and measured CH4 signals from the 

final inversion (543 observations) using the EDGAR32 emission model for the mid-point 

month of each season. The resulting slopes and RMS errors are comparable to the inverse 

results with the CA-specific model. This result suggests that the EDGAR32 model, used 

in combination with the measurements from this single tower, provides an equally good 
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description of CH4 emissions, despite the fact that the spatial resolution (~ 100 km) is 

much coarser than that of the CA-specific emission map (~ 10 km). This result also 

suggests that a combination of the footprints spatial structure and errors in transport and 

background data do not allow us to distinguish emission estimates from the high-

resolution emission maps from those of the low-resolution maps when the emission 

model with a higher spatial resolution does not influence the inversion result 

significantly.  

 

Inferred CH4 emissions are reported by region and as a regional sum over the region (6, 

7, and 8) near the tower in Figure 10. Emission sums for the region from the CA-specific 

emission model based on the 50% uncertainty assumption in the prior are 11.78±2.11, 

19.25±2.97, 14.12±2.12, and 11.33±1.54 Tg CO2eq yr-1 (assuming a GWP of 21 g CO2eq/ 

g CH4) for spring, summer, fall, and winter, respectively. However, the EDGAR32 model 

shows different seasonal emission sums for the region: 16.10±2.24, 13.38±2.04, 

19.71±2.30, and 17.98±3.13 Tg CO2eq yr-1. In particular, the emission sum for winter 

shows the largest difference. It appears that this discrepancy during winter is due to the 

difference in the emission distribution between the two prior models. The EDGAR32 

model estimates more emissions in Region 7 while the CA-specific model shows more 

emissions in Region 8 during winter.  In Region 6, the EDGAR32 model shows seasonal 

variation with posterior scaling factors of 0.99±0.12, 1.50±0.20, 1.23±0.17, and 

0.86±0.17 for spring, summer, fall, and winter, respectively, but its seasonal variation is 

much smaller than that of the CA-specific model, which has seasonal components driven 

by wetland and rice agriculture emissions.  For Region 7, the EDGAR32 model shows 
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the opposite seasonal variation to that of the CA-specific model. The inversion based on 

the EDGAR32 model yields posterior scaling factors of 0.94±0.22, 0.62±0.14, 1.29±0.23, 

and 1.28±0.36 for spring, summer, fall, and winter, respectively. Combined with the large 

emission sum for Region 7 from EDGAR32, which is ~ 6 times that of the CA-specific 

model, seasonal variation in CH4 emissions based on EDGAR32 is significantly different 

from that of the CA-specific case. This difference between the two models will be 

discussed more in terms of correlations between regions. For Region 8, seasonal variation 

from the EDGAR32 model is small as was the case with the CA-specific model.  

 

We then investigated the degree to which the tower footprints allow spatial resolution of 

emissions between the different sub-regions by considering the off-diagonal elements of 

the posterior error covariance matrices and a priori emission model. In this regard, as 

Tarantola [1987] suggested, we derive correlations from the posterior covariance rather 

than a direct examination of the off-diagonal elements of the covariance. The 

correlations, which vary each month due to changing footprints, were generally negative 

between Regions 6 and 7 for both CA-specific (-0.1 to -0.4) and EDGAR models (-0.2 to 

-0.8). The correlations between Regions 6 and 8 were also negative for both CA-specific 

(-0.1 to -0.6) and EDGAR32 (-0.1 to -0.5) cases. It is worth noting that for the EDGAR32 

case the anti-correlation is much stronger in Regions 6 – 7 than in Regions 6 – 8. It 

appears that this stronger anti-correlation in Region 6 – 7 occurs when the EDGAR 

emission sum for Region 7, which is 2.7 times that of Region 8, is adjusted against 

Region 6 via the inversion system. This suggests that roughly 10 - 40% of emissions 

attributed to Region 6 in the CA-specific emission model could be traded off against 
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emissions from Region 7 and vice versa. This result further suggests that our inversion 

system has not solved the scaling factors entirely in an independent manner and only 

some linear combination of those scaling factors may be resolved. 

 

3.4. Sensitivity Analysis 
 

A sensitivity analysis of prior uncertainty was conducted to investigate its impact on CH4 

emission estimates. With the 50% prior uncertainty as the baseline, we performed 

inversions using 70% and 90% prior uncertainties in the a priori emission models. The 

results showed that there is no significant change in CH4 region sum estimates with 

different uncertainties in either the CA-specific or EDGAR model. For the CA-specific 

case, the region sums based on the 90% uncertainty case were 12.94±3.18, 20.97±4.95, 

14.94±3.05, and 13.70±2.24  Tg CO2eq yr-1 for spring, summer, fall, and winter, 

respectively, which are not significantly different from the 50% uncertainty case: 

11.78±2.11, 19.25±2.97, 14.12±2.12, and 11.33±1.54 Tg CO2eq yr-1. Emissions from 

70% uncertainty ranged between these two results, showing no significant change in CH4 

emission estimates. The EDGAR-based inversion also showed no significant difference 

in the region sum for each season among different prior uncertainty assumptions. 

 

In addition to the prior uncertainty sensitivity analysis, we performed a sensitivity 

analysis on the observation period using observational data during the afternoon hours 

(1200 – 1700 local) as a subset of the original data. In this inversion, the number of 3-

hourly observations is 284 while the number of unknowns is 130 as in the case of the 

original inversion. Based on the 50% uncertainty assumption in the a priori emission 
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map, the final inversion using the CA-specific emission model yielded emission sums of 

12.12±2.47, 20.30±3.12, 17.55±2.61, and 12.83±1.78 Tg CO2eq yr-1 for spring, summer, 

fall, and winter. Compared to those of the original inversion, we find that there is no 

significant difference between the two inverse analyses.  

 

We also conducted a sensitivity analysis on the α value used to remove outliers for the 

final inversion. We repeated the inversion using a fixed value of 2 for α instead of using 

varying values depending on the χ2 statistic. In this inversion, the number of 3-hourly 

observations is 516, which is slightly smaller than 544 observations used in the original 

analysis. As Bergamaschi et al. [2005] indicated, the difference between the two analyses 

was small. The case based on the fixed value of 2 yields emissions sums of 11.12±2.12, 

19.49±2.96, 14.84±2.27, 10.93±1.73 Tg CO2eq yr-1 for spring, summer, fall, and winter, 

respectively, which are very similar to those of the case with varying α. 

 

Finally, 2008 included a period with significant fire activities and the data were initially 

screened to remove periods with obvious contamination from wild fires as described in 

Section 2.1. We also investigated the sensitivity of emission estimates to the fire 

activities. When observations from the summer fire periods were not removed, the final 

inversion yielded a region sum of 19.90±2.96 Tg CO2eq yr-1 for Regions  6, 7 and 8 

during the summer season, which does not deviate significantly from 19.25±2.97 Tg 

CO2eq yr-1 of the original inversion. The inversion with the fire periods included showed 

11.33±1.20, 2.65±0.57, and 5.92±2.65 Tg CO2eq yr-1 for Regions 6, 7 and 8, respectively. 
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This result is also comparable to 11.20±1.21, 2.48±0.57, and 5.57±2.65 Tg CO2eq yr-1 

from the original analysis. 

 

 

4. Discussion  
 
The regionally summed annual posterior CH4 emissions are 14.12±2.19 and 16.79±2.43 

Tg CO2eq for the CA-specific and EDGAR32 models, larger than the sum of the CA-

specific prior (9.13 Tg CO2eq) by factors of 1.55±0.24 and 1.84±0.27, respectively. The 

similarity of these two factors suggests that inferred emissions for the area within 

approximately 150 km of the tower are independent of the two emission models and that 

actual summed CH4 emissions are significantly higher than the sum inferred from the 

CARB inventory. In terms of the spatial distribution of CH4 emissions, these results 

indicate that the inversion system constrains emissions somewhat independent of the 

resolution of the emission map. Assuming these average posterior scaling factors were 

applicable to all regions of California, the resulting total CH4 emissions would comprise 

approximately 9% of total GHG emissions, a result that requires further investigation and 

confirmation [CARB, 2010].  

 

The CA-specific a priori model shows clear seasonal variations in total CH4 emissions, 

producing significantly greater total emissions in summer, moderate emissions in fall, 

and lower emissions in winter and spring.  The higher summer-time emissions are 

concentrated in Region 6, a result that is consistent with the spatial distribution and 

seasonality of the a priori emissions from rice agriculture [Salas et al., 2006]. This 
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provides consistent evidence for increased emissions in summer as expected in biological 

systems responding to warmer temperatures such as rice and wetlands [Potter et al., 

2006; McMillan et al., 2007]. On the contrary, posterior emissions obtained with the 

EDGAR model yield only weak seasonality in total CH4 emissions for the three regions 

although the fall and winter emissions are marginally different from those of the other 

seasons. In particular, the high winter emissions from the EDGAR model are likely due 

to a combination of urban emissions in the a priori model (i.e., ~ six times larger than 

that of the CA-specific model), its coarse spatial resolution, and weak footprints in the 

urban region during winter. It is conceivable that emissions from Region 7 might increase 

in winter due to urban emission sources such as increased natural gas use. However, it 

seems unlikely that natural gas emissions from Region 7 could drive the seven-fold 

increase in posterior emissions (10.47±2.95 Tg CO2eq yr-1) compared to that (1.56±0.62 

Tg CO2eq yr-1) of the CA-specific model, considering that natural gas accounts for only 

less than 30% of the total emission in Region 7. A further study is required to resolve this 

discrepancy, possibly using more measurements from multiple stations combined with 

additional improvements in a priori emission models. 

 

As described above, it appears that the different emissions models combined with the 

time varying footprints produce posterior emission sums that 1) peak in different regions 

and seasons, and 2) contain anti-correlations among regions which limit unique spatial 

attribution of emissions. This type of anti-correlation in posterior emission estimates for 

different regions has been reported in the inversion results of Bergamaschi et al. [2005], 

and suggests that a network of measurement stations will be required to accurately 
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resolve the spatial distributions of CH4 emissions over the state of California [Fischer et 

al., 2009]. 
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Figure captions 

Figure 1. Diurnal cycles of mean hourly (PST) measured CH4 mixing ratio obtained for 

91 and 483 m sampling heights on the WGC tower for the period from December 2007 to 

November 2008.   

 

Figure 2. Tower measurements of CH4 (top panel) and CO (bottom panel) at 91 m 

(black) and 483 m (red) as functions of date (expressed as day/month) for the period 

between December 2007 and November 2008. The blue circles indicate the data 

satisfying the well-mixed criteria in this study. The vertical bars indicate the fire period 

from June 20 to July 28, 2008, which was excluded from further analysis. 

 

Figure 3. (a) Region classifications, and a priori CH4 emissions from (b) livestock, (c) 

natural gas wells, (d) natural gas based on California population density, (e) the total CA-

specific emission model, and (f) the EDGAR32 emission model. The location of the 

tower is marked with an “x” near longitude = 121ºW, latitude = 38ºN. The triangle in (c) 

represents the location of the Rio Vista Gas (RVG), which is one of the largest gas fields 

in California. 

 

Figure 4. WRF initial boundary set up with three-level nested domains. The ratio of 

spatial resolution between the three levels is 3. The resolutions for d01, d02, d03 and d04 

are 36, 12, 4 and 4 km, respectively. 
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Figure 5. Map of Central California showing the location of Walnut Gove Tower (WGC; 

red “x”) and the locations of the four radar wind profilers (black triangles) at Sacramento 

(SAC), Chico (CCO), Chowchilla (CCL) and Livermore (LVR), with predicted monthly 

mean PBL heights (m) for June 2008, 10:00 PST shown in color. 

 
Figure 6. Seasonally averaged footprint maps over well-mixed periods for spring 

(MAM), summer (JJA), fall (SON), and winter (DJF). 

 

Figure 7. Time series (dates given as DD/MM) of measured CH4 signals (black) and 

predicted background (red) CH4 signals at 91 m on the WGC tower for well-mixed 

periods between December 1, 2007 and November 30, 2008.   

 

Figure 8. Comparison of CH4 mixing ratios between measurements and predictions 

based on the final inverse optimization using CA-specific emissions for the mid-point 

month of (a) spring, (b) summer, (c) fall, and (d) winter. For summer, June and July 

mixing ratios are compared together due to data removal during fire periods. 

 

Figure 9. Comparison of CH4 mixing ratios between measurements and predictions 

based on the final inverse optimization using EDGAR32 emissions for the mid-point 

month of (a) spring, (b) summer, (c) fall, and (d) winter. For summer, June and July 

mixing ratios are compared together due to data removal during fire periods. 

 

Figure 10. Comparison of posterior CH4 emissions (Tg CO2eq yr-1, assuming a 100-year 

GWP = 21) by region between the (a) CA-specific and (b) EDGAR32 emission models. 
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Tables  

Table 1. A Priori Emissions (Tg CO2eq yr-1; assuming a GWP of 21 g CO2eq/ g CH4) 

from the CA-specific and EDGAR32 Models for the Three Regions near the WGC 

Tower 

Regions 
CA-specific Seasonal CA-specific  

Annual EDGAR32 
Winter Spring Summer Fall 

R06 1.35 1.70 5.13 2.59 2.69 3.59 
R07 1.27 1.27 1.30 1.29 1.28 8.22 
R08 5.02 5.01 5.33 5.25 5.15 3.10 
Total 7.64 7.98 11.76 9.13 9.13 14.90 
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Table 2. Estimated Model-data Mismatch Errors and Number of Observations for Final 
Inversions 

Month 1 2 3 4 – 5a 6 – 7a 8 9 10 11 12 

Model-data mismatch 
(ppb) 

42.0 42.0 21.8 21.8 15.6 15.6 22.0 22.0 22.0 42.0 

Number of 
observations for CA-

specific 

36 41 60 87 67 53 60 43 44 53 

Number of 
observations for 

EDGAR32 

35 42 57 88 68 58 62 42 43 48 

aData for May and July are combined with those of April and June, respectively, due to missing 

measurements and fire period cuts. 
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 Table 3. Comparison of Posterior Scaling Factors between First and Final (second) 

Inversions for Each Season Based on the CA-specific Emission Model 

Region Spring Summer Fall Winter 
First Final First Final First Final First Final 

R06 2.61±0.25 2.52±0.27 2.25±0.19 2.18±0.24 2.56±0.20 2.58±0.24 1.83±0.29 1.69±0.31 

R07 2.20±0.45 1.60±0.46 2.48±0.42 1.91±0.44 2.52±0.45 1.53±0.47 1.76±0.48 1.23±0.49 

R08 1.05±0.39 1.09±0.40 1.07±0.50 1.05±0.50 0.84±0.33 1.04±0.37 1.63±0.26 1.49±0.27 
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Figures 

 

Figure 1. Diurnal cycles of mean hourly (PST) measured CH4 mixing ratio obtained for 

91 and 483 m sampling heights on the WGC tower for the period from December 2007 to 

November 2008.   
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Figure 2. Tower measurements of CH4 (top panel) and CO (bottom panel) at 91 m 

(black) and 483 m (red) as functions of date (expressed as day/month) for the period 

between December 2007 and November 2008. The blue circles indicate the data 

satisfying the well-mixed criteria in this study. The vertical bars indicate the fire period 

from June 20 to July 28, 2008, which was excluded from further analysis. 
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Figure 3. (a) Region classifications, and a priori CH4 emissions from (b) livestock, (c) 

natural gas wells, (d) natural gas based on California population density, (e) the total CA-

specific emission model, and (f) the EDGAR32 emission model. The location of the 

tower is marked with an “x” near longitude = 121ºW, latitude = 38ºN. The triangle in (c) 

represents the location of the Rio Vista Gas (RVG), which is one of the largest gas fields 

in California. 
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Figure 4. WRF initial boundary set up with three-level nested domains. The ratio of 

spatial resolution between the three levels is 3. The resolutions for d01, d02, d03 and d04 

are 36, 12, 4 and 4 km, respectively. 
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Figure 5. Map of Central California showing the location of Walnut Gove Tower (WGC; 

red “x”) and the locations of the four radar wind profilers (black triangles) at Sacramento 

(SAC), Chico (CCO), Chowchilla (CCL) and Livermore (LVR), with predicted monthly 

mean PBL heights (m) for June 2008, 10:00 PST shown in color. 
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Figure 6. Seasonally averaged footprint maps over well-mixed periods for spring 

(MAM), summer (JJA), fall (SON), and winter (DJF). 
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Figure 7. Time series (dates given as DD/MM) of measured CH4 signals (black) and 

predicted background (red) CH4 signals at 91 m on the WGC tower for well-mixed 

periods between December 1, 2007 and November 30, 2008.   
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Figure 8. Comparison of CH4 mixing ratios between measurements and predictions 

based on the final inverse optimization using CA-specific emissions for the mid-point 

month of (a) spring, (b) summer, (c) fall, and (d) winter. For summer, June and July 

mixing ratios are compared together due to data removal during fire periods. 
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Figure 9. Comparison of CH4 mixing ratios between measurements and predictions 

based on the final inverse optimization using EDGAR32 emissions for the mid-point 

month of (a) spring, (b) summer, (c) fall, and (d) winter. For summer, June and July 

mixing ratios are compared together due to data removal during fire periods. 
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Figure 10. Comparison of posterior CH4 emissions (Tg CO2eq yr-1, assuming a 100-year 

GWP = 21) by region between the (a) CA-specific and (b) EDGAR32 emission models. 




